
Fine Grained Indexing of Software Repositories to Support
Impact Analysis

Gerardo Canfora
Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy

canfora@unisannio.it

Luigi Cerulo
Research Centre on Software Technology

Department of Engineering - University of Sannio
Viale Traiano - 82100 Benevento, Italy

lcerulo@unisannio.it

ABSTRACT
Versioned and bug-tracked software systems provide a huge
amount of historical data regarding source code changes
and issues management. In this paper we deal with im-
pact analysis of a change request and show that data stored
in software repositories are a good descriptor on how past
change requests have been resolved. A fine grained analysis
method of software repositories is used to index code at dif-
ferent levels of granularity, such as lines of code and source
files, with free text contained in software repositories. The
method exploits information retrieval algorithms to link the
change request description and code entities impacted by
similar past change requests. We evaluate such approach on
a set of three open-source projects.

Categories and Subject Descriptors
H.3.1 [Information storage and retrieval]: Content Analy-
sis and Indexing; D.2.7 [Software Engineering]: Distrib-
ution, Maintenance, and Enhancement

General Terms
Measurement, Experimentation

Keywords
Mining Software Repositories, Impact Analysis

1. INTRODUCTION
CVS and Bugzilla are two tools for configuration manage-

ment used with success by the open source community for
sharing knowledge. The quality of data, in particular free
text, such as bug comments, bug descriptions, and feature
proposal definitions, is a critical need in an environment
in which no people meetings, no phone calls, and no coffee
break discussions are possible [8]. This leads to consider such
software repositories interesting data sources, useful for de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

veloping text mining techniques to assist project managers
and developers in their maintenance activities.

Natural language is widely used in many software engi-
neering artifacts and it is not unusual to find in the liter-
ature models based on text mining techniques, information
retrieval algorithms, and natural language processing ap-
proaches. In [1] a probabilistic information retrieval model
has been used to map source code artifacts with documen-
tation. In [14], and [19] text mining techniques have been
used in free text contained in software repositories for min-
ing, respectively, concept keyword, and project information.

In this paper we take advantage of free text stored in soft-
ware repositories to build a textual representation of code
entities at different levels of granularity, such as lines of code
and source files. This can help in the problem of impact
analysis, that is the identification of the work products af-
fected by a proposed Change Request (CR), either a bug
fix or a new feature request. Developers can know what are
the code entities he/she should work on to resolve a given
change request. Project managers can have an estimation
of what are the impacted code entities in the next release,
useful to focus testing effort.

The method has been introduced in [3] considering a level
of granularity restricted to source files. In a set of four
case studies, we obtained a precision that ranges between
30% and 78%. In this paper we consider a finer level of
granularity, lines of code, and we show that this introduces
an improvement at least of 10%, at the cost of spending
more time and space for the index.

The paper is organized as follows: next section provides
an overview about related work in the field of impact analy-
sis; section three describes the bug resolution process gen-
erally adopted by the open source community and what are
the free text left by developers; section four introduces the
concept of line history table showing how changes at line-of-
code level can be recovered from a CVS repository; section
five introduces the approach of impact analysis; section six
shows the application and validation of the approach in three
case studies; the final section concludes the paper with open
issues and future works.

2. RELATED WORK
Traditionally, impact analysis has been faced by static

analyzing the product [2]. Many approaches are based on
traceability analysis and dependence analysis. Traceabil-
ity analysis identifies affected software entities using explicit
traceability relationship. Some methods use a traceability
matrix to represent relationships and the impacted objects

105

are inferred by computing the transitive closure of the ma-
trix. Dependence analysis attempts to assess the effects of
a change based on semantic dependencies between program
entities; a technique is to use static and/or dynamic slic-
ing [11]. Expert judgement and code inspection are also
used; however, expert predictions have been shown to be
frequently incorrect [12], and source code inspection can
be prohibitively expensive [15]. The availability of data
on software process, such as those deriving from software
and change repositories, can provide new opportunities for
impact analysis. In particular, approaches to predict the
impact and propagation of changes can be found in [20,
18]. They use heuristics, such as historical co-change and
co-authorship, to derive the set of impacted source file or
program entities. A method to evaluate the performance
of change propagation heuristics has been introduced in [9].
These methods predict the impacted files starting from a
given initial source file, while the approach we present in
this papers starts from a change request description.

3. FREE TEXT IN SOFTWARE
REPOSITORIES

The resolution of a new CR, in many open source projects
tracked by Bugzilla and CVS, usually follows a very simple
workflow. A reporter proposes a new CR that can be a bug
he/she discovered or an enhancement feature he/she likes to
suggest. The CR is stored in the new CR database, after
a validation performed by the maintainer of the project to
confirm it exists. A developer that has dealt with similar
CRs in the past has a wide knowledge of the source code
involved and can easily locate the code entities that should
be changed. Otherwise, if he/she does not have such knowl-
edge, it is usual to ask for the help of other developers that
have resolved similar problems in the past. It is not rare to
find in the discussion comments of a CR, topics regarding
similar past behaviors resolved in other CRs. An assigned
to relationship links the developer with the CR. The resolu-
tion of the CR evolves to a fixed CR with a commit, in the
CVS database, of the source code changes that resolves the
CR (impact relationship). This relation does not exist in
Bugzilla database but, as suggested in [6], it can be derived
because usually developers keep track of the impacted files
by inserting in the CVS commit comment the id number
of the CR. A resolved by relationship links the developer,
author of the resolution change, and the fixed CR.

This process involves a lot of information both structured
and not structured, e.g. composed of free text. A file re-
vision is composed by a set of fields: revision, is a number
that increases when new changes are committed by the de-
veloper; date, is the date and time of check-in; author, is an
identificator of the person who did the check-in; state as-
sumes one of the following values: ‘exp’ means experimental
and ‘dead’ means that the file has been removed; lines, the
number of lines added and deleted with respect to the pre-
vious version of the file; and a final block of free text that
contains informal data entered by the developer during the
check-in process.

A CR is in many cases represented in XML and it is en-
closed generally in a bug or issue tag containing: bug-id, a
unique identifier assigned by Bugzilla; creation-ts, the date
and time of CR creation; short-desc, a short description;
product, the product name; component, the component of

r1r0 r2 r3 r4 ri

r11 r1k

r31 r3j

r1km

Figure 1: Source file revisions graph

Table 1: Line history table
r1 ... rijk...l−1 rijk...l line #

... 1

... 2
...

... n

the system; reporter, who has submitted the CR; assigned-
to, who was assigned the CR for resolution; and long-desc,
a structure comprising a long description of the CR, thetext,
who submitted it, who, and when, bug-when.

4. FINE GRAINED ANALYSIS OF
CVS REPOSITORIES

CVS handles revisions of textual files by storing the dif-
ference between subsequent revisions in a repository. It pro-
vides only information on files and differences, but not which
code entities have been changed. For an analysis of fine-
grained entities, another preprocessing step is required: each
revision is compared with its predecessor and the changes are
mapped to entities. In [21] syntactic entities, such as func-
tions, methods, and variable declarations have been consid-
ered. In this paper we refer to lines of code entities and
recover the history of source code modification in terms of
lines that have been added, changed, and deleted during the
evolution of a source file. In doing that we will introduce
the concept of line history table as a tool to visualize source
file evolution at the line-level granularity. A similar concept
has been introduced in [4] for different purpose.

Figure 1 shows a typical source file revisions graph with
different development trunks. Each revision is identified
with a sequence of numbers positions: ijk...l, in which the
last, l, is incremented by one every time a new revision is
committed. Revision r0 represents the empty file. A de-
velopment trunk can be started from every revision and at
some point it can be merged to the trunk from which it de-
rives. When a new development trunk starts the revision
identifier is incremented with another number position at
the end, initially equal to 1.

Each revision is compared with its predecessor by using
the diff tool. If a revision is a merge of multiple predeces-
sors, it should get a special treatment, while a revision with
no predecessors is compared against an empty file.

A line history table depicts a particular revision rijk...l

and contains a row for each of its source line, and a number
of column for all previous revisions belonging to the path
that reaches the revision r0 (table 1). For example, the
line history table of revision r31 contains the columns: r1,
r2, r3, and r31. If merges will not be considered for each

106

� �� � �� � �� � ��

�

�

� �

�

� �

	

� �

� �

� �

	

�

� ��

� ��

� �

� �

�

�

�

�

�

���

���

���

� ��

Figure 2: Revisions example

revision, only one line history table can exist. The i-th row
of the table shows the history of the i-th line of the revision
by using a marker, ‘a’ or ‘c’, in the column corresponding to
the revision the line has been respectively added or changed.
Some constrains hold for the relative position of markers:

• a line is added to revision only once, then each row
contains one, and only one ‘a’;

• a line can be changed only if it has been added in a
previous revision, then in each row, ‘a’ precedes each
changes ‘c’.

A line history table can be built from the output of a diff
command. When comparing two files, diff finds sequences
of lines common to both files, interspersed with groups of
differing lines called hunks [13]. There are many ways to
match up lines between two given files. The algorithm inside
diff tries to minimize the total hunk size by finding large
sequences of common lines interspersed with small hunks of
differing lines.

A diff command is performed between two revisions, called
the right and the left revision and the output of a diff com-
mand is a sequence of tuples x, yTw, z, in which x, y and
w, z are two line number intervals of respectively the left
and right revision, and T can be: a, c, or d which means
respectively that the left interval has been added, changed,
or deleted in the right interval. The column ri of a line
history table of revision ri+k is computed from the output
of a diff command performed between revisions ri−1 and ri.
Each right interval is translated to line numbers of revision
ri+k by examining what happens to this interval in each
subsequent revision ri+j for j = i + 1, ..., k.

Table 2 shows the output of a diff command for four re-
visions performed on a text file depicted in figure 2. The
first revision (1.1) contains three lines. The second revision
(1.2) adds two more lines on the top and changes the third
line of the previous revision. The third revision (1.3) adds
a new line in third position and changes the two lines that
follows. The last revision (1.4) deletes the first two lines and
changes the three lines that follows. Revision 1.0 means the
empty file.

Table 4 shows the line history table of revision 1.4. Diff
information between revision 1.0 and 1.1 shows an add of
the first three lines (0a1,3). The add range will change if
we look what happens in subsequent revisions 1.2, 1.3, and
1.4. In revision 1.2, as two more lines are added to the top
(0a1,2), the range is shifted from 1,3 to 3,5. In revision 1.3,

Table 2: Diff information between revisions
rev1 rev2 diff
1.0 1.1 0a1,3

1.1 1.2 0a1,2

3c5

1.2 1.3 2a3

3,4c4,5

1.3 1.4 1,2d0

3,5c1,3

Table 3: Line history table of revision 1.3
1.1 1.2 1.3 line #

a 1
a 2

a 3
a c 4
a c 5
a c 6

as one line is inserted in position 3 (2a3), a shift of size one
places the lines in positions 4 to 6. In revision 1.4 two lines
have been deleted and the final line positions are shifted up
in the range 2,4 as shown in the first column of table 4.
Other columns are computed in a similar way by shifting up
and down line positions in order to take into account line
additions and deletions in subsequent revisions. In this way,
we obtain the diff information for each revision translated to
line positions relative to the reference revision. Line changes
are slightly different if the reference revision is 1.3, as shown
in table 3.

In this example, for the purpose of simplicity, we have not
considered cases in which the subsequent add and delete are
inside the range to be transformed, nor the case in which
changes have different left and right range sizes. They can
be modeled by considering a range split in the first case
and by transforming the change in an add/del + change
operation in the second case. The add/del are computed in
order to have change subpart of the same size for left and
right ranges.

A line history table can be used in a number of ways.
Given a system release, the line history table of each re-
visions belonging to that release can be computed. As an
example, for each source line, the number of past revisions
until its last change is an indicator of its age, while the num-
ber of changes explains its stability.

In the context of this paper we are interested to use the
line history table of the current system release, and repre-
sent each line of code with free text related to revisions in
which the line has been added, or changed. This comprises
revision comments and short and long descriptions of CRs
that impact those revisions.

Table 4: Line history table of revision 1.4
1.1 1.2 1.3 1.4 line #

a c 1
a c c 2
a c c 3
a c 4

107

5. IMPACT ANALYSIS APPROACH
Our approach to impact analysis is shown in figure 3. A

descriptor builder process links free text contained in soft-
ware repositories with source code entities and an index-
ing process generates the index used by an information re-
trieval algorithm to retrieve the ranked list of code enti-
ties impacted by a new CR. The hypothesis is that revision
comments and impacted CRs are a good descriptor of code
entities, such as source files and lines of code, to support im-
pact analysis of new CRs. This is granted by the fact that
CVS and Bugzilla are extensively used as tools for knowl-
edge sharing during the software development process with
textual data of acceptable quality. We use textual similar-
ity to compute the similarity between a new CR descriptor
(i.e. short-desc, or short-desc + long-desc) and the set of
source code entities descriptors. The most similar code en-
tities are retrieved and presented to the developer as a first
ranked list of probable impacted code entities from which
change propagation can start. Textual similarity is a criti-
cal part of our approach. The Information Retrieval com-
munity dealt with text similarity for a long time. Given a
set of text documents and a user information needs repre-
sented as a set of words, or more generally as free text, the
information retrieval problem is to retrieve all documents
relevant to the user [17]. In information retrieval, queries
and documents are described by a set of index terms. Let
T = {t1, t2, . . . , tn} denotes the set of term used in the col-
lection of documents. Both a document d and a query q
are represented as a vector (x1, x2, . . . , xn) with xi = 1 if ti

belong to the document/query and xi = 0 otherwise. In our
approach we have used a probabilistic information retrieval
model in which the relevance of a document with respect
to a query is computed by evaluating P (R|d, q), that is the
probability that a given document d is relevant to a given
query q. Different probabilistic models have been proposed
in literature to evaluate this probability. We have used the
model introduced in [10]. It assumes that each term is as-
sociated with a topic, and that a document may be about
the topic, or not. Statistic measures about the term occur-
rences in documents are used to estimate the probability. In
particular, a document d is scored with respect to a query q
by using the following scoring function:

S(d, q) =
X
t∈q

W (t) (1)

that sums the weight of each query term with respect to
the document d on the basis of a weighting function W . An
overview of weighting functions can be found in [5]. We have
used the following [10]:

W (t) =
TFt(k1 + 1)

k1

�
(1− b) + b DL

AV DL

�
+ TFt

log
N

NDt

where TFt is the frequency of term t in the document, DL
is the document length (i.e. number of terms), AV DL is the
average document length in the collection, N is the number
of documents in the collection, and NDt is the number of
documents in which the term t appears. The constant k1

determines how much the weight reacts to increasing TFt,
and b is a normalization factor. We have used the values of
k1 = 1.2 and b = 0.75, which are recommended values for
generic English text.

The vector representation is built through an indexing
process composed by a number of standard steps usually
performed to improve the retrieval performance. The first
step, term tokenizer, regards the subdivision of free text in a
sequence of index terms. A token is a sequence of alphanu-
meric characters separated by non-alphanumeric characters.
In our case we have discarded tokens consisting only of dig-
its. The second step, stemmer, serves to lead a term to its
root. For example verb conjugation is led to the infinitive
verb, plural is led to singular, and so on. Terms are stemmed
in order to collapse terms with the same meaning into a sin-
gle term. In our case we have used the Porter stemmer
algorithm for English [16]. The third step, stopper, serves
as a filter of common words that are not discriminant for the
document. We have used a common stop word vocabulary
used in the context of English text retrieval enriched with
a set of words picked up from the software system domain.
For example, we have discarded words such as bug, feature,
and words related to the system under consideration such
as argouml, gedit, and so on. The set of so obtained terms
are counted for each document and stored within the doc-
ument identifier in two data structures, namely direct and
inverted indexes. The first stores term occurrences within a
document, while the second stores term occurrence among
the collection.

In the next two subsections we consider the descriptor
building process of code entities at two different levels of
granularity, source files and lines of code, and in the next
section we show that indexing finer grained code entities
gives, in most cases, a better performance in retrieving the
impacted source files. Moreover, fine grained indexing can
give more rich information as a result because, within the
source file, the set of impacted lines of code is also returned.

5.1 File indexing and file retrieval
Source files indexing is performed on descriptors built for

each source file belonging to a system release. A source file
descriptor, D(sf), is defined as:

D(sf) =
X

cr∈impact(sf)

D(cr) +
X

r∈revision(sf)

D(r)

Where D(cr) is the descriptor of the change request cr
that impact the source file sf obtained by the concatenation
of its short and long descriptions; D(r) is the descriptor of
the revision r of the source file sf obtained from its commit
comment; and + is the operator of string concatenation.

Source file retrieval is performed by computing the score
value of each source file sf with respect to the new CR
descriptor by using the equation 1, S(sf, CR). The set of
source files in descending order with the score value is re-
turned to the user. Source files with a score value less than
a threshold constant t are discarded, usually t = 0.

5.2 Line of code indexing and file retrieval
Lines of code indexing is performed on descriptors built

for each line of code belonging to each source file of a system
release. A line of code descriptor, D(lc), is defined as:

D(lc) =
X

cr∈impact(lc)

D(cr) +
X

r∈revision(lc)

D(r)

Where D(cr) is the descriptor of the change request cr

108

FIXED

CR

NEW

CR

BUGZILLA TRACKING

SYSTEM

WORK

FILE
REVISION

1 *

CVS VERSIONING

SYSTEM

1*

DESCRIPTOR

BULDER

RANKED LIST

OF IMPACTED

CODE ENTITIES

Developer

User

NEW CHANGE

REQUEST (BUG or

NEW FEATURE)

INDEXING

PROCESS

impact

code entities

INDEX ?

Figure 3: Impact analysis process

that impact the line of code lc; D(r) is the descriptor of
the revision r in which the line of code lc has been added
or changed; and + is the operator of string concatenation.
While impact(sf) and revision(sf) can be derived directly
from software repositories, those relative to a line of code,
impact(lc) and revision(lc), can be derived by using the line
history table of the current system release and considering
only those revisions in which the line has been added or
changed.

Since, impact(lc) ⊆ impact(file(lc)), and revision(lc) ⊆
revision(file(lc)), then D(lc) ⊆ D(file(lc)), where file(lc)
is the source file lc belongs to. When indexing the line-of-
code level, the score value of each line, lc, with respect to the
new CR descriptor is computed by equation 1, S(lc, CR).
We score a source file, sf , by computing the maximum score
of lines belonging to it.

S(sf, CR) = MAX
lc∈sf

(S(lc, CR))

Other score functions can be defined but this one has given
good results. Lines of code indexing is more expensive, in
space and time, than source file indexing, by a factor de-
pending on the average length of source files.

5.3 Tool support
We have developed an Eclipse plug-in, named Jimpa, in

order to support both indexing and source file retrieval.
All steps are completely automated, including the download
from the CVS and Bugzilla repositories. As shown in figure
4, the user can write a short explanation of the impacted
source files he/she wants to search for. The user can choose
the index to use, either fine or coarse grained, respectively
lines of code and source files. The search is performed among
the current project and the set of source files, ranked by their
relevance with change request description, is returned by the
search engine and shown in the bottom. The list shows, for
each source file, the project relative path location and the
relevance weight for the change request description. For fine
grained index, the set of finer code entities, such as ranges of
impacted lines of code, are shown within the source file. The
tool provides the support for setting information retrieval
properties such as stop word list, stemmer algorithm, and
fields to be included or excluded from the indexing process.
Moreover, parameters to access a Bugzilla site can be set in
the preference dialog of each Eclipse project. Jimpa runs
under Eclipse 3.1 and is hosted on an Eclipse update site at
the following URL: http://cise.rcost.unisannio.it/updates/.

Figure 4: Tool snapshot

Table 5: Open-Source projects
project files lines lines/files fixed CRs age

Gedit 117 47913 409.5 116 9 years

ArgoUML 1538 272076 176.9 670 7 years

Firefox 89 42580 467.4 591 4 years

6. CASE STUDY
We have applied the impact analysis approach in three

case studies with different characteristics (Tab. 5). The
first, Gedit, is a general purpose text editor of the GNOME
desktop environment written in C. The second, ArgoUML, is
an UML modeling tool written in Java. The third, Firefox,
is an Internet browser written in C++.

The results have been assessed using two widely accepted
information retrieval metrics, namely, Precision and Recall
[17]. Precision is the ratio between the number of relevant
documents retrieved for a given query and the total number
of documents retrieved for that query. Recall is the ratio
between the number of relevant documents retrieved for a
given query and the total number of relevant documents for
that query. In our case study recall and precision indicates
how many of the right impacted files have been correctly
predicted (recall) and how many of the predicted impacted
files are right (precision). We use the same methodology
used for evaluating an information retrieval algorithm, that

109

-

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

- 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

recall

pr
ec

is
io

n

source file index

line of code index

1

2

3

4
5

6
7

100 100

1

2

3
4

5

6
7

Figure 5: Gedit results

-

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

- 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

recall

p
re

ci
si

on

source file index

line of code index

1

2

3

4
5

6
7

100
100

1
2

3

4

5

6

7

Figure 6: ArgoUML results

is, the retrieved ranked list of documents is considered at
different cut levels [17]. A cut level N is the list of the first
N ranked documents. For each cut level the behavior of
precision and recall is analyzed and traced on a graph.

We have conducted the evaluation by using the leave-one-
out assessment technique [7]. For a given CR we have pre-
dicted the set of impacted files by using an index without
descriptors regarding that CR. The predicted set of files is
then compared with the oracle set, that is the files actually
impacted by that CR, recovered by considering the pres-
ence of the Buzilla id number in the revision comments of
the files [6]. We think this is a good oracle as CRs man-
aged in Bugzilla follow basically some accepted guidelines,
and one of these is to indicate in the check-in comment the
Bugzilla id that identifies the relevant CR.

The performance has been evaluated by using both source
file and line of code indexes. Figures 5, 6, and 7 show the
results for each of the three systems considered. The curves
have been traced by observing the top 100 files ranked by the
scoring function and averaging the precision and recall on
the number of CRs considered for each system. Each figure
contains two curves, relative to source file index and line of
code index. A curve contains 100 points, one for each cut
level starting from 1 to 100. The first set of points should
be read as a measure of overall precision, while the last set
of points as a measure of overall recall.

Indexing lines of code produces improvements ranging be-

-

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

- 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

recall

pr
ec

is
io

n

source file index

line of code index

1

2

3 4

5

6

7

100 100

1
2

3

4
5

6

7

Figure 7: Firefox results

Table 6: Time and space needed to build the indexes
project source file index line of code index

time space time space

Gedit 2 sec 360 KB 59 sec 8.5 MB

ArgoUML 19 sec 1.82 MB 390 sec 52.5 MB

Firefox 3 sec 300 KB 63 sec 3.3 MB

tween 10% and 20% of top 1 precision for each case consid-
ered. Top 100 recall is better for source file index in two
cases, ArgoUML and Firefox. An evident improvement is
reported for ArgoUML for which the top 1 precision is al-
most 20% better for lines of code index than for source files
index. Is this related to the fact that ArgoUML is written
in Java?

Why different performance behaviors occurs for different
systems needs to be further investigated. For sure it de-
pends on how software repositories are used in software
projects. Usually, projects share a common usage prac-
tice driven by the configuration management system but
with a some slightly deviation driven by the members of the
project.

Table 6 shows the time and the disk space needed to build
both source file and line of code indexes for each case consid-
ered. Data explains that the increment of the cost, in terms
of time and space required to index lines of code, grows per-
centually more than the increment of performance gained.
However this is not a drawback at all because the indexing
process takes place only one time to set-up the environment
and successive index updates are performed incrementally.
Regarding file retrieval response time there is a no evident
cost increment as shown in table 7.

7. CONCLUDING REMARKS
Software and change repositories give new opportunities

to support the software development process. In this paper

Table 7: Average file retrieval response time
project source file index line of code index

Gedit 16.2 msec 31.1 msec

ArgoUML 266.3 msec 375.5 msec

Firefox 15.1 msec 30.4 msec

110

an approach to predict impacted files from a change request
definition has been presented. The approach exploits infor-
mation retrieval algorithms performed on code entities, such
as source files and lines of code, indexed with free text con-
tained in software repositories. We show, in particular that
indexing fine grained entities, improves precision, at the cost
of indexing a much higher number of code entities.

The empirical validation conducted on three open source
projects has given promising results. However, quality of
text and project maturity are two factors that strongly im-
pact the performance of the approach. Sometime CVS com-
ments are used for communication rather than for descrip-
tion purpose and in almost all projects there is an initial
period of transition that generates noise in both CVS and
Bugzilla repositories. Indexes can be build, effectively, only
for mature projects for which a huge amount of historical
data is available. For young and immature projects this
approach fails.

We feel that a direction of improvement should be the
introduction of a filter that selects the text to index. The
filter should be able to select only the text that well de-
scribes the indexed code entities. As a very simple example,
CVS comments regarding maintenance and merged revisions
should be discarded because, usually, they have not useful
information for indexing.

The open source community uses other repository for knowl-
edge sharing, such as: mailing lists, newsgroups, and IRC
conversations. They are rich of free text and it should be
interesting to investigate how this information can be used
in conjunction or as an alternative to CVS and Bugzilla.

8. REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia,

and E. Merlo. Recovering traceability links between
code and documentation. IEEE Trans. Softw. Eng.,
28(10):970–983, 2002.

[2] R. S. Arnold and S. A. Bohner. Impact analysis -
towards a framework for comparison. In ICSM ’93:
Proceedings of the Conference on Software
Maintenance, pages 292–301. IEEE Computer Society,
1993.

[3] G. Canfora and L. Cerulo. Impact analysis by mining
software and change request repositories. In
METRICS ’05: Proceedings of the 11th IEEE
International Software Metrics Symposium. IEEE
Computer Society, 2005.

[4] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang,
S. Zhang, and A. Michail. CVSSearch: Searching
through source code using CVS comments. In ICSM
’01: Proceedings of 17th IEEE International
Conference on Software Maintenance, page 364. IEEE
Computer Society, 2001.

[5] F. Crestani, M. Lalmas, C. J. V. Rijsbergen, and
I. Campbell. Is this document relevant?...probably: a
survey of probabilistic models in information retrieval.
ACM Comput. Surv., 30(4):528–552, 1998.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In ICSM ’03: Proceedings of 19th
IEEE International Conference on Software
Maintenance, Amsterdam, Netherlands, Sept. 2003.
IEEE Computer Society.

[7] K. Fogel and M. Bar. Cross-Validatory Choice and
Assessment of Statistical Predictions (with
Discussion), volume 36. J. the Royal Statistical Soc.,
1974.

[8] K. Fogel and M. Bar. Open Source Development with
CVS. Coriolis, 2001.

[9] A. E. Hassan and R. C. Holt. Predicting change
propagation in software systems. In ICSM ’04:
Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages 284–293,
Washington, DC, USA, 2004. IEEE Computer Society.

[10] K. S. Jones, S. Walker, and S. E. Robertson. A
probabilistic model of information retrieval:
development and comparative experiments. Inf.
Process. Manage., 36(6):779–808, 2000.

[11] M. Kamkar. An overview and comparative
classification of program slicing techniques. J. Syst.
Softw., 31(3):197–214, 1995.

[12] M. Lindvall and K. Sandahl. How well do experienced
software developers predict software change? J. Syst.
Softw., 43(1):19–27, 1998.

[13] W. Miller and E. W. Myers. A file comparison
program. Software Practice and Experience,
15(11):1025–1040, 1985.

[14] M. Ohba and K. Gondow. Toward mining ”concept
keywords” from identifiers in large software projects.
In IEEE 27th International Conference on Software
Engineering - The 2nd International Workshop on
Mining Software Repositories, pages 1–5, New York,
NY, USA, 2005. ACM Press.

[15] S. L. Pfleeger. Software Engineering: Theory and
Practice. Prentice-Hall, Upper Saddle River, NJ, 1998.

[16] M. F. Porter. An algorithm for suffix stripping.
Morgan Kaufmann Publishers Inc., 1997.

[17] B. Ribeiro-neto and Baeza-yates. Modern Information
Retrieval. Addison Wesley, 1999.

[18] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C.
Chu-Carroll. Predicting source code changes by
mining revision history. IEEE Transactions on
Software Engineering, 30:574–586, Sept. 2004.

[19] A. T. T. Ying, J. L. Wright, and S. Abrams. Source
code that talks: an exploration of eclipse task
comments and their implication to repository mining.
In IEEE 27th International Conference on Software
Engineering - The 2nd International Workshop on
Mining Software Repositories, pages 1–5, New York,
NY, USA, 2005. ACM Press.

[20] T. Zimmermann, P. Weisgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering,
pages 563–572. IEEE Computer Society, 2004.

[21] T. Zimmermann and P. Weißgerber. Preprocessing
CVS data for fine-grained analysis. In IEEE 26th
International Conference on Software Engineering -
The 1st International Workshop on Mining Software
Repositories, pages 2–6, 2004.

111

