Detecting Semantic Cloaking on the Web

Baoning Wu and Brian D. Davison
Department of Computer Science & Engineering
Lehigh University
Bethlehem, PA 18015 USA

{baw4,davison}@cse.lehigh.edu

ABSTRACT

By supplying different versions of a web page to search en-
gines and to browsers, a content provider attempts to cloak
the real content from the view of the search engine. Seman-
tic cloaking refers to differences in meaning between pages
which have the effect of deceiving search engine ranking al-
gorithms. In this paper, we propose an automated two-step
method to detect semantic cloaking pages based on differ-
ent copies of the same page downloaded by a web crawler
and a web browser. The first step is a filtering step, which
generates a candidate list of semantic cloaking pages. In the
second step, a classifier is used to detect semantic cloaking
pages from the candidates generated by the filtering step.
Experiments on manually labeled data sets show that we
can generate a classifier with a precision of 93% and a re-
call of 85%. We apply our approach to links from the dmoz
Open Directory Project and estimate that more than 50,000
of these pages employ semantic cloaking.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Performance

Keywords

Web search engine, spam

1. INTRODUCTION

Imagine the scenario in which a query is sent to a search
engine but the top ranking pages are not relevant at all. This
is quite disappointing. How could this happen? Cloaking,
one type of search engine spamming technique, is a possible
reason.

Users trust search engines in the sense that they expect
that only the most relevant responses will be listed in the
top ranking positions, and thus typically view just one page
of results [35]. Since increased traffic to a commercial web
site may bring more profit, more sites will compete for the
top rankings, especially for popular queries.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2006, May 23-26, 2006, Edinburgh, Scotland.
ACM 1-59593-323-9/06/0005.

Not all content providers will work hard to generate high
quality web pages in order to get higher rankings. Some
will find shortcuts and instead aim to make their pages
rank highly by manipulating Web page features on which
search engines’ ranking algorithms are based. This behavior
is usually called “search engine spam” [33, 19]. Henzinger
et al. [22] have pointed out that search engine spam is one
of the challenges that search engines need to face and win.
Search engine results will be seriously impacted if no action
is taken to detect spam.

A search engine generally ranks a page based on its con-
tent and linkage information. Ranking algorithms depend
on the implicit assumption that the page content is real;
i.e., the content seen by the search engines is identical to
the content seen by actual users with browsers. But this
assumption does not hold in the case of a significant web
spamming technique called cloaking. By supplying different
versions of a web page to search engines and to browsers, a
content provider attempts to hide (cloak) the real content
from the view of the search engine.

As a simple example, from a user’s perspective through a
web browser, a page may be a product page selling iPods,
but the content sent to a search engine crawler might ad-
ditionally contain brand names of digital cameras, laptop
computers and camcorders. Furthermore, some keywords
such as “cheap plane ticket”, “free travel” might also be
added.

In addition to other spamming techniques, major search
engines typically declare their opposition to cloaking [17, 41,
4].

Surprisingly, some cloaking behavior is actually accept-
able to, if not welcomed by, search engines [19]. For exam-
ple, some content providers will not send advertising links
to search engines or may generate PHP pages that do not
contain session identifiers (that would otherwise be sent to
users). To help distinguish between acceptable and unac-
ceptable cloaking behaviors, we have defined two different
types of cloaking [38]: syntactic and semantic cloaking. Syn-
tactic cloaking includes all situations in which different con-
tent is sent to a crawler versus real users. Semantic cloak-
ing is the subset of syntactic cloaking in which differences in
meaning between pages are likely to deceive a search engine’s
ranking algorithm. Some experts name semantic cloaking
as “malicious cloaking”. Obviously, semantic cloaking is the
behavior of interest to search engine providers.

Building on our previous experience [38] in detecting syn-
tactic cloaking, we address in this paper the harder problem
of how to recognize semantic cloaking automatically. We

propose a two-step process to detect semantic cloaking on
the Web. The filtering step will detect all candidates that
may utilize semantic cloaking. A classifier will then deter-
mine whether each candidate generated from the filtering
step incorporates semantic cloaking or not.

This is the first publication that attempts to detect se-
mantic cloaking automatically. While some ideas have been
proposed to detect cloaking [38, 29], they may need hu-
man judgment to decide whether the pages employ semantic
cloaking. The main contribution of this paper is the de-
sign and evaluation of a novel two-step process to identify
semantic cloaking behavior on the web without human in-
volvement. In experimental tests, our classifier achieves a
precision of more than 90% and a recall of more than 80%.

The rest of this paper is organized as follows: related
work will be introduced in Section 2. The motivation for
detecting semantic cloaking will be discussed in Section 3.
The details of our algorithms for detecting semantic cloaking
are given in Section 4. Experimental work and results will
be presented in Section 5. We conclude with a discussion
and future work in Section 6.

2. RELATED WORK

Most search engine spamming techniques can be put into
three different categories: content spam, link spam and
page-hiding spam. Cloaking is the major technique within
the page-hiding category. Several different methods have
been proposed [36, 8, 16, 42, 6, 26, 10, 20, 13, 1, 28, 39, 14]
to address content spam and link spam, but few publications
address the cloaking issue.

Gyongyi and Garcia-Molina [19] describe cloaking and
redirection as spam hiding techniques. They noted that web
sites can identify search engine crawlers by their network IP
address or user-agent names. They additionally point out
that some cloaking (such as sending the search engine a ver-
sion free of navigational links and advertisements but no
change to the content) is accepted by some engines. No
solution for how to combat cloaking is introduced.

Perkins [33] argues that any agent-based cloaking is spam.
No matter what kind of content is sent to search engine,
the goal is to manipulate search engines rankings, which is
an obvious characteristic of search engine spam. Again, no
solution is given in this paper.

Cafarella and Cutting [8] consider cloaking as one of the
spamming techniques. They said that search engines will
fight cloaking by penalizing these sites. But detecting this
cloaking behavior remains a problem.

Najork was awarded a patent [29] for a method of de-
tecting cloaked pages. He proposed the idea of detecting
cloaked pages from users’ browsers by installing a toolbar
and letting the toolbar send the signature of user perceived
pages to search engines. His method may still have difficulty
in distinguishing rapidly changing or dynamically generated
Web pages from real cloaking pages, and does not directly
address semantic cloaking.

Henzinger et al. [22] pointed out that search engine spam
is quite prevalent and search engine results would suffer
greatly without taking measures. They consider cloaking as
one of the major search engine spam techniques. They sug-
gest that crawling the same page twice may detect cloaking,
but they also admit that this method has difficulty in dif-
ferentiating legitimate changes, such as dynamic news head-
lines, from cloaking behavior.

In a workshop paper [38], we introduced the idea of au-
tomatic detection of cloaking pages using more than two
copies of the page. We differentiated semantic cloaking from
strictly syntactic cloaking, and explored methods for syntac-
tic cloaking recognition.

Since we use machine learning methods to detect semantic
cloaking, research using machine learning methods to detect
spam are also relevant.

Amitay et al. [3] propose categorization algorithms to de-
tect website functionality. They recognized that the sites
with similar roles exhibit similar structural patterns. Af-
ter finding one special pattern for a certain kind of website,
they can predict the websites to be in the same class if the
sites show a similar pattern. For each host, they selected 16
features such as the average level of the page, in-links per
page, out-links per leaf page, etc., to do the categorization.
In their experimental results, they claimed to have identified
31 clusters, each of which appears to be a spam ring.

“Nepotistic links”, i.e., those links between pages that are
present for reasons other than merit, are bad for the link-
based ranking algorithm, so it is necessary to get rid of them.
Davison [13] uses multiple features of web pages to detect
nepotistic links. Features included page title, page descrip-
tion, initial IP address octets, common outgoing links, etc.

Recently, Drost and Scheffer [14] proposed using machine
learning methods to detect link spam. They generated 89
features for each page and manually labeled hundreds of
examples of link spam. These examples, along with non-
spam examples from the Open Directory Project [31], were
used to train a classifier to recognize link spam pages.

3. MOTIVATION

Cloaking occurs when different content for the same URL
is sent to browsers and to search engine crawlers. Since page
content is one of the most important components in ranking
pages, major search engines typically discourage cloaking
[17, 41, 4].

The assumption made by search engines is that anyone
utilizing cloaking has the potential to fool search engines to
generate a higher ranking for their pages. However, based
on our experience, this is not always the case.

In previous work [38], we detected that about 9% of pages
within a hot query data set utilized cloaking. (We will in-
troduce this data in Section 5.) The ratio is high enough to
show that cloaking is not scarce on the Web. After manu-
ally checking approximately 1,000 examples of cloaking, we
found that some of them will affect search engine results
while others are not likely to be harmful to search engines.

For example, we found that many web servers that use
PHP or ASP to generate dynamic content will have session
identifiers within URLs for copies sent to browser, but no
such session identifiers are sent to a crawler. This is rea-
sonable in the sense that the Web servers need this kind of
session identifier to differentiate different users, but these
identifiers are not useful to search engines. If these identi-
fiers were sent to search engines, search engines might think
that the page has changed on every visit while actually the
page has not.

Another example is that some pages will contain adver-
tising links when being viewed from a browser, but no such
links are present in the copy sent to crawlers. In fact, this
behavior is helpful for search engines utilizing link-based
ranking algorithms. The reason is that the base assump-

tion of link-based ranking algorithms is that a link on the
Web implicitly represents an authority vote [7, 25] or a kind
of trust [20]. Obviously, advertising links don’t match this
assumption. Hence, this kind of cloaking can help search en-
gines collect fewer advertising links, thus generating a better
ranking.

Based on the above observations, we find that it is not
enough to detect syntactic cloaking behavior. If search en-
gines penalize all instances of cloaking, obviously it is not
fair to the above examples. However, given the enormous
size of the Web, it is also not possible for human experts to
check each page manually to decide which one to penalize.
Hence, it is necessary to find a method to detect the kind of
cloaking behavior that has the effect of manipulating search
engine ranking results. We refer to this cloaking behavior
as semantic cloaking.

4. ALGORITHM

In order to decide whether a Web page is employing cloak-
ing, copies from both a browser’s perspective and a crawler’s
perspective are needed [22]; a single copy in the search en-
gine’s cache is not enough. The reason is that spammers
may send high quality content (e.g., copied from Yahoo!,
CNN or Wikipedia) to the search engine’s crawler; there-
fore, flagging content-based features of the crawled version
alone is insufficient.

Also, the comparison of only one copy of a page from
a browser’s perspective and only one copy from a crawler’s
perspective is still insufficient for detecting cloaking [38, 22].
For example, a college’s homepage may highlight a different
faculty members’ biographical information every time the
page is served. It is not easy to discover this behavior by
only looking at one copy from both browser’s perspective
and crawler’s perspective. So, two or more copies from each
side are necessary for detecting cloaking. This is also true
in the case of detecting semantic cloaking.

The problem with this 4-copy method is that it is ex-
pensive for search engines. With billions of pages on the
Web today, crawling and storing four copies and calculating
the differences among them requires significant resources.
Hence, we propose a two-step process for detecting seman-
tic cloaking requiring significantly fewer resources.

The first step implements a filter. By comparing only
one copy from the browser’s perspective and the crawler’s
perspective, heuristics are used to eliminate Web pages that
cannot demonstrate cloaking. The goal of this step is to
generate a candidate list with a reasonable precision but a
perfect recall for semantic cloaking pages. All the pages that
are not eliminated in the first step are sent to the second step
for further inspection.

In the second step, first two more copies, one from a
browser’s perspective and one from a crawler’s perspective,
are downloaded for each candidate. Then features are ex-
tracted from across these four copies and a classifier is used
to determine whether this page is doing semantic cloaking
or not. The overall process is depicted in Figure 1.

4.1 Filtering Step

The purpose of this step is to eliminate pages that do not
employ semantic cloaking.

The motivation for this step is simple: if we can tell that
the page is not utilizing cloaking at all with a smaller cost,
then there is no need for us to download four copies for this

Heuristic Rule

Candidates
Two cobies of The copy sent to from 1ststep | Eaqpures:
each : e crawler has more 1. Number of terms | Cloaked
P than 3 unique 2. Number of links | Pages
terms that don't 3. Common terms

4. Number of terms
in meta-keyword

exist in the copy

sent to browser 1 r
Two more copies

for each candidate

Filtering Step Classifying Step

Figure 1: Data flow of the two steps for detecting
semantic cloaking.

page for further inspection. For example, if the copy from
a browser’s perspective and from a crawler’s perspective are
identical, the chance is very small that this page is employing
semantic cloaking.

One possible direct rule for the filtering step is to eliminate
all pages for whom the browser and crawler perspectives are
identical, and to send all the pages that are different in the
two copies to the classification step. Although this is a safe
rule for the first step, we find this rule is still insufficient.
The reason is that the Web is changing very fast. Cho and
Garcia-Molina [12] showed that about 20% of Web pages
changed every time they were visited and about 40% of Web
pages were changed within a week. Other researchers [15,
30] also show that Web pages are changing fast. This shows
that by applying the above “identical rule”, we may still get
a lot of candidates for the classification step.

As discussed before, even if the copy from a browser’s per-
spective and the copy from a crawler’s perspective are differ-
ent, it still doesn’t necessarily mean that the page is utiliz-
ing semantic cloaking. For example, some servers will send
JavaScript to the browser but not to the crawler. Hence, a
better heuristic for eliminating pages that are not likely to
perform semantic cloaking is needed.

In order to determine a better heuristic rule, we carefully
study the manually detected cloaking examples. One com-
mon characteristic of these examples is that spammers are
ambitious. They will often list more keywords or links in the
copy sent to the crawler than the copy sent to the browser
if they utilize cloaking. Typically these keywords are real
words for popular queries, e.g., names of hot games, pop
stars, digital cameras. An example of a portion of a seman-
tic cloaking page with many keywords is shown in Figure
2.

Hence, the ideal situation is that there exists a complete
enough dictionary that contains all the keywords that may
be used for spamming purpose. Thus, the heuristic rule can
be that if the copy sent to the crawler contains a number
of dictionary terms that don’t exist in the copy sent to the
browser, then this page will be marked as a candidate and
sent to the classification step.

A threshold can be used in which pages with more than
this threshold of words only in the copy sent to the crawler
or sent to the browser will be marked as candidates. We
refer to this heuristic rule as the “term rule” in this paper.
Different thresholds will generate different candidate lists.
Obviously, one is the optimal threshold in the sense that
no semantic cloaking page will be filtered out during this
filtering step.

As we have described above, spammers may also put dif-

game info, reviews, game reviews, previews, game previews,
interviews, features, articles, feature articles, game developers,
developers, developer diaries, strategy guides, game strategy,
screenshots, screen shots, game screenshots, game screen
shots, screens, forums, message boards, game forums, cheats,
game cheats, cheat codes, playstation, playstation, dreamcast,
Xbox, GameCube, game cube, gba, game, advance, software,
game software, gaming software, files, game files, demos,
game demos, play games, play games online, game release
dates, Fargo, Daily Victim, Dork Tower, classics games, rpg,
role playing games, strategy games, real time strategy, action
games, FPS, shooter, first person shooters, sports games,
handheld games, pda, pda games, half-life, half life, quake,
quake, counter strike, counter strike, rogue spear, rainbow six,
medal of honor, allied assault, unreal tournament, return to
castle Wolfenstein, soldier of fortune, tribes, starsiege tribes,
command and conquer, renegade, halo, grand theft auto, tony
hawk, the sims, sims

Figure 2: Sample of a meta-keyword tag sent in both
HTTP response header and HTML content only to
the crawler.

ferent links in the copy sent to the crawler and in the copy
sent to the browser. Similarly, we can have a rule for links:
first we extract all links from pages and if a page has more
than a threshold of unique links that don’t occur in the copy
sent to the browser or do not occur in the copy sent to the
crawler, we will mark this page as a candidate and send it
to the classification step. We refer to this rule as the “link
rule”. Again, the optimal threshold will be one for this link
rule. Any page that matches either term rule or link rule
will be marked and sent to the second step.

4.2 Classification Step

The filtering step above will admit candidate pages. We
have also explained that a single copy each from the crawler
and the browser is insufficient to detect semantic cloaking.
Hence, for each candidate, we download another copy from
both browser and crawler perspectives. For consistency, we
download these two copies in the same order as the one for
the initial two copies, i.e., if we use B1, B2, and C1, C2 to
represent the copies downloaded as a browser and a crawler
respectively, then the downloading sequence of these four
copies should be either B1—C1—B2—C5 or C1—B1—C2— Bs.

From the four copies of a page, a set of features can be
generated. We use a set of labeled pages for training a clas-
sifier to determine whether or not the page is employing
semantic cloaking.

A major concern is how to generate a set of useful features.
As in most machine learning tasks, this is best performed
using domain expertise. Based on our examination of many
cloaking and non-cloaking pages, and with raw data in the
form of four parsed versions of a page in mind, we have
created a number of potentially useful features.

One goal for our classifier is widespread applicability to
unseen pages — as a result, where possible we choose fea-
tures that are independent of the actual content of the
pages. Most features represent information about the con-
tent, rather than the content directly. Given that we are
examining hypertext, we can extract features based both on
the content (text, markup, etc.) as well as links to other

Content-based features from each copy
Response code.

Number of

terms.

terms in the title field of HTTP response header.

terms in the keyword field of HTTP response header.
terms in the description field of HTTP response header.
lines in HTTP response header.

Whether

“method=post” exists.
“input type=hidden” exists.
Google AdSense exists.
checkbox exists.

radiobox exists.
“type=submit” exists.

frame tag exists.
“onmouseover” function exists.
stylesheet exists.

a reference to a flash file exists.
copyright information exists.

[]
[]
[]
[]
[]
[]
e JavaScript exists.
[]
[]
[]
[]
[]
e a reference to a JavaScript file exists.

Figure 3: Content-based features from each copy.

Link-based features from each copy
Number of

total links.

unique links.

links to the same site.

links to a different site.

relative links.

absolute links.

unique sites that this page points to.

Ratio of number of

e links to the same site to the number of total links.

e links to a different site to the number of total links.

e absolute links to the number of total links.

e relative links to the number of total links.

e links to the same site to the number of links to a different
site.

e absolute links to the number of relative links.

Figure 4: Link-based features from each copy.

pages. Note that although “title”, “keyword” and “descrip-
tion” fields are not a part of the standard HTTP response
header, we observe that many spammers include these fields
into the HTTP response header. Hence, we take this ob-
servation into account in our feature selection process. We
show content and link-based features of one instance of a

page in Figures 3 and 4, respectively.

Since at this point we have four copies of each page, we can
also consider the differences across and within user-agents.
Intuitively, such differences are important as they can dis-
tinguish between time-changing content versus static differ-
ences between versions sent to the two user-agents. We gen-
erate features for both kinds of differences.

Therefore, given two instances, we compare the feature
values for many features (e.g., is the number of links con-
tained in each the same), and we compare aspects of the
content (e.g., how many terms appear only one instance,
but not the other). These features are calculated from the
comparison of instances sent to the same client (e.g., from
B to B3), and from the comparison of instances retrieved
first or last (e.g., from C7 to Bi1). Some examples of these
features are shown in Figure 5.

By combining the various features described above, we
finally determine 162 features for each candidate page to
train the classifier.

4.3 Our Implementation

In reality, the ideal approach described in Section 4.1 can
not be easily implemented. For example, it is quite diffi-
cult to find a powerful dictionary to contain all valid words
and names (although a search engine might be able to con-
struct something close). Hence we employ a non-optimal
heuristic rule in our implementation. For the term rule, we
decompose all the pages into terms by replacing all the non-
alphanumeric characters with blanks. We then drop all the
terms containing digits. For the remaining terms, if the copy
sent to the crawler contains more than a threshold of terms
that don’t exist in the copy sent to the browser, we mark it
as a candidate and send it to the second step.

For the link rule, we extract all the links within the
“HREF” tags for all the pages. If the copy sent to the
crawler contains more than a threshold of links that don’t
exist in the copy sent to the browser, we mark it as a can-
didate and send it to the second step.

For the second step, we employ a support vector machine
as our classifier model. The software SVM'9"* [23] is used
to train the SVM classifier.

5. EXPERIMENTS

In this section, we first show how we build an SVM clas-
sifier and its performance based on a small data set. We
then apply our two-step process to detect semantic cloaking
based on a large data set.

5.1 Building the classifier

The data set used for training the classifier is the set of
URLs included in top response pages for hot queries. This
data set is the same set used our prior work in detecting
cloaking [38].

5.1.1 Data set

We collected ten popular queries of Jan. 2005 from Google
Zeitgeist [18], the top 100 search terms of 2004 from Lycos
[27], the top ten searches for the week ending Mar. 11, 2005
from Ask Jeeves [5], and ten hot searches in each of 16 cate-
gories ending Mar. 11, 2005 from AOL [2]. This resulted in
257 unique queries from these web sites.

Features for two corresponding copies
Whether

e the number of terms in the keyword field of the HTTP
response header for C; is bigger than the one for Bj.

e the number of terms in the keyword field of the HTTP
response header for C is bigger than the one for Bs.

e the total number of links in B; is the same as the total
number of links in Bs.

e the total number of links in C; is the same as the total
number of links in Cs.

Number of

common terms in By and C;.
common links in By and C.

terms appearing only in By, not in (.
links appearing only in By, not in Cj.

Figure 5: Features for two corresponding copies

For each of these queries, we retrieved the top 200 re-
sponses from the Google search engine. The number of
unique URLs is 47,170. In each case we record the entire
response — the HT'TP headers, including response code, plus
the body of the response. We also record, and follow, HTTP
redirection responses.

When a client retrieves a resource from a Web server,
it typically includes a UserAgent header field to iden-
tify the type of client. In order to disguise our re-
quest as either a search engine robot or a normal web
browser, we changed the UserAgent HTTP header when
we sent out our requests. To pretend to be a search en-
gine robot, we set the UserAgent to be Googlebot/2.1
(+http://wuw.googlebot.com/bot.html). To pretend to
be a web browser, we set the UserAgent to be Mozilla/4.0
(compatible; MSIE 5.5; Windows 98). We then down-
loaded four copies for each of the 47,170 URLs — two from
a browser’s perspective and two from a crawler’s perspec-
tive. However, unlike real crawlers, all of these retrievals
were performed using machines with a university IP address,
meaning that pages performing cloaking based solely on IP
address will be missed.

5.1.2 Labeled data set

In order to train a classifier, we need a labeled data set
containing both positive and negative examples of semantic
cloaking from the hot query data set. We used the following
procedure to get such a list.

1. For the 4,083 pages identified as syntactic cloaking in
[38], select one URL for each unique site.

2. For the list generated from the above step, manually
check whether the URL is doing semantic cloaking.

3. For each of the URLs that are marked as semantic
cloaking in step 2, extract the site and select all the
pages from this site within the hot query data set.

4. For the list generated from step 3, double check
whether the URL is doing semantic cloaking.

5. Combine the list from step 2 and step 4 to form the
labeled list.

Top positive features for detecting semantic cloaking

1. Whether the number of terms in the keyword field of the
HTTP response header for C is bigger than the one for
B;.

2. Whether the number of terms in the keyword field of the
HTTP response header for C'; is bigger than the one for
Bs.

3. Whether the number of terms in the description field of
the HTTP response header for C; is bigger than the one
for Bi.

4. Whether the number of terms in the description field of
the HTTP response header for Cs is bigger than the one
for BQ.

5. Whether the number of lines in the HTTP response
header for C1 is bigger than the one for Bj.

6. Whether the number of terms in the title field of the
HTTP response header for C' is bigger than the one for
B;.

7. Whether the number of terms in the title field of the
HTTP response header for C is bigger than the one for
Bs.

8. Whether the number of unique terms in C is bigger than
the one in Bj.

9. Whether C; has the same number of relative links as B1.

10. Whether the number of common terms between C; and
Bj is same as the number of common terms between Cy
and Bs.

Figure 6: Top 10 features with positive weights.

Following the above procedure, we get a labeled list of
1,285 URLs. Among them, 539 are positive examples and
746 are negative examples. Here positive means the page is
doing semantic cloaking.

5.1.3 Training the classifier

We partitioned the labeled list into a training list and a
test list. The training list contains randomly selected 60%
of both positive and negative examples; the remaining 40%
of both positive and negative examples are put into the test
list. This ends up with a training set of 767 examples and a
test set of 518 examples.

For these 1,285 pages, we extracted 162 features from the
four copies and used SVM'"* [23] to build a classifier. In
order to prevent features with large values (such as the num-
ber of tokens within one copy) from dominating the classi-
fier, we scale down all features to the range [0,1]. After this
scaling, we train the classifier and use precision of and recall
as the metrics. Here precision means what percentage of the
pages predicted by the classifier as semantic cloaking pages
are actually utilizing semantic cloaking. Recall refers to the
fraction of all semantic cloaking pages that are detected by
the classifier. A model with 278 representative feature vec-
tors is built by SVM'"" after the training process.

In order to avoiding overfitting, we repeated the train-
ing set and test set selection process five times. The av-
erage precision of these five runs is 93% and recall is 85%.
This demonstrates that using the classifier to detect seman-
tic cloaking is promising.

Top negative features for detecting semantic
cloaking

1. Whether C'1 uses the same stylesheet file as Bj.

2. Whether C3 uses the same stylesheet file as Ba.

3. Whether both C and B2 contain copyright information.
4. Whether both C2 and Bz contain JavaScript.

5. Whether both C2 and Bz contain “METHOD POST".
6. Whether both C1 and B; contain JavaScript.

7. Whether C1 has the same copyright information as B;.
8. Whether both C'; and B; contain “METHOD POST".
9. Whether both C2 and B2 contain checkbox.
10. Whether By, and B> have same number of terms in the

META DESCRIPTION field.

Figure 7: Top 10 features with negative weights.

5.1.4 Discriminative features

We have 162 features in total. Obviously not all of them
are of the same importance to the classifier. In order to
know which features are most discriminative, we use two
methods.

First, like Drost and Scheffer [14], we calculate the weight
for each feature and output the features with highest weights
as the most discriminative features. We used the model
file generated by SVM' 9" to calculate the weight for each
feature. The top ten features with a positive weight are
shown in Figure 6. These features can be considered as the
most discriminative features to tell that the page is utilizing
semantic cloaking.

Many features in Figure 6 are related to the HTTP re-
sponse header. The reason is that we detect many semantic
cloaking instances using HTTP response headers to deliver
spam. Many keywords are added to the HTTP header sent
to the crawler.

Similarly, the top ten features with negative weights are
shown in Figure 7. These features are important to indicate
that a page is not employing semantic cloaking.

The second method to present important features is to
generate a decision tree. We use the WEKA [37] implemen-
tation of C4.5 [34] to generate a decision tree for our training
data set, shown in Figure 8. The corresponding features for
this tree are listed in Figure 9.

The features listed in Figure 9 include discriminative fea-
tures for both positive and negative examples. Most of them
are similar to the combination of features listed in Figure 6
and Figure 7. This demonstrates that the above features
are discriminative features in deciding whether the page is
utilizing semantic cloaking or not.

5.2 Detecting Semantic Cloaking
5.2.1 ODP data set

In order to demonstrate the value and validate perfor-
mance of our two-step process of detecting semantic cloak-
ing, we use a much larger data set.

Since the pages within dmoz Open Directory Project [31]
are regularly used by web search, crawling, and classification

Figure 8: Tree generated by the C4.5 algorithm.

research (e.g., [21, 9, 11]), it is prudent to see how many
pages listed in the ODP utilize semantic cloaking.

We use the 2004 ODP RDF file [32] and extract 4,378,870
URLs from it. We then download two copies for each of these
URLs, one pretending to be a crawler and one pretending
to be a browser, for each of these URLs for our experiment.

5.2.2 Filtering step

As introduced in Section 4.1, the first step is to filter out
the pages that may not employ semantic cloaking. As be-
fore, we first decompose all the pages into terms by replac-
ing all the non-alphanumeric letters by blanks, collect the
remaining terms and drop the terms containing digits.

A<=0

| B <= 0.008406

| | C<=0

| | | D <= 0.000446: -1 (11.0/1.0)

| | | D > 0.000446

| | | | E <= 0.000179: 1 (15.0)

| | | | E > 0.000179

| | | | | F <= 0.007218: -1 (2.0)
| | | | | F > 0.007218: 1 (2.0)

| | C>0

| | | G <=0

| | | | H<=0:1 (10.0)

| | | | H>O0

| | | | | I <= 0.005792

| | | | | | J<=0:1(5.0/1.0)
| | | | | | J>0: -1 (11.0)

| | | | | I > 0.005792: 1 (2.0)

| | | G>0

| | | | K<=0

| I | | | L <= 0.9753: -1 (380.0/17.0)
| | | | | L > 0.9753

| | | | | | M<=0

| | | | | | | N<=0: -1 (4.0)
| | | | | | | N >0:1 (8.0/1.0)
| | | | | | M>0: -1 (11.0/1.0)
| | | | K>0

| | | | | 0<=0:1 (4.0)

| | | | | 0>0

| | | | | | P<=0:1 (3.0

| | | | | | P>0

| | | | | | | Q <= 0.000141: 1 (2.0)
| | | | | | | Q> 0.000141: -1 (37.0/3.0)
| B > 0.008406

| | R<=0

| | | U<=0:1 (2.0)

| | | U>0: -1 (9.0/1.0)

| | R>0

| | | T <=0

| | | | S<=0:1 (8.0

| | | | s>0

| | | | | G<=0:1 (2.0

| | | | | G>0: -1 (3.0)

| | | T >0: 1 (97.0/1.0)

A > 0: 1 (139.0)

Features selected by C4.5 for detecting semantic
cloaking

e A Whether the number of terms in the description field

of the HTTP response header for C; is bigger than the

one for Bj.

B The number of terms appearing only in C5, not in Bs.

C Whether C; uses the same stylesheet file as Bj.

D The number of terms appearing only in C, not in B;.

E The ratio of the number of absolute links in C'; to the

number of relative links in C.

F The number of unique terms in C;.

G Whether both C> and B> contain “METHOD POST".

H Whether both C'; and Bi contain “input hidden™.

I The number of different terms between the title field

of the HTTP response header for C'y and the title field

of the HTTP response header for B;.

e J Whether both C; and B; contain a flash file.

e K Whether the number of relative links in C is bigger
than the number of relative links in Bj.

e L The ratio of the number of absolute links in C5 to the
total number of links in Cs.

o M Whether the total number of links in Bj is the same
as the total number of links in Bs.

e N Whether the number of different sites that C points

to is bigger than the number of different sites that C>

points to.

O Whether both C2 and Bs contain JavaScript.

P Whether 'y has the same copyright information as B;.

Q The number of terms appearing only in By, not in Ci.
R Whether the total number of links in C3 is bigger than
the total number of links in Bs.

S Whether both C> and B> contain checkbox.

e T Whether the number of terms appearing only in B; but
not C'y is the same as the number of terms appearing only
in B but not Cs.

o U Whether both C1 and B; contain “METHOD POST".

Figure 9: Features selected by the C4.5 algorithm.

In order to investigate which threshold to choose for the
term and link rules described in Section 4.1, we tried differ-
ent thresholds from 1 to 10 for the term rule. The percentage
of pages remaining for these different thresholds are shown
in Figure 10. We arbitrarily choose 3 as our threshold for the
term rule. The reason is that intuitively less than 3 different
terms won’t be a useful cloaking instance for spammers.

Since the candidate set generated by the link rule with
threshold 3 is a subset of the set generated by the term rule,
we use the candidate set generated by the term rule for the
next step.

The filtering step marked 364,993 pages as cloaking can-
didates. That corresponds to 8.34% of the original set of
pages. While a higher threshold could also be used, we be-
lieve that with better heuristic rules, it may be possible to
filter out more candidates without the dropping of real se-
mantic cloaking pages.

Pencentage of pages remaining

Threshold

Figure 10: Percentage of pages remaining for differ-
ent thresholds.

5.2.3 Classification step

For each of these 364,993 pages, two more copies, i.e.,
one from a crawler’s perspective and one from a browser’s
perspective, are downloaded and then features are extracted
from the four copies. Again, we use the same scale from
training the model to scale down these features. Hence it is
possible that absolute values of some features may not be
within the range [0,1]. After classification, 46,806 pages are
marked as utilizing semantic cloaking.

Since the classifier was trained on a different data set,
we randomly select 400 pages from the set of 364,993 pages
to estimate the performance of the classifier for this ODP
data set. After manual checking, 52 semantic cloaking pages
are detected. Then the classifier is applied to the above
labeled 400 pages, the results are still good: accuracy is
96.8%, the precision is 91.5% and recall is 82.7%. Hence,
this demonstrates that the classifier works well for the ODP
data set.

Since the precision is 91.5% for the ODP data set and
we get 46,806 pages classified as semantic cloaking, roughly
speaking we have 46,806 * .915 = 42,827 true positive se-
mantic cloaking instances in the ODP. If we also consider the
cloaking in the false negatives, we get 42,827 / .827 = 51,786
cloaked pages in total in the ODP. Compared to the overall
size of the ODP data set, i.e., about 4.3M pages, we see that
more than 1% of all pages within the ODP are expected to
utilize semantic cloaking. Importantly, since our estimates
do not account for IP-based cloaking, actual cloaking rates
in the ODP will be even higher.

To see whether cloaking is equally distributed across ODP
topics, we calculate the distribution of the 46,806 marked
pages within each of the 16 top level topics in the ODP. The
results are shown in Figure 11. It makes some sense that
popular topics such as “Games”, “Recreation” and “Sports”
also contain the highest fractions of semantic cloaking pages
among all the topics. It is interesting to observe that the
topic “Arts” also contains many semantic cloaking pages.

6. SUMMARY AND DISCUSSION

‘We have proposed a two-step process to address the prob-
lem of detecting semantic cloaking on the Web. The filtering
step generates a candidate set with a reasonable precision
but a high recall for detecting semantic cloaking. The clas-
sification step identifies semantic cloaking pages based on
a pre-trained classifier and features from four instances of
a page. When tested, precision and recall for the classifier
show good performance, at 93% and 85%, respectively. We

Percentage of semantic cloaking pages

A B (9 D E F G H I J K L M N o P
Topic
A. Arts E. Home 1. Health M. Shopping
B. Games F. Society J. Science N. Reference

O. Business
P. News

C. Recreation G. Kids&Teens K. Regional
D. Sports H. Computers 1. World

Figure 11: Percentage of semantic cloaking pages
within each topic.

also show that many semantic cloaking pages exist in the
ODP.

For the filtering step, we use a simple heuristic rule, i.e.,
if more than three non-digit-containing terms are present
in the crawler’s copy but not in the browser’s copy, we will
put the page into the candidate list. More work can be
done for this step in the future. Different heuristic rules
or different thresholds can be used to filter out more pages
without employing semantic cloaking.

For the classifier, we think more features may be added
later to improve the performance. For example, we focus
on the terms in the title, description, keyword fields and
the number of terms in total when training the classifier.
We observe that in the ODP data set, a labeled page uses
ALT tag to apply semantic cloaking and our classifier fails to
recognize it. Hence, more features may be necessary to make
the classifier more robust. For example, we may consider
features related to the images within Web pages.

Also, during manual labeling, we found some pages to
be difficult to classify as utilizing semantic cloaking or not.
Therefore, it may be beneficial to incorporate a separate
class for such pages, and thus could consider ordinal classi-
fication techniques [24, 40].

We detect cloaking by forging different UserAgents. Thus,
we will miss cloaking instances utilizing [P-based cloaking,
i.e., cloaking behavior based on the IP address of the ma-
chines that send out HTTP requests. Hence, our collection
is a lower bound of semantic cloaking instances. We fully ex-
pect search engines to observe a higher fraction of cloaking
pages when retrieving Web pages from known IP addresses
that are used for search engine crawlers.

Finally, what are the consequences of publicizing our ap-
proach to spammers? We argue that our method is robust
as long as the spammers are ambitious. Spammers can only
bypass the filtering step of our algorithm by listing very few
additional keywords in the copy sent to the search engines.

Sophisticated spammers might also tune their pages to
reduce their profile within the strong features that we have
identified for the classifier presented in this paper. However,
with many features, it will be difficult (and unlikely) for a
spammer to avoid all such features. Regardless, periodic re-
training of the classifier is likely to be necessary to maintain
peak performance, which will make the identification of any
particular features here moot. In conclusion, we believe our

approach will identify most semantic cloaking, and make

undetected cloaking more difficult and/or less effective.

7.
[1]

2]

3]

[4]

[5]

(6]

(7]

8]

[9]

(11]

(14]

REFERENCES

A. Acharya, M. Cutts, J. Dean, P. Haahr,

M. Henzinger, U. Hoelzle, S. Lawrence, K. Pfleger,

O. Sercinoglu, and S. Tong. Information retrieval
based on historical data, Mar. 31 2005. US Patent
Application number 20050071741.

America Online, Inc. AOL Search: Hot searches, Mar.
2005. http://hot.aol.com/hot/hot.

E. Amitay, D. Carmel, A. Darlow, R. Lempel, and

A. Soffer. The connectivity sonar: Detecting site
functionality by structural patterns. In Proceedings of
the Fourteenth ACM Conference on Hypertext and
Hypermedia, pages 38-47, Aug 2003.

AskJeeves / Teoma Site Submit managed by
ineedhits.com: Program Terms, 2005. Online at
http://ask.ineedhits.com/programterms.asp.

Ask Jeeves, Inc. Ask Jeeves About, Mar. 2005.
http://sp.ask.com/docs/about/jeevesiq.html.

K. Bharat and M. R. Henzinger. Improved algorithms
for topic distillation in a hyperlinked environment. In
Proceedings of the 21st ACM SIGIR International
Conference on Research and Development in
Information Retrieval, pages 104—111, Melbourne, AU,
1998.

S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1-7):107-117, 1998.

M. Cafarella and D. Cutting. Building Nutch: Open
source. Queue, 2(2):54-61, Apr. 2004.

S. Chakrabarti, M. Joshi, K. Punera, and D. Pennock.
The structure of broad topics on the web. In
Proceedings of 11th International World Wide Web
Conference, pages 251-262, Honolulu, Hawaii, US,
2002. ACM Press.

S. Chakrabarti, M. Joshi, and V. Tawde. Enhanced
topic distillation using text, markup tags, and
hyperlinks. In Proceedings of the 2/th Annual ACM
SIGIR International Conference on Research &
Development in Information Retrieval, pages 208216,
2001.

P. Chirita, W. Nejdl, R. Paiu, and C. Kohlschutter.
Using ODP metadata to personalize search. In
Proceedings of the 28th Annual International ACM
SIGIR Conference on Research € Development in
Information Retrieval, pages 178-185, Salvador,
Brazil, August 2005.

J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
Proceedings of the Twenty-sizth International
Conference on Very Large Databases (VLDB), 2000.
B. D. Davison. Recognizing nepotistic links on the
Web. In Artificial Intelligence for Web Search, pages
23-28. AAAT Press, July 2000. Presented at the
AAAI-2000 workshop on Artificial Intelligence for
Web Search, Technical Report WS-00-01.

I. Drost and T. Scheffer. Thwarting the nigritude
ultramarine: Learning to identify link spam. In
Proceedings of European Conference on Machine
Learning, pages 96-107, Oct. 2005.

(15]

(16]

(17]

(18]

(19]

(22]

23]

29]

(30]

(31]

D. Fetterly, M. Manasse, and M. Najork. A large-scale
study of the evolution of web pages. In Proceedings of
the 12th International World Wide Web Conference,
pages 669-678, Budapest, Hungary, May 2003.

D. Fetterly, M. Manasse, and M. Najork. Spam, damn
spam, and statistics: Using statistical analysis to
locate spam web pages. In Proceedings of WebDB,
pages 1-6, June 2004.

Google, Inc. Google information for webmasters, 2005.
Online at
http://www.google.com/webmasters/faq.html.

Google, Inc. Google Zeitgeist, Jan. 2005.
http://www.google.com /press/zeitgeist /zeitgeist-
jan05.html.

Z. Gyongyi and H. Garcia-Molina. Web spam
taxonomy. In First International Workshop on
Adversarial Information Retrieval on the Web
(AIRWeb), Chiba, Japan, 2005.

Z. Gyongyi, H. Garcia-Molina, and J. Pedersen.
Combating web spam with TrustRank. In Proceedings
of the 30th International Conference on Very Large
Data Bases (VLDB), pages 271-279, Toronto,
Canada, Sept. 2004.

T. Haveliwala. Topic-sensitive PageRank. In
Proceedings of the Eleventh International World Wide
Web Conference, pages 517-526, Honolulu, Hawaii,
May 2002.

M. R. Henzinger, R. Motwani, and C. Silverstein.
Challenges in web search engines. SIGIR Forum,
36(2):11-22, Fall 2002.

T. Joachims. Making large-scale support vector
machine learning practical. In B. Scholkopf,

C. Burges, and A. Smola, editors, Advances in Kernel
Methods: Support Vector Machines. MIT Press,
Cambridge, MA, 1998.

T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 133-142, 2002.

J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. Journal of the ACM,
46(5):604-632, 1999.

R. Lempel and S. Moran. The stochastic approach for
link-structure analysis (SALSA) and the TKC effect.
Computer Networks, 33(1-6):387-401, 2000.

Lycos. Lycos 50 with Dean: 2004 web’s most wanted,
Dec. 2004. http://50.1ycos.com/121504.asp.

G. Mishne, D. Carmel, and R. Lempel. Blocking blog
spam with language model disagreement. In
Proceedings of the First International Workshop on
Adversarial Information Retrieval on the Web
(AIRWeb), 2005.

M. Najork. System and method for identifying cloaked
web servers, June 21 2005. U.S. Patent number
6,910,077.

A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web? The evolution of the web from a search engine
perspective. In Proceedings of 13th International
World Wide Web Conference, pages 1-12, New York
City, USA, May 2004.

Open Directory Project, 2005. http://dmoz.org/.

(32]

(33]

37]

(38]

Open Directory RDF Dump, 2005.
http://rdf.dmoz.org/.

A. Perkins. White paper: The classification of search
engine spam, Sept. 2001. Online at
http://www.silverdisc.co.uk/articles/spam-
classification/.

J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kauffman, San Mateo, CA, 1993.

C. Silverstein, M. Henginger, J. Marais, and

M. Moricz. Analysis of a very large AltaVista query
log. SIGIR Forum, 33:6-12, 1999.

A. Westbrook and R. Greene. Using semantic analysis
to classify search engine spam, Dec. 2002. Class
project report at
http://www.stanford.edu/class/cs276a/projects/reports/.
I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, second edition, 2005.

B. Wu and B. D. Davison. Cloaking and redirection:
A preliminary study. In Proceedings of the First
International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), May 2005.

B. Wu and B. D. Davison. Identifying link farm spam
pages. In Proceedings of the 14th International World
Wide Web Conference, pages 820-829, Chiba, Japan,
May 2005.

J. Xu, Y. Cao, H. Li, and M. Zhao. Ranking
definitions with supervised learning methods. In
Proceedings of the 14th International World Wide
Web Conference, pages 811-819, May 2005.

Yahoo! Inc. Yahoo! Help - Yahoo! Search, 2005.
Online at

http://help.yahoo.com/help /us/ysearch/deletions/.

H. Zhang, A. Goel, R. Govindan, K. Mason, and B. V.
Roy. Making eigenvector-based reputation systems
robust to collusions. In Proceedings of the Third
Workshop on Algorithms and Models for the Web
Graph, Oct. 2004.

