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Abstract

This paper addresses the problem of representing the connectivity information
of geometric objects using as little memory as possible. As opposed to raw com-
pression issues, the focus is here on designing data structures that preserve the pos-
sibility of answering incidence queries in constant time. We propose in particular
the first optimal representations for 3-connected planar graphs and triangulations,
which are the most standard classes of graphs underlying meshes with spherical
topology. Optimal means that these representations asymptotically match the re-
spective entropy of the two classes, namely 2 bits per edge for 3-connected planar
graphs, and 1.62 bits per triangle or equivalently 3.24 bits per vertex for triangula-
tions.

1 Introduction

1.1 Connectivity vs geometry

A geometric object is often represented by a polygonal mesh which contains two kinds
of information: the geometry and the connectivity. The connectivity is a graph which
describes how vertices are linked by edges and faces, while the geometry consists in
the vertices coordinates. In usual representations such as VRML format or pointers
representations in main memory [5], the connectivity is the most expensive part: it costs
hundreds of bits per vertex while the geometry costs only tens of bits per vertex. As a
matter of fact, in such formats where the connectivity is represented by numbering the
vertices and giving indexes, the cost of connectivity has order Θ(n lg n). Since this is
the most expensive part, we shall concentrate in this paper on reducing the connectivity
cost, and leave the problem of reducing the geometry cost aside. We observe however
that our structure is compatible with several of the standard approaches to geometry
compression (point coordinates can be given in a local framework).
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1.2 Compression vs succinct structures

A geometric object can be represented either in a linear format for disk storage or
network transmission, or stored in main memory for the exploration of the object. In
the first case, reducing the size is called compression, and compressing the connectivity
of various kind of meshes has been successfully attacked in recent years [17, 18, 12,
20, 19, 8, 13] (for a survey of the most recent advances in this field we refer to [3]). In
this paper we deal with the second case of main memory representation, and our aim is
to design a data structure having a small size and allowing to answer queries in constant
time. Usual queries consist in going from a face to its neighbor or asking if two vertices
are adjacent in the mesh. Such a structure is called succinct if the cost asymptotically
matches the entropy of the class and compact if it matches it up to a constant factor.
More precisely, given a class of objects with a size parameter n (e.g. the number of
elements of some kind), we consider the number of objects of size n in the class. If this
number has an exponential growth of order 2αn when n goes to infinity, the entropy
of the class is defined to be αn. A representation is then compact if it uses O(n) bits
and succinct if it uses αn + o(n) bits. Observe that a correct representation cannot use
o(αn) bits for it must be possible to distinguish all objects.

1.3 General framework

The general framework we use for designing a compact or succinct data structure for a
given class of objects of size n is sketched here:

• First the object is split into tiny pieces of size O(lg n), tiny meaning small enough
so that a catalog of all possible pieces can be constructed in o(n) time and space.
Then a tiny piece is represented by its index in the catalog, and the sum of the
sizes of all indexes is expected to match the entropy of the class.

• The incidence relations describing how the splitting into tiny pieces has been
done is encoded in a graph G of tiny pieces. Since there are O( n

lg n
) tiny pieces

with a linear number of incidences between them, a classical representation of
this graph using pointers of logarithmic size costs O(n) and this approach al-
ready yields a compact data structure.

• Small pieces of O(lg2 n) size are constructed by joining lg n tiny pieces, this al-
lows to use pointers of size O(lg n) only between small pieces while adjacencies
between tiny pieces are described with local pointers of size O(lg lg n). Since
the number of small and tiny pieces are respectively O( n

lg2 n
) and O( n

lg n
), this

multi-level approach yields sublinear costs of O( n lg n

lg2 n
) and O(n lg lg n

lg n
) for G,

making the structure succinct.

1.4 Related results

We briefly review in this section a few results about representations of graph connec-
tivity for 3-connected planar graphs and triangulations. These results can be given in
terms of n the number of vertices, m the number of faces or e the number of edges.
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In the special case of triangulations of a topological sphere, 6n ' 2e = 3m and the
entropy is 1.62m = 3.24n bits [21]. For planar triangulations with a boundary, the
entropy is 2.175m bits. For general 3-connected planar graphs the entropy is 2e bits
[22].

On the practical side, classical main memory representations use pointers: n + 6m
pointers are needed for triangulations and n + 6e for 3-connected graphs [5], where a
pointer means 32 bits with real pointers and lg n bits using indexes. A cheaper solu-
tion with 2e pointers [14] has been proposed with the price of a higher access cost to
neighbors. None of these O(n lg n) structures are compact.

The above framework has been introduced for balanced parenthesis words (Dyck
words) by Jacobson [11] for the compact representation, and by Munro and Raman
[15] for the succinct representation.

The size parameter of a parenthesis word is its number of characters and optimality
means 1 bit per character. In this context the natural query is to ask for the matching
parenthesis of the parenthesis at a given position. These results on parenthesis words
allow for succinct representations of plane (aka ordered) trees using 2n bits. Then a
planar map can be decomposed into several trees which can be succinctly represented.

However, this transformation from graphs to trees being non bijective, it yields
representations for planar graphs that are not succinct but only compact. Along these
lines, a representation of planar graphs using 2e + 8n bits was given [15] and then
improved to 2e + 2n bits [7, 6].

In our previous work [1], we have shown how to extend the framework so that it
can be applied directly to triangulations with a boundary and provided a succinct rep-
resentation for this (larger) class of triangulations. This approach was also successful
in dealing with local dynamic updates of triangulations of higher genus surfaces [2].

With a slightly different strategy, Blandford et al. [4] showed how to design a
compact data structure supporting adjacency and degrees queries on vertices for spe-
cial classes of graphs having small separators. However this approach needs efficient
algorithms for finding separators and the exact cost of the representation is difficult to
characterize. As in previous works, our model of computation is a RAM machine, with
O(1) time access on words of size Θ(lg n).

1.5 Contribution

The contribution of this paper is twofold. As far as results are concerned, we propose
the first succinct data structures for representing planar triangulations without bound-
ary (triangulations of a topological sphere) and 3-connected planar maps, as stated in
Theorem 1 below.

Theorem 1 There exist succinct representations

• of planar triangulations (without boundaries) requiring asymptotically 1.62 bits
per triangle,

• of 3-connected planar graphs requiring asymptotically 2 bits per edge.

Both representations support local standard navigation in O(1) time, using an extra
storage of size O(n lg lg n

lg n
).
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From the methodological point of view, we formalize the catalog-tiny-small frame-
work. With respect to the seminal data structures proposed for words and trees [11, 15],
and for triangulations in our paper [1], the present framework makes explicit the local
planarity properties on which the approach is based.

Furthermore it relaxes the property, central in those previous works, that tiny pieces
should be taken in a class with the same entropy as the main class of objects rep-
resented. Finally, in order to develop our two new applications (triangulations and
3-connected planar maps), we design new splitting schemes.

Next section will formalize the catalog-tiny-small framework, while Section 3 de-
scribes its use for planar maps and Section 4 for triangulations.

2 The catalog-tiny-small framework

In this section we make gradually more precise the general framework sketched in
Section 1. At a first level of details, the framework applies to any data structure which
has linear entropy and can be decomposed into regions connected by a globally sparse
graph: this includes parenthesis words, trees, and graphs on surfaces. The framework
is then specialized to connectivity structures of meshes.

2.1 Additivity of the entropy and the catalog

In order for the framework to apply to a class of combinatorial objects, we first need
that the entropy be linear. More precisely consider a class C = (Cn) of objects where n
is intended as a size parameter (the number of some elementary cells) and assume that
the set Cn of objects of size n has a finite cardinality |Cn|. The entropy ||Cn||, defined
by

||Cn|| := lg |Cn|

with lg(x) = dlog2(x + 1)e, measures the diversity of the class. A class has linear
entropy if there exists a constant α such that

||Cn|| = αn + o(n), when n goes to infinity.

In other terms, the cardinality of the class Cn grows roughly like a simple exponential
2αn, and αn bits are needed to index all elements. The constant α is sometimes called
the entropy per size unit: α = 2 bits per node for binary trees, and, as indicated above,
α = 1.62 bit per triangles for triangulations, and α = 2 bits per edge for 3-connected
planar graphs. Observe however that some classes, like the classes of permutations of
{1, . . . , n} or of general n-vertex graphs have non linear entropies, of order n lg n.

We intend to decompose each object of C into pieces taken from a catalog of smaller
objects: as opposed to previous works, we do not require that this catalog contains
elements of C, but rather that it contains elements of a class D = (Dm,k), such that
there exists a constant β and a positive function g(m) = O(lg m) such that

||Dm,k|| ≤ αm + β k lg m + g(m) (1)

and |Dm,k| = 0 if k ≥ Km (for some constant K).

4



The objects of Dm,k are intended to be used to describe tiny pieces of elements
of C, with m the number of elementary cells, and k a parameter, called the number
of sides, describing the complexity of the boundary of the piece. In the above bound
the constant α is expected to be the same as for Cn, and αm is the additive part of
the entropy, while βk lg m is the extra amount of entropy due to the splitting into tiny
pieces. By definition of the entropy, ||Dm,k|| bits are sufficient to index an element of
Dm,k in a table representing all those elements.

We assume more precisely that each element M of Cn can be decomposed into

• a collection (M1, . . . , Mp) of elements of D, with Mj ∈ Dnj ,kj
for some nj ,

kj .

• and an oriented graph G with vertex set {N1, . . . , Np}, describing how the tiny
pieces {M1, . . . , Mp} are glued together to form M , in terms of adjacencies
between sides of the Mj .

More precisely, a vertex Nj of G contains the following information:
– nj , kj , and the index of Mj in Dnj ,kj

,
– indexes to the neighbors of Nj in G (for each side of Mj , the index of the correspond-
ing neighbor and side).
In particular the number of edges in the graph G is bounded by the total number of
sides in the Mj .

We first need an hypothesis ensuring that the additive part of the entropy matches
the entropy αn of the class to which M belongs.

Hypothesis 1 The decomposition is additive in the size parameter (elementary cells
are not shared):

n1 + . . . + np = n + O

(

n

lg n

)

,

Observe that we do not require the class Dm =
⋃

k Dm,k to have the same entropy as
Cm: in particular in our two main examples below we will have ||Dm|| ∼ α′m with
α′ > α. As a consequence, in order for the representation to be compact we need a
second hypothesis on the number of sides.

Hypothesis 2 The decomposition involves a sub-linear number of sides:

k1 + . . . + kp = O

(

n

lg n

)

.

This second hypothesis implies that the whole cost of storing indexes to all the Mi

remains of order αn.
Next hypothesis ensures that the elements of D, needed in the decomposition, fit in

a small catalog.

Hypothesis 3 In the decomposition each Mj can be taken of size between c
3

lg n and
c lg n, where c < 1/α′, with α′ the entropy per size unit of D.
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Indeed assume that the indexes are pointing into a table A, containing the explicit
representations of all elements of Dm for m ≤ c lg n for some constant c. If the
constant c is chosen small enough, the number of entries in the table is sub-linear:
indeed ||Dm|| = α′m ≤ cα′ lg n, so with c < 1/α′, the number of entries in the
table is O(ncα′

). The total storage cost of Table A then remains sub-linear as long as
the information for each piece is polynomial in its size m = O(log n). In particular,
explicit answers to local queries can be stored (as local adjacency queries on elementary
cells).

2.2 Compactness

Hypothesis 2 above ensures that the graph G has O(n/ lg n) edges, and Hypothesis 3
that it has O(n/ lg n) vertices. This is already enough to obtain compactness.

Lemma 2 Under Hypotheses 1, 2, and 3
the storage of the graph G requires O(n) bits.

Proof: Recall that each vertex Nj of G contains: nj , kj and the index of Mj in Dnj ,kj
,

as well as indexes to the neighbors of Nj in G.
As nj and kj are smaller than c lg n and Kc lg n respectively, we can store them in

2 lg lg n + O(1) bits.
When summing over the O(n/ lg n) vertices of G we get a O

(

n lg lg n
lg n

)

bits cost.
Using Equation (1) the index of Mj requires αnj + β kj lg nj + O(lg nj) bits.
Summing over all Mj yields a global cost of α

∑

j nj + β(
∑

j kj) lg(maxjnj) +

O
(

∑

j lg nj

)

= αn + O(n/ lg n) + O(n/ lg n) lg lg n.

Using Hypotheses 1 and 2, the cost of all indices to Table A thus reduces to αn +
O

(

n lg lg n
lg n

)

bits.
Since there are O(n/ lg n) vertices in G, the index of a neighbor uses lg n + O(1)

bits. Vertex Nj has O(kj) neighbors, thus the total cost for storing indexes to the
neighbors is (lg n + O(1)) ·

∑

j kj = O(n). Summing all these components yields the
claimed complexity.

2.3 Succinctness

In the proof of Lemma 2 the linear part of the storage came from two kinds of contri-
butions: the contribution of indexes in the catalog which is dominated by the entropy
αn, and the contribution of the neighboring relations in the graph G. In this section,
the cost of this second part is reduced to be sub-linear.

The graph G is partitioned into small pieces gathering O(lg n) tiny pieces. More
precisely we assume that we are able to construct a graph G ′ obtained by merging
several vertices of G in a vertex of G ′ and linking two such vertices if there is an edge
in G between two of their elements. The vertex set of G ′ is {N ′

1, N
′

2, . . .N
′

p′} and
we denote |N ′

i | the number of vertices of G that have been merged to obtain N ′

i and
deg′(N ′

i ) the degree of N ′

i in G′.
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A vertex N ′

i of G′ then consists of the following information:
— |N ′

i | and deg′(N ′

i)
— the information for all the vertices Nj ∈ N ′

i , stored in a single memory zone.
— indexes to neighbors of N ′

i in G′.
The graph G′ has moreover to satisfy the following hypotheses.

Hypothesis 4 The number of tiny pieces gathered in each small piece N ′

i satisfies:
1
3

lg n ≤ |N ′

i | ≤ lg n.

The number of edges from a given vertex of G ′ can be bounded by summing over
its elements:

deg′(N ′

i) ≤
∑

Nj∈N ′

i

deg(Nj) =

=
∑

Nj∈N ′

i

kj ≤ |N ′

i |Kc lg n = O(lg2 n)

(where K is a constant describing the size of the boundary of tiny pieces, as intro-
duced at Equation (1)). But we need a stronger hypothesis on the total number of edges
of G′.

Hypothesis 5 The number of edges of G ′ is linear in its number of vertices:

deg′(N ′

1) + . . . + deg′(N ′

p′) = O

(

n

lg2 n

)

.

Lemma 3 Under Hypotheses 1, 2, 3, 4 and 5 the graph G can be stored using αn +

O
(

n lg lg n

lg n

)

bits.

Proof: First we notice that in the above representation of G (Lemma 2), a vertex Nj

uses O(lg2 n) bits (O(lg n) bits for the index of Mj in the relevant catalog and O(lg n)
for each of its, at most, Kc lgn neighbors) which gives easily a bound of O(lg3 n) for
the memory needed by all vertices of G that merge in some N ′

i .
Hence a local reference to memory addresses relative to some known N ′

i requires
lg lg n + O(1) bits.

Let us now return to the information stored in a vertex Nj ∈ N ′

i of G. To refer to a
neighbor Nl of Nj , instead of using an address in the whole memory devoted to G, we
refer first to the vertex N ′

k 3 Nl and then give the address of Nl in the memory zone
devoted to elements of N ′

k.
Referring to N ′

k is done indirectly by giving its index in the array of the, at most,
O(lg2 n) neighbors of N ′

i . Thus a reference to a neighbor Nl of Nj costs O(lg lg n)
bits. The analysis of the size of G is similar to the argument used in Lemma 2: here
the cost of a reference to a neighbor does go from O(lg n) down to O(lg lg n) which
yields the claimed complexity.

The additional cost for G ′ is sublinear since it has O( n
lg2 n

) vertices by Hypothesis 4
and edges by Hypothesis 5 and each costs O(lg n) bits.
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2.4 Local planarity and mesh connectivity

The above framework easily applies to trees: a tree with n vertices can be recursively
decomposed into tiny trees of logarithmic size, with sides consisting of edges connect-
ing nodes of different tiny trees.

More interestingly Hypotheses 1, 2, 3, 4 and 5 are naturally satisfied when dealing
with mesh connectivity (that is, for maps on surfaces). Following for instance [1], a
triangulation M with n faces can be partitioned into tiny regions by decomposing an
arbitrary dual spanning tree into tiny trees (that is, a spanning tree of the dual graph,
connecting all faces accross edges): upon reforming a (local) planar triangulation from
each tiny tree, a decomposition (M1, . . . , Mp) is obtained, such that:
- each tiny triangulation contains between 1

12
lg n and 1

4
lg n triangles (that is, c = 1/4);

- each triangle belongs to exactly one tiny triangulations;
- boundary edges are regrouped into sides (sequences of edges separating it from the
same tiny triangulations).
The bound on the number of edges of the graph G that describes adjacency relations
between sides of tiny triangulations follows from Euler’s relation.

This direct application of the framework to triangulations using an arbitrary span-
ning tree forces us, as explained in [1], to consider the catalog Dm,k of all planar tri-
angulations with m edges and one boundary cycle, which is divided into k sides. The
entropy of this class of triangulation with a boundary is however α = 2.17 bits per face
(plus a βk lg m term to take into account the number of sides into which the boundary
is divided). As a consequence, the additive part of the entropy leads to a representation
which is compact, but succinct only for class of triangulations with a boundary (recall
that the class of triangulations of the sphere has only entropy 1.62 bits per triangle).

In summary, one can expect the general framework to yield easily compact rep-
resentations for mesh connectivity with bounded face degrees. However, as we shall
see, more care is needed to choose the decomposition in order to produce a succinct
representation.

Local adjacency queries in O(1) time

It still remains to observe that the multi-level structure (described by graphs G and G ′,
together with the information associated with tiny pieces Mj), does allow to perform
efficiently some local adjacency queries (neighboring queries on elementary cells).

Lemma 4 Let us consider an object M with a decomposition [(M1, . . . , Mp);G;G′] as
defined above. If each of the tiny pieces Mj is a planar connected map having all faces
of constant degree and a boundary of arbitrary linear size O(nj), then it is possible
to answer in O(1) time whether two elements of M (vertices or faces) are adjacent or
not.

Proof: The idea is that elementary cells (faces, vertices, edges) are shared by at
most one or two adjacent tiny pieces (because of the definition of graph G), except for
a small set of multiple cells (shared by an arbitrary number of tiny pieces). The pla-
narity of graph G ensures that the number of multiple cells is O( n

lg n
), hence adjacency
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queries involving multiple cells can be answered with an additional information, which
requires in overall a negligible amount of extra storage.

Intuitively, local queries involving only a tiny piece Mi are answered looking at the
information stored in Table A.

Adjacency queries concerning elementary cells incident to the boundary of a tiny
piece Mj , rely instead on the information in graphs G and possibly G ′. Some care must
be taken to deal with the fact that a given cell at the meeting point between a lot of tiny
pieces can have a non constant number of representations: however the number of such
special cells is negligible and they can be detected at the G ′ level.

3 Representing 3-connected planar graphs

In this section section we describe a particular catalog of tiny quadrangulations and an
algorithm to decompose any irreducible quadrangulations into tiny regions taken from
this catalog. This catalog satisfies Equation 1 so that the framework yields a succinct
representation.

Since irreducible quadrangulations are just another representation of 3-connected
planar graphs, the result holds for these maps as well.

Preliminaries on 3-connected graphs, quadrangulations and trees

Plane trees are planar maps with only one face, the outer one. In other terms, plane
trees only differ from the classical ordered trees in the fact that they are not rooted. A
binary tree is a plane tree such that each vertex has 3 neighbors (and hence 2 sons if
rooted). A vertex is a leaf if it has degree 1, otherwise it is an internal node.

Edges incident to leaves are called stems, remaining edges are called inner edges.
A quadrangulation is a planar map having all its faces of degree 4. A dissection of the
hexagon by quadrangular faces is a planar map whose outer face has degree 6 and inner
faces have degree 4. A quadrangulation or dissection of the hexagon by quadrangular
faces is said irreducible if it has no separating 4-cycle (we also call them irreducible
dissections).

The following construction is more or less a folklore variation on the standard dual-
ity construction for planar maps: given a 3-connected planar map M , color its vertices
in black and put a white vertex in the middle of each face and triangulate each face
from this white vertex. The resulting new edges form a quadrangulation Q (each face
is made of the two triangles incident to an edge of M ). It is not difficult to check that
the 3-connectedness of M is equivalent to the irreducibility of Q. Finally let us ob-
serve that it is possible to associate a rooted dissection d of the hexagon to a rooted
irreducible quadrangulation Q by deleting the root edge.

Intuitively, a quadrangulation Q can be viewed as an implicit representation of a
planar map, induced with a bicoloration of its vertices: white (resp. black) vertices of
Q stand for faces (resp. vertices) of the original (resp. dual) map (see Fig. 1).

More precisely, testing adjacency relations between vertices and faces in map M
corresponds to answer neighboring queries on vertices incident to the same face in the

9



Figure 1: First Pictures describe the closure defining the correspondence between plane
rooted binary trees and irreducible dissections of the hexagon. The dissection and the
corresponding 3-connected graph are also shown. Black circles (resp. white circles)
represent vertices of the primal (dual) graph.

quadrangulation Q. It will prove convenient to describe our construction in term of
quadrangulations.

3.1 Decomposition of the quadrangulation

Our decomposition strategy will take advantage of the fact that irreducible dissections
admit a special class of canonical spanning trees, introduced in [8]:

Proposition 5 There exists a bijection between the class of binary trees on n internal
nodes and the class of irreducible dissections with n internal vertices, which can be
computed in O(n) time.

Let us suppose to have an irreducible dissection Q of the hexagon with quadrangu-
lar faces. Following the traversal strategy explained in [8], it is possible to perform an
opening algorithm on Q which returns a binary tree: the result is a vertex spanning tree
of Q, whose complete closure [8, Lemma 2] is exactly the original dissection of the
hexagon (corresponding to a 3-connected planar graph). More precisely it is a binary
tree B on n nodes having n + 2 stems and (n − 1) inner edges (the correspondence is
illustrated in Figure 1).

Let us recall a previous result concerning tree decompositions, stated in the follow-
ing Lemma[16]:

Lemma 6 Given a binary tree B on n nodes and a positive integer parameter δ, we
can produce in linear time a partition of B into a family of sub-trees Bj , whose sizes
satisfy δ ≤ ‖Bj‖ ≤ 3δ.
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Figure 2: These Pictures explain how distributing stems and (dummy) faces between
tiny quadrangulations sharing a node v (a multiple node, represented with a small cir-
cle).

Applying several times the algorithm above, we obtain a partition of B into small
binary trees having between 1

3
lg2 n and lg2 n nodes, which are then decomposed into

tiny binary trees having between 1
30

lg n and 1
10

lg n nodes. Such a decomposition form
a partition of the edges of B (which are edges of the original quadrangulation). Let us
observe that only nodes, those which are roots of tiny (resp. small) trees, are shared
by different tiny (resp. small) trees: each of these nodes (having degree d) is split into
a degree d − 1 root of one tree (descendent tree) and a leaf of another tree (ancestor
tree). The way we have partitioned B guarantees that number of tiny (resp. small) trees
is Θ( n

lg n
) (resp. Θ( n

lg2 n
)).

3.2 Correspondence between tiny quadrangulations and tiny trees

The aim of this section is to describe a canonical way of obtaining a decomposition
{M1, . . . , Mp} of Q, starting from the decomposition of the vertex spanning tree B.
Here we suppose we are given one tiny tree, denoted T Bj , having nj ≤ 1

10
lg n nodes

and wj false stems, obtained by decomposing B: we are going to show how to produce
a tiny quadrangular map of size Θ(lg n) from T Bj . A tiny tree T Bj has nj nodes
and nj + 2 stems: we now distinguish two kinds of leaves. Firstly there may exist
some leaves which were already leaves in the original tree B. After the decomposition
algorithm is performed, there are now some leaves which was inner nodes in B before
we split them: their incident edges are now called false stems. Recall that tiny trees
are rooted (roots are shared by different tiny trees), and the number of false stems in
a tiny tree is not fixed and it ranges in 0 . . . nj + 2, depending on the way B has been
partitioned.

3.3 Local closure

Now it suffices to apply a ”local closure” algorithm, inspired to the one introduced in
[8], whose main steps are listed below (recall that in the original algorithm of [8], there
was no distinction between true and false stems).

Let us perform a ccw traversal of T Bj , starting from its root and walking along its
edges (inner edges, stems and false edges).
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racine

faux bourgeon

vrai bourgeon

Figure 3: Our local closure. The result of the closure operation does depend on the
distribution of false stems. In our example, the binary tree has 11 inner vertices, 11 +
2 leaves (true and false stems, including the stem incident to the root), and can be
optimally encoded by the binary word of length 2 · 11: 1101001011001001011000;
while the corresponding false stems distribution is defined by the bit-vector of length
13 and weight 4: 0000100001101.

– When traversing a true stem, which is preceded by 3 internal nodes (and not
stems), its local closure consists in linking its incident node, with the preceding third
node (on the boundary of the outer face) to create a quadrangular face (a white face in
Figure 3).

– We do not perform the merging of false stems (drawn with small circles in Figure
3).

– When traversing a (true) stem s, not preceded by 3 true nodes (original nodes
existing in T Bj), its local closure consists in attaching a dummy quadrangular face (a
grey face in Fig. 3) to the boundary of T Qj , in such a way that the dummy face is then
incident to the stem s and does not enclose a false stem nor a dummy edge (i.e. an edge
incident to a dummy face) previously added. Similarly, vertices incident to dummy
faces, and not existing in the tiny tree, are called dummy vertices.

In this way we produce a planar map whose internal faces are all quadrangles, and
having an outer face of arbitrary size: inner edges (in the tree) may now be incident
twice to the outer face. The planar connected maps obtained in this way are also called
tiny quadrangulations (the result of the procedure above is shown in Figure 3).

It is easy to observe that all the faces of the initial quadrangulation have been as-
signed to exactly one tiny quadrangulation, as they are incident each to one true stem.

12



Once the initial spanning tree B has been decomposed, we have to specify a rule for
assigning (true) stems incident to nodes shared by tiny trees. We proceed as follows,
assuming that v is shared by two tiny trees T Bj′ and T Bj′′ , and denoting the possibly
incident stem by s (see last Pictures in Fig. 1):

- if there exists in the descendant tree B an inner edge e incident to v to the left of
s, then we attach the stem s to the tiny sub-tree T Bj′′ having v as root and containing
e;

- otherwise s is the leftmost sibling of node v in B, and we do attach s to the
ancestor tree T Bj′ .

3.4 How does our framework apply

Lemma 7 Given a quadrangulation Q with n vertices, our new splitting strategy pro-
duces a decomposition into tiny quadrangulations {T Q1, . . . , T Qp} satisfying Hy-
potheses 1, 2, 3, 4 and 5, and hence yields a succinct representation of Q requiring
asymptotically 2n + o(n) bits.

Proof: The additivity hypothesis holds, since (true)
nodes in tiny quadrangulations (nodes of the tiny spanning tree) are not shared by tiny
quadrangulations.

The quadrangulation Q is decomposed into tiny quadrangulations T Qj each con-
taining between 1

30
lg n and 1

10
lg n nodes (nodes of the corresponding tiny vertex span-

ning tree): here the constant c introduced in Section 2 is set to 1
10

.
The graph G used to describe adjacency relations between tiny quadrangulations is

a planar map (each tiny quadrangulation is a connected planar map, whose edges may
be incident twice to the outer face, and then doubly counted as boundary edges) having
faces of degree at least 3 (for example, a degree 2 face incident to multiple edges can
be contracted, observing that the corresponding sides are consecutive and shared by the
same two tiny quadrangulations).

Hence Euler’s relation ensures that the number of arcs of G (and hence the number
of sides) is O( n

lg n
). Hypotheses 1, 2, 3 5 and 4 are satisfied by {T Q1, . . . , T Qp},

hence Lemma 3 yields a succinct representation for the class of quadrangulations
achieving the optimal asymptotic bound of 2 bits per vertex.

Here an object Mj = T Qj is a tiny quadrangulation: T Qj is obtained via our
local closure from a tiny tree T Bj having nj nodes, nj + 2 stems and wj false stems;
moreover T Qj is induced with a partition of its boundary edges into kj sides1.

A tiny colored quadrangulation is completely specified by: a Dyck word of length
2nj (for the binary spanning tree), a binary word of length nj + 2 and weight wj

(describing false stems) and a binary word of length 4nj +6 and weight kj (describing
the partition of boundary edges of T Qj into sides).

1One can easily see that given a tiny binary tree with m nodes, the corresponding tiny quadrangulation has
a boundary of size at most 4m+6. Concerning inner edges, doubly incident to the outer face, their number is
m−1, hence their contribution to the boundary size is at most 2(m−1). On the other hand, the contribution
of dummy faces is maximum when a dummy face is produced by a true stem immediately preceded by a false
stem: as there are m + 2 stems, there may be at most dm+2

2
e dummy faces, each contributing for 4 edges.

Finally the size of the boundary of a tiny quadrangulation is bounded by 2(m−1)+4( m+2

2
+1) = 4m+6.
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Hence T Qj can be encoded by a reference to an element in D, whose cost is
2nj + wj lg(nj + 2) + kj lg(4nj + 6) ≤ 2nj + βkj(lg nj + O(1)) (as wj ≤ kj).

The constant c can be chosen so that the Table A containing the explicit represen-
tations of the elements of D, requires o(n) bits (recall that nj ≤ 1

10
lg n).

3.5 Representing 3-connected planar graphs

Given a 3-connected graph with e edges, we first design a succinct representation of
the associated quadrangulation. Since the corresponding vertex spanning tree has e−5
inner nodes (vertices of the primal and dual graph) our representation requires asymp-
totically 2(e−5)+o(e) = 2e+o(e) bits, according to Lemma 7. It suffices to observe
that testing adjacency between two vertices (resp. two faces) in a 3-connected graph,
is equivalent to check if two black (resp. white) nodes are opposite in the same quad-
rangular face, in the associated quadrangular map Q. This operation can be efficiently
performed in O(1) time with a slightly modification of the standard adjacency queries
considered in Lemma 4 (see Section A for more details).

3.6 Unique representations for vertices

One major problem to solve concerns the representation of vertices, which is not
unique. As already observed, a number of elementary cells (multiple cells) are shared
by several tiny pieces. One possible solution consists in exploiting the correspondence
between vertices in the quadrangulation and nodes in the spanning tree. It simply suf-
fices to associate to each vertex in Q the corresponding node in the tree B.

Then inner nodes in a tiny tree T Bj are uniquely specified. Remaining vertices,
multiple vertices shared by tiny pieces, can be uniquely identified, saying that their
canonical representative is the corresponding node in an adjacent tiny piece (in partic-
ular, for a multiple node shared by two tiny trees, its canonical representative is the leaf
node in the ancestor tree).

4 A succinct representation for planar triangulations

Preliminaries on planar triangulations and trees

As done for 3-connected graphs, we take advantage of a recent bijection between planar
triangulations and trees introduced in [17].

Proposition 8 There exists a 2n-to-2 correspondence between the class of plane trees
with n nodes having 2 leaves per node, and the class of rooted planar triangulations
with n + 2 vertices.

This correspondence relies on an opening/closure algorithm which computes a spe-
cial vertex spanning tree (with two leaves per node) on n nodes from a triangulation T ,
induced with its minimal realizer.
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carte G

Figure 4: This Figure illustrates our multi-level hierarchical representation of a quad-
rangulation. The decomposition of B provides, via our local closure, a partition of Q,
into tiny quadrangulations. Neighboring relations between tiny quadrangulations are
described by a planar map G.

4.1 Decomposition of the graph

Here we suppose we are given a rooted triangulation T with n + 2 vertices and the
corresponding vertex spanning tree B on n nodes, whose complete closure is the initial
triangulation (according to the closure/opening algorithm introduced in [17]). Since
there are no restrictions on the tree B (it is just an ordered tree, with two leaves per
node), we cannot in general decompose B to get a partition into sub-trees (as done for
binary trees). We then make use of a useful strategy for decomposing ordered trees [9],
expressed by the following Lemma:

Lemma 9 Given a B on n nodes and δ ≥ 2, we can compute a family of sub-trees that
is a covering of B. Their sizes satisfy Bj ≤ 3δ−4 (and Bj ≥ δ, if the Bj do not contain
the root of B).

T Qj′

T Qj′′

T Qj

e′′
2

e′
1

e

Figure 5: These two Pictures illustrate the adjacency relations between tiny quadran-
gulations: since edges are allowed to be incident twice to the outer face, two tiny
quadrangulations T Qj′ and T Qj′′ may be not incident even if ”sharing” an edge e.
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Figure 6: Vertex spanning tree bijection between rooted planar triangulations and
rooted trees with 2 leaves per node.

Figure 7: In these Pictures is depicted our strategy for constructing a decomposition of
the original triangulation T into tiny triangulations. At first the vertex spanning tree of
T is decomposed into tiny trees. We perform our local closure algorithm on tiny trees,
producing tiny triangulations. Each tiny triangulation is provided with a partition into
sides of its boundary edges describing neighboring relations.

Applying several times Lemma 9 to B, we obtain a family of small sub-trees cover-
ing B of size Θ(lg2 n), which are then decomposed into tiny sub-trees having Θ(lg n)
nodes. This family of sub-trees forms a cover of the nodes of B such that two sub-trees
can intersect only at their root.

4.2 Correspondence between tiny trees and tiny triangulations

As done for quadrangulations, it is possible to define a local closure algorithm (inspired
to the one described in [17]), providing a correspondence between tiny trees and tiny
triangulations. Firstly, if a tiny tree T Bj has an inner node v of degree 3, which appears
as root of one (or more) different tiny tree T Bj′ (neighbor of T Bj), we set v as false
degree 3 inner node (since v had degree more than 3 in B). Observe that tiny trees could
have less than two leaves per node. In order to make a tiny tree belong to the same
class as B, we perform some modifications on it. Original stems in B are duplicated
and distributed between tiny trees T Bj so that each node has two leaves: duplicated
stems are called false stems and are assigned to the tiny trees sharing a same node v
(the cyclic order of neighbors around v must be respected). Observe that false inner
nodes are incident to at least one false stem, at the exception of the root node of a tiny
tree (see Figure 7). It is straightforward to observe that the number of false degree 3
inner nodes and false (duplicated) stems is in overall O( n

lg n
). Our local closure of a

tiny tree T Bj start by performing a ccw traversal along its edges. As done in Section
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Figure 8: This Figure shows a tiny triangulation obtained via our local closure from
a tiny tree T B. In our example we start with a tiny tree having 5 nodes and 10
leaves: there are 3 false stems (small circles) and 3 false inner nodes (including the
root). The stems distribution is described by a binary word of length 10 and weight 3:
0010100001.

3, we add a (true or dummy) triangular face by performing the merging of true stems,
depending on the distribution of false stems and false inner nodes. More precisely, if a
true stem s is preceded by 2 (true) inner nodes, we link its incident node to the second
preceding node to create a triangular face. Otherwise, if s is preceded (on the boundary
of the outer face) by a vertex v which is not an inner node we add a dummy triangular
face incident to s and v (a grey face in Figure 8). The planar connected maps T T j

we obtain in this way (whose internal faces are all triangles, and with an outer face of
arbitrary size) are called tiny triangulations.

Lemma 10 Given a planar triangulation T with n + 2 vertices, our new splitting
strategy produces a decomposition {T T 1, . . . , T T p} into tiny colored triangulations
satisfying the Hypotheses 1, 2, 3, 4 and 5, and hence yields a succinct representation
of T requiring asymptotically 3.24n + o(n) bits.

Proof: Our arguments rely on the same remarks used in the proof of Lemma 7.
The additivity Hypothesis holds, since tiny triangulations only share duplicated nodes
(roots of tiny trees), whose number is O( n

lg n
). Here an object Mj = T T j is a tiny

triangulation: T T j is obtained via our local closure from a tiny tree T Bj having nj

nodes, 2nj stems and wj false stems; its boundary edges are partitioned into kj sides.
Hence a tiny triangulation is described by: a binary word of length 4nj − 2 and weight
nj − 1 (there are about 23.24nj such words, see [17]), a binary word of length 2nj and
weight wj (for false stems) and a binary word of length 6nj − 2 and weight kj (a tiny
triangulation has at most 6nj − 2 boundary edges). Again the constant c can be chosen
so that Catalog D requires an asymptotic negligible amount of space.

5 Concluding remarks

We have presented a general framework for describing succinct representations of pla-
nar maps. In the particular case of 3-connected graphs and triangulations, we propose
moreover canonical decompositions which, combined with the general framework,
yield encodings that achieve asymptotically the information theory optimal bound for
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Algorithm triangulated 3-connec.
Munro Raman (Focs 97) 2e + 8n or 7m 2e + 8n
Chuang et al. (Icalp 98) 2e + n or 3.5m 2e + 2n
Chiang et al. (Soda 01) 2e + 2n or 4m 2e + 2n
Castelli Aleardi et al. 2.175m -
our new encodings 1.62m 2e

Table 1: Comparison of existing compact representations for simple planar graphs,
with e edges, m faces and n vertices (lower order terms are omitted).

the storage, while supporting efficiently standard local navigation operations. The gen-
erality of our arguments suggests that our framework could apply to other popular
encoding schemes, getting compact representations of other classes of planar graphs.
This should take advantage of the similarities between explicit spanning tree coding
[12, 20] and region-growing approaches [18, 19] as discussed in [10]. It is still open the
problem of extending optimal encodings [17] and compact representations of graphs
[7, 6] to the case of higher genus triangulated surfaces. As done in previous works
on compact representations [6, 7, 15], our results here are manly theoretical: although
we do not intend to implement the our framework in the presentation given above, this
work could be a good source of inspiration for practical structures. In practice, n could
be considered more as a constant than a parameter: we intend to design a space effi-
cient structure whose aim is to push the swapping limit of triangulation, say from 10
Mvertices to 40 Mvertices. Such a structure can be based on a splitting in tiny and
small triangulations whose sizes are limited by finely tuned constants.
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A Local queries in the quadrangulation

A vertex in a tiny quadrangulation T Qj can be specified by a triple (N ′

i , a, v): where
N ′

i is a node of map G ′, corresponding to the small piece SQi to which it belongs,
a is a local pointer to the zone of memory related to node the Nj , and v is the index
of the vertex in the explicit representation, stored in Table A, corresponding to T Qj .
As already observed in [1], in our encoding vertices may be not uniquely represented,
because they are shared by different tiny pieces. Analogously, representing (quadran-
gular or triangular) faces is done specifying a triple (N ′

i , a, f): their representation is
uniquely defined, as faces are not shared by tiny pieces.

Adjacency queries between faces and vertices

Next Lemma provides an useful tool for local navigation between faces of adjacent tiny
pieces: its proof relies on arguments similar to the one introduced in [1], which are still
valid for arbitrary tiny pieces (having faces of arbitrary constant degree).

Lemma 11 Given an object M and its decomposition into tiny (and small) pieces
[(M1, . . . , Mp);G;G′], it is possible to answer in constant time the following local
queries:

- Neighbor((N ′

i , a, f), (N ′

i , a, e)): given a face f and an edge e incident to f , it
returns the face (N ′

i′ , a
′, f ′) adjacent to f containing e.

- Adjacent((N ′

i , a, v), (N ′

i′ , a
′, w)): says if two vertices v and w are adjacent.

Unique representation for vertices

It is possible to avoid the problem of having multiple representations of vertices, by
adopting a local labelling scheme and distinguishing vertices into 3 categories: vertices
internal to a tiny piece, vertices shared by more than 2 tiny pieces, and vertices shared
by more than 2 small pieces. As observed in Section 3.2, we can associate to each
vertex a unique representation in a canonical way, using the correspondence between
vertices in the original graph (quadrangulation or triangulation) and nodes in the vertex
spanning tree. Next Lemma allows to deal with multiple vertices:

Lemma 12 It is possible to answer in O(1) time the following queries involving mul-
tiple vertices, using asymptotically o(n) extra bits:

– Same((N ′

i , a, v), (N ′

i′ , a
′, w)): says if v and w represent the same vertex in the

graph;
– Node(N ′

i , a, v): returns the canonical representative of vertex v (a triple indi-
cating the tiny and small sub-pieces to which v belong as node).

Local adjacency queries on the quadrangulation

Concerning the local navigation in the quadrangulation, our representation allows to
perform in O(1) time the following operation (which provides efficient navigation in
the original 3-connected graph, as discussed in Section 3.5).
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Lemma 13 In a quadrangulationQ it is possible to answer in O(1) time the following
neighboring query:

- Opposite(v, w): returns true if two vertices v and w are opposite and incident to
the same quadrangular face in Q.

Proof: The validity of our arguments relies on the following properties that hold
for 3-connected planar graphs and corresponding quadrangular irreducible dissections.

- The vertex spanning tree introduced in [8] is a binary tree, implying that the degree
of nodes and the number of stems per node is bounded and constant.

- Every quadrangular face in the decomposition of Q belongs exactly to one tiny
quadrangulation. Moreover every node v is incident to at most two dummy faces in
the same tiny quadrangulation: for nodes with two stems, we observe that each dummy
face is created by merging one of its stems; for nodes with one stem (producing one
dummy face), only one more dummy face may exist, possibly incident to the descen-
dant node in the tree (see node w in Figure 9).

- For each pair of vertices v and w there is at most one quadrangular face (if it
exists) containing the two vertices and for which v and w are opposite (because the
quadrangulation Q has no separating 4-cycle).

Let be q the quadrangular face possibly incident v and w, let us call v ′, v′′, . . . (resp.
w′, w′′, . . .) their copies, and let T Qj and T Qj′ denote the tiny quadrangulations con-
taining them. We may suppose, without loss of generality, that v precedes w on the
boundary of the spanning tree B, which is ccw oriented. For the sake of clarity, let us
assume that v and w are not multiple nodes, roots of different tiny trees (as in Figure 9).
If v and w are vertices lying in the same tiny quadrangulation (hence j = j ′) we can
answer by simply looking at the explicit representation stored in Table A: as v and w
are at distance 2 in T Qj , answering this query requires o(n) extra bits. If the vertices
belong to different tiny quadrangulations (not necessarily adjacent tiny quadrangula-
tions) we retrieve at first their canonical representatives, v and w using the function
Node.If v and w belong to the same tiny quadrangulation, we can repeat the test used
in the case above. Otherwise we proceed as follows, denoting by q the quadrangular
face possibly existing between v and w. If v and w are opposite and incident to a face
q, then q must belong to the same tiny quadrangulation containing w and be incident
to one of the edges of T Bj′ (inner edge or stem) which is incident to w. Since the
degree of nodes in B is bounded we know that there exist at most 2 quadrangular faces
satisfying the last condition, say q1 and q2 (grey faces in Figure 9). Let us now retrieve
the two vertices v′′ and x′′, opposite to w, which are incident to q1 and q2. Finally
it suffice to test whether the canonical representative of v′′ and x′′ do coincide with v
(canonical representative of the copies of v). For concluding, we observe that the case
where v (or w) is a multiple node can be dealt in a similar manner: we can repeat the
steps above a constant number of times, since each multiple node is contained in at
most two different tiny trees.
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Figure 9: In these Pictures is depicted the case of two vertices v and w, opposite
and incident to the same quadrangular face: v and w are multiple vertices (shared by
different tiny pieces), but not multiple nodes (as they do not belong to different tiny
trees). Multiple nodes are represented in the first Picture with small circles.
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