
P1: IAZ

ACMJ150-03-appendix ACM-TRANSACTION May 22, 2006 19:47

Online Appendix to:
Survey and Benchmark of Block Ciphers for
Wireless Sensor Networks

YEE WEI LAW, JEROEN DOUMEN, and PIETER HARTEL

University of Twente

Different instructions may take different numbers of clock cycles, resulting in
different energy consumption per instruction. Even different instructions with
the same number of clock cycles may consume different amounts of energy,
because of the nature of the instruction itself, for example an instruction that
accesses the memory would naturally consume more energy than an instruction
that accesses the registers. We will however show that the energy consumed per
cycle does not vary much from instruction to instruction.

B. METHODOLOGY

To achieve this, we should ideally measure the energy consumed by each cycle
of different instructions. However measuring such energy is difficult without
instrumenting the chip, so we measure the current instead. If we fix the voltage
V , by measuring the current I , we get the power P . If a cycle is tc seconds long,
and an instruction consists of c cycles, let e1, . . . , ec be the energy consumed by
each cycle, then

VI = P = e1 + · · · + ec

ctc
= ē

tc
=⇒ ē = VItc (4)

where ē = e1+···+ec
c is the average energy consumed per cycle. Since V and tc are

fixed, by measuring I , we are in fact measuring ē. There is a possibility that
ei � ē and e j � ē for some i �= j and yet ē does not vary much from instruction
to instruction, meaning that even if ē is constant, we cannot claim that “energy
per cycle” is constant. However this is not a problem, because every instruction
is always executed as a whole, with the energy-lean cycle(s) compensating the
energy-consuming cycle(s). Worth mentioning is that this method is consistent
with Chien and Wen’s [1998].

The current is measured when an instruction xxx is executed in an infinite
loop:

Mainloop xxx <some randomised operands>

xxx <other randomised operands>

...100 times

jmp Mainloop

Note that in the above template, one jmp instruction after every 100 times of
the measured instruction does not affect the measurement much, moreover we
can measure the current of jmp without the influence of other instructions:

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006, Pages 1–4.



P1: IAZ

ACMJ150-03-appendix ACM-TRANSACTION May 22, 2006 19:47

2 • Y. W. Law et al.

Mainloop jmp Label2

Label2 jmp Mainloop

Whenever immediate constant operands, offsets, data are involved, they are
randomly generated. In fact, all the test programs are generated by a Perl
script.

Since there are 7 addressing modes [Texas Instruments, Inc. 2003], an in-
struction like mov.w can be used in at least 7 modes depending on the type of its
operands, for example, ‘mov.w R12, 2(R14)’, ‘mov.w @R12+, R14’ and so on. For-
tunately not all modes of the same instruction are generated by the compiler.
We only test those modes of the instruction generated by the compiler. To find
these in-use modes, we have written a Perl script to parse the assembler code of
our block cipher algorithms (generated by the compiler). For example, the only
mode used for the instruction and.b is ‘and.b #C,Rn’, and we only measure this
particular mode of and.b (where ‘#C’ stands for an immediate constant, and ‘Rn’
stands for a register).

Our test programs are generally divided into 3 parts: (1) the program, (2) the
source data, and (3) the destination data. For example, while the instruction
‘mov.w @R12, 2(R14)’ itself resides in the program area, ‘@R12’ points to a word
in the source data area, whereas ‘2(R14)’ points to a word in the destination
data area. Referring to Table XI, IRAM refers to the current when the program,
source data and destination data are loaded in the RAM; whereas IFlash refers
to the current when the program and the source data are loaded in the Flash
but the destination data in the RAM. The destination data is always loaded in
the RAM because they are meant to be overwritten byte-by-byte, while Flash
can only be erased one sector at a time. We do not consider cache because there
is none in the processor. Logically IRAM is lower than IFlash since accessing the
RAM is cheaper, however we will show that the difference is only about 6% of
the mean.

Instead of measuring the current consumed by the processor alone, we have
measured the current consumed by the entire EYES sensor node. This is ac-
ceptable because the measured instructions do not invoke functions on the pe-
ripheral circuits, and we assume the leakage current in the peripheral circuits
stays constant independent of the measured instructions.

C. RESULTS

There are no entries in Table XI for ‘ret’, ‘pop.b Rn’ and ‘pop.w Rn’. Instead, ‘ret’
is measured along with ‘call #L’ or ‘call Rn’; ‘pop.b Rn’ along with ‘push.b Rn’;
and ‘pop.w Rn’ along with ‘push.w #C’, ‘push.w Rn’ or ‘push.w X(Rn)’. This is fair
because in real-world applications, a pop is always associated with a push, so is
a ret associated with a call.

The average current is 2.93 mA, with a standard deviation of 0.05. From
the table, we can see that the most energy-consuming instructions are
‘mov.b @Rn+,Rn’ and ‘xor.b @Rn+,Rn’, consuming a current of 3.03 mA (when the
program and the source data are loaded in the Flash), whereas ‘bis.w Rn,Rn’,
‘mov.b Rn,Rn’, ‘mov.w Rn,Rn’, the rotation instructions, ‘swpb Rn’ and ‘sxt Rn’
are the cheapest, consuming a current of 2.85 mA (when everything is loaded

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.



P1: IAZ

ACMJ150-03-appendix ACM-TRANSACTION May 22, 2006 19:47

Survey and Benchmark of Block Ciphers for WSNs • 3

Table XI. Measured Currents IFlash and IRAM for Each Instruction in mA (V = 2.994 V, tc = 0.22 μs,

See Text for the Definition of IFlash and IRAM ).

Instruction c IFlash IRAM
add.b #C,Rn 2 2.98 2.89

add.b Rn,Rn 1 2.95 2.87

add.w #C,Rn 2 2.99 2.91

add.w #C,X(Rn) 5 2.99 2.94

add.w Rn,Rn 1 2.96 2.87

addc.w #C,Rn 1 2.99 2.90

addc.w #C,X(Rn) 5 2.97 2.90

addc.w X(Rn),Rn 3 2.99 2.90

addc.w X(Rn),X(Rn) 6 2.99 2.90

and.b #C,Rn 1 2.99 2.89

and.w #C,Rn 1 2.99 2.90

and.w #C,X(Rn) 5 2.97 2.90

and.w @Rn,Rn 2 2.99 2.90

and.w X(Rn),Rn 5 3.00 2.90

bis.w @Rn,Rn 2 2.98 2.89

bis.w Rn,Rn 1 2.93 2.85

bis.w X(Rn),Rn 3 2.98 2.89

bit.b #C,X(Rn) 5 2.96 2.88

bit.w #C,Rn 2 2.98 2.90

bit.w #C,X(Rn) 5 2.96 2.89

br #L 3 2.96 2.87

call #L 5 2.95 2.88

call Rn 4 2.96 2.90

clrc 1 2.97 2.92

cmp.w #C,Rn 2 3.00 2.91

cmp.w #C,X(Rn) 5 2.98 2.90

cmp.w Rn,Rn 1 2.97 2.87

cmp.w Rn,X(Rn) 4 3.00 2.91

cmp.w X(Rn),Rn 3 3.00 2.91

cmp.w X(Rn),X(Rn) 6 2.99 2.90

jc L 2 2.96 2.89

jeq L 2 2.96 2.89

jge L 2 2.97 2.89

jl L 2 2.96 2.89

jmp L 2 2.97 2.89

jnc L 2 2.97 2.89

jne L 2 2.97 2.89

mov.b #C,Rn 2 2.98 2.89

mov.b #C,X(Rn) 5 2.97 2.89

mov.b &L,Rn 3 3.00 2.89

mov.b @Rn,Rn 2 3.00 2.89

mov.b @Rn,X(Rn) 5 3.00 2.90

mov.b @Rn+,Rn 2 3.03 2.91

mov.b @Rn+,X(Rn) 5 2.99 2.91

mov.b Rn,Rn 1 2.94 2.85

mov.b Rn,X(Rn) 4 2.97 2.89

mov.b X(Rn),Rn 3 2.99 2.89

Instruction c IFlash IRAM
mov.b X(Rn),X(Rn) 6 2.99 2.89

mov.w #C,Rn 2 2.98 2.89

mov.w #C,X(Rn) 5 2.98 2.90

mov.w @Rn,Rn 2 2.99 2.89

mov.w @Rn,X(Rn) 5 2.98 2.90

mov.w Rn,Rn 1 2.93 2.85

mov.w Rn,X(Rn) 4 2.97 2.89

mov.w X(Rn),Rn 3 2.99 2.89

mov.w X(Rn),X(Rn) 6 2.98 2.90

push.b Rn 3 2.99 2.91

push.w #C 4 2.97 2.89

push.w Rn 3 3.00 2.91

push.w X(Rn) 5 2.98 2.90

rla.b Rn 1 2.93 2.85

rla.w Rn 1 2.94 2.85

rlc.b Rn 1 2.94 2.85

rlc.w Rn 1 2.94 2.85

rra.b Rn 1 2.93 2.85

rra.w Rn 1 2.93 2.85

rrc.b Rn 1 2.93 2.85

rrc.w Rn 1 2.93 2.85

sub.b Rn,Rn 1 2.95 2.86

sub.w #C,Rn 2 3.00 2.91

sub.w @Rn,Rn 2 3.02 2.89

sub.w Rn,Rn 1 2.95 2.87

sub.w X(Rn),Rn 3 3.01 2.90

subc.b #C,Rn 2 2.99 2.89

subc.b Rn,Rn 1 2.95 2.86

subc.w Rn,Rn 1 2.95 2.87

subc.w X(Rn),Rn 3 3.00 2.91

swpb Rn 1 2.94 2.85

sxt Rn 1 2.93 2.85

xor.b #C,Rn 2 2.99 2.90

xor.b @Rn,Rn 2 3.00 2.90

xor.b @Rn,X(Rn) 5 2.99 2.91

xor.b @Rn+,Rn 2 3.03 2.91

xor.b Rn,Rn 1 2.94 2.86

xor.b Rn,X(Rn) 4 2.98 2.92

xor.b X(Rn),Rn 3 3.00 2.91

xor.b X(Rn),X(Rn) 6 2.99 2.90

xor.w #C,Rn 2 3.00 2.90

xor.w #C,X(Rn) 5 2.99 2.91

xor.w @Rn,Rn 2 3.00 2.91

xor.w Rn,Rn 1 2.95 2.87

xor.w Rn,X(Rn) 4 3.00 2.91

xor.w X(Rn),Rn 3 3.00 2.90

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.



P1: IAZ

ACMJ150-03-appendix ACM-TRANSACTION May 22, 2006 19:47

4 • Y. W. Law et al.

in the RAM). While it is easy to appreciate why the latter instructions elicit the
least current, it is interesting to learn that the instruction mode of ‘@Rn+,Rn’
draws a higher current than ‘@Rn+,X(Rn)’ (although this does not mean that the
‘@Rn+,Rn’ over 2 cycles, consumes more energy than ‘@Rn+,X(Rn)’ over 5 cycles).

All in all, the difference between the largest and the smallest current is only
6% of the mean, and we conclude that ē is more or less consistent, or in other
words it is safe to assume that “energy per cycle” is more or less consistent for
our particular hardware platform.

ACM Transactions on Sensor Networks, Vol. 2, No. 1, February 2006.


