Adaptive Pull-Based Policies for Wide Area Data
Delivery*

Laura Bright Avigdor Gal
Portland State University Technion - IIT
Portland OR 97207 Haifa 32000 Israel
bright@cs.pdx.edu avigal@ie.technion.ac.il

Louiga Raschid
University of Maryland
College Park MD 20742

louiqa@umiacs.umd.edu

Abstract

Wide area data delivery requires timely propagation of up-to-date in-
formation to thousands of clients over a wide area network. Applications
include web caching, RSS source monitoring, and email access via a mo-
bile network. Data sources vary widely in their update patterns and may
experience different update rates at different times or unexpected changes
to update patterns. Traditional data delivery solutions are either push-
based, which requires servers to push updates to clients, or pull-based,
which require clients to check for updates at servers. While push-based
solutions ensure timely data delivery, they are not always feasible to im-
plement and may not scale to a large number of clients. In this paper
we present adaptive pull-based policies that can reduce the overhead of
contacting remote servers compared to existing pull-based policies. We
model updates to data sources using update histories, and present novel
history-based policies to estimate when updates occur. We present a set of
architectures to enable rapid deployment of the proposed policies. We de-
velop adaptive policies to handle changes in update patterns, and present
two examples of such policies. Extensive experimental evaluation using
three data traces from diverse applications shows that history-based poli-
cies can reduce contact between clients and servers by up to 60% compared
to existing pull-based policies while providing a comparable level of data
freshness. Our adaptive policies are further shown to dominate individual
history based policies.

*This research is partially supported by NSF Grants IIS0205489,I11S0219909 and
EIA0130422.

1 Introduction

Wide area data delivery involves the timely transfer of data from servers to tens
of thousands of clients over a wide area network. Wide area applications are
often characterized by frequent updates that must be disseminated to clients in
a timely manner. Examples include cache managers maintaining local copies of
web pages, clients interacting with a mail server, delivery of data from RSS news
feeds or the stock market, clients monitoring online auctions, etc. A challenge to
timely update propagation is that most data sources are inherently pull-based
and require clients to contact them to check for updates. While push-based
data sources and services exist, e.g., BlackBerry [23], these can support only a
limited number of clients and data sources. The majority of servers are either
unable or unwilling to support push-based data delivery; thus, applications that
access these servers must rely on pull-based delivery.

An important challenge to effective pull-based data delivery is minimiz-
ing the number of contacts between clients and servers while satisfying client
freshness requirements. Minimizing the number of client requests to servers is
important for several reasons. First, excessive client requests waste network
bandwidth. Reducing bandwidth consumption is particularly important in low-
bandwidth wireless environments, but is important on fixed wireless networks
as well. Second, excessive client requests overload remote servers. Finally, con-
tacting remote servers adds latency to client requests, and should only be done
when local data copies are not sufficiently fresh. To minimize requests to servers,
clients require reasonable estimates of when updates will occur.

Predicting updates to remote servers is non-trivial. Update patterns at a
source may vary depending on many factors including time of day and day
of the week, and sources may experience unexpected changes in update rates.
To date, many heuristics to estimate update probability have been proposed,
ranging from estimating a constant lifetime for all objects to modeling update
probability based on the past update rate of an object (we discuss these in
detail in Section 2). Such heuristics have proven effective for applications such
as caching web pages that change relatively infrequently or synchronizing a large
collection of objects. They may not be appropriate for wide area applications
where clients may have specific requirements for timely data delivery and where
data delivery must adapt to changes in the pattern of updates.

We present several examples of pull-based wide area applications and briefly
discuss the challenges they present. Our first example is a client who monitors
updates to one or more web sources of interest, such as sources that provide data
on sports scores, stock quotes, or auctions. While ideally these sources could
push a stream of updates to clients, in practice this is not always feasible. Thus,
clients must poll sources to be notified of relevant updates. However, continuous
polling strains network resources for both clients and servers and is clearly not
a feasible solution. Instead, clients must intermittently poll sources to check for
updates [12, 38, 39]. Further, update frequencies may vary at different times
of the day or days of the week, and may change due to external events, e.g.,
an increase in the frequency of bids near the end of an auction. To ensure

timely propagation of updates without wasting excessive network resources, a
reasonable model of update patterns at remote sources and the ability to adapt
to changes in these patterns is needed.

A second example is a web cache such as a client browser cache or a client-
side proxy cache that serves multiple clients within an organization. These
caches maintain local copies of popular objects to serve client requests, and can
considerably reduce both network latency and bandwidth consumption. How-
ever, these local copies become stale as objects are updated at remote servers.
To ensure freshness, caches typically use a Time-to-Live (TTL) for each object,
which is either defined by a server (hereafter referred to as server-defined TTL)
or estimated by the cache as a function of the object’s last update [7, 22] (adap-
tive TTL). Any object that is requested after its TTL (either server-defined or
adaptive) expires must be validated at a remote server to check for updates
before it is delivered to the client. In the remainder of this paper we use the
term TTL to refer to adaptive TTL.

While web caches typically have a high bandwidth connection to the Internet,
validating objects that have not actually changed adds a considerable amount of
unnecessary overhead to requests and reduces the benefits of caching. Research
reported in [15] shows that in web caching as many as 30-50% of cache hits
result in unnecessary validations where the object has not actually changed (i.e.,
freshness misses), and the latency of these validations is often comparable to that
of a cache miss. Thus, improving the ability of pull-based policies to estimate
the freshness of cached objects could potentially double the number of requests
served from a cache while reducing the latency of a significant percentage of
requests.

A third example is a client who uses a mobile PDA to access data such
as web objects and email. The client needs to periodically contact the remote
sources to refresh their mailbox and check for updates to local object copies.
Unlike in the proxy caching example above, in this case each contact with the
server is costly in terms of both battery power and bandwidth. Thus, continuous
polling is impossible in this case. However, it is important for clients to receive
update information in a timely manner. Therefore, efficient techniques to esti-
mate when updates occur could significantly reduce both power and bandwidth
consumption while improving the timeliness of data delivery to clients. We note
that BlackBerry [23] provides a push-based solution to this problem, but this
may not be feasible for all clients and applications.

To summarize, minimizing the number of client requests to remote servers
is important for all of the above applications. Further, accurately modeling and
estimating updates to objects can significantly reduce the overhead of contacting
servers while still meeting the freshness requirements of clients. In this paper,
we address the following (informal) problem: We are given a set of objects, a
model of updates to these objects, a stream of requests for these objects, and
possible freshness and latency constraints. The objective is to minimize the
total number of requests to the servers while meeting the freshness and latency
constraints. We formally define the problem in Section 3.2.

Challenges to solving the problem above include the following;:

Models of updates to objects at remote sources.

Policies that use these models to estimate when objects are updated and
to determine when to contact sources to check for updates.

Architectures to efficiently support and deploy these policies.

Adapting to changes in update patterns at sources.

In this paper, we present adaptive pull-based policies to address the above
challenges. Our goal is to enable pull-based policies to provide sufficiently re-
cent data for applications while reducing communication overhead and power
consumption. Our policies can be implemented with minimal changes to clients
and servers, and can detect and adapt to changes in update patterns at sources.
While existing works in web caching ([10, 22, 32]) and synchronizing collections
of objects ([12, 9, 13, 38, 39]) have proposed pull-based policies (see Section 2 for
detailed discussion) including policies that use history, our work makes several
novel contributions to be discussed next. In addition, we know of no other prior
work in pull-based data delivery that explicitly aims to minimize the number of
client requests to remote servers while satisfying client requirements for latency
and recency.

In Section 3, we formally define the problem addressed in this paper. We
present our model of pull-based data delivery and present two formulations of
the problem. The first formulation aims to minimize the latency of requests but
allows requested objects to be downloaded from remote servers when a cached
copy does not meet client freshness constraints. This formulation is well-suited
to caching applications such as refreshing objects in a web cache in response to
client requests. The second formulation assumes hard latency constraints and
assumes all requests are served from a cache while objects are refreshed in the
background. This formulation is well-suited to prefetching applications such as
periodically refreshing a client’s mailbox.

In Section 4, we present a model for update history and introduce the notion
of bursts. The update model is based on a cyclic stochastic model (which
means one can predict the future based on past behavior). The model can be
extended with “bursts” or deviations from the cyclic history; we refer to the
presence of bursts as an acyclic history. We utilize the work in [20] to model
history as a repetitive piecewise constant Poisson process, which is a step beyond
the homogeneous models that are currently utilized in history modeling (e.g.,
[12, 13]). This history may either be the history of an individual object, or may
be aggregated over multiple objects.

We present a set of flexible and scalable architectures to support history-
based policies in Section 5. These architectures differ in the overhead required
by both servers and clients, allowing our policies to be supported by clients and
servers with varying capabilities. The first architecture, client-side, proposes
piggybacking a compact representation of update histories on server response,
thus allowing the client the flexibility of computing its policies independently.
This requires minimal changes to a server and enables servers to scale to a

large number of clients, but consumes power and storage at clients. For clients
with limited storage or processing power (such as mobile clients), we propose a
server-side architecture in which the server computes the estimated time of an
object’s next update, similar to server-defined TTL yet using a policy that is
based on history. This value is then sent to the client very much the same way
server-defined TTL is sent nowadays. We note that our proposed architectures
do not require changing underlying network protocols. Further, while both of
these architectures do require cooperation from remote servers, the amount of
cooperation required is far less than for typical push-based architectures.

We develop three pull-based policies in Section 6. The well-known adaptive
TTL policy [22] is presented as a degenerate case of a history-based policy, uti-
lizing the most recent update to predict future updates. In addition, we present
two more policies, labeled IndHist and AggHist, that base their prediction on
the repetitive nature of update history, utilizing more updates than TTL in
generating the history. The two policies differ in the way they utilize update
histories. IndHist bases its prediction for a given object solely on the updates
to that object while AggHist utilizes the updates of a set of similar objects in
prediction. IndHist may be more accurate than AggHist for “nicely-behaved”
objects, but has the disadvantage of over-fitting individual object histories.

Section 8 offers two examples of adaptive policies that take advantage of
multiple pull-based policies to improve performance. The first replaces IndHist
with AggHist for objects that do not yet have sufficiently recorded updates to
use IndHist. The second adaptive policy identifies bursts and switches from
IndHist to adaptive TTL [22], to avoid the use of an incorrect history model
until after the burst is over. A client determines which policy to use, based
on performance. Therefore, the detection of a burst will result in switching
from IndHist to TTL. Once a burst has subdued, the client may switch back
to IndHist. In both cases, we show empirically that adaptive policies perform
better than any of the three policies executed independently, thus providing
a mechanism for robust decision making in the face of continuous changes in
update patterns.

We have conducted extensive experiments to support our analysis, using real-
world traces from various domains, including electronic bulletin boards (DB-
WORLD), mail and web server applications (World Cup 1998). Our findings
are reported in sections 7 and 8. Our results show that history based policies
can reduce contact between clients and servers by up to 60% compared to TTL
while providing a comparable level of data freshness. We show that for objects
with cyclic history, history-based policies dominate TTL. This is because TTL
assumes that objects updated recently are more likely to be updated in the near
future, which does not hold for cyclic objects, and thus performs many more
unnecessary validations than history-based policies. We further show that for
objects with acyclic history that exhibits bursts, history-based policies, while
not completely accurate, are sufficiently robust to provide useful predictions of
updates.

Our experiments also demonstrate that our adaptive policies can select the
best policy to match the update behavior of an object and they adapt to chang-

ing behavior. One adaptive policy exploits both individual and aggregate be-
havior by alternating IndHist and AggHist. A second adaptive policy alternates
IndHist with TTL; TTL is exploited when there are bursts, whereas IndHist is
utilized in non-bursty periods. Thus, the adaptive policies dominate any of the
individual history-based policies.

To summarize, our main contributions are as follows:

e We formalize the model of update history, for either an individual object
or aggregated over multiple objects, as a cyclic stochastic model with
possible bursts.

e We present a set of offline optimal history-based policies to estimate
when updates occur at sources and show empirically that using history-
based policies can significantly reduce the communication overhead be-
tween clients and servers.

e We demonstrate the flexibility of our approach by suggesting a set of
architectures to implement support for our policies.

e We propose a set of adaptive policies to choose among available policies to
proactively handle changes to a source’s update patterns. Our empirical
results establish the dominance of the proposed adaptive policies over
individual policies.

2 Related Work

The problem of maintaining freshness of local data copies has been studied in
many contexts, including web caching, web crawling, and databases. All of this
research shares our goal of maintaining data freshness while making optimal use
of available resources. Some approaches are push-based, providing guarantees
with respect to data freshness at a possibly considerable overhead at the server.
Other approaches are pull-based, reducing overhead at servers, with limited
effectiveness in estimating object freshness. Some existing pull-based policies
use update histories to estimate the freshness of data copies, however, their use
of histories differs considerably from the policies proposed in this paper.

In this section we survey related work in pull-based and push-based fresh-
ness policies, and briefly discuss the tradeoffs of each. We also discuss existing
techniques to model history. In Section 2.1 we present existing pull-based poli-
cies for wide area applications and discuss their strengths and weaknesses. We
compare their overhead, accuracy, and use of update histories to the techniques
presented in this paper. In Section 2.2 we survey push-based freshness policies
for wide area applications and compare them in terms of server overhead and
the degree of freshness guaranteed. We discuss some tradeoffs between push-
based and pull-based data delivery. Finally, in Section 2.3 we discuss caching
and freshness policies in other areas such as distributed databases, materialized
views and filesystems.

2.1 Pull-Based Freshness Policies

Pull-based freshness policies require clients to contact servers to check for up-
dates to objects. Such policies have been proposed in many contexts such as
web caching and synchronizing collections of objects, e.g., web crawlers. While
this research shares our goal of maintaining freshness of data copies, these poli-
cies have many differences from those proposed in this paper. We discuss these
differences below.

2.1.1 Web Caching

There has been much research in the web caching community on pull-based
freshness policies. These policies typically rely on simple heuristics to estimate
the freshness of a cached object, for example estimating freshness as a function
of the last time the object was modified. The heuristics to estimate freshness
are typically less accurate than using more complete history information which
can model variations in an object’s update frequency at different times.

A widely used pull-based policy is to assign each object a Time-to-Live
(TTL) [10, 22], and validate any cached object whose TTL has expired. The
TTL value is typically either a fixed value provided by a server (server-defined)
or is estimated as a function of the time that an object was last modified (adap-
tive TTL [22]). (In the remainder of this paper the term TTL refers to adaptive
TTL, defined formally in Section 6.1, unless otherwise noted.) More recently,
work in [31] aims to improve upon this by estimating TTL values based on the
probability that an object will be updated within a certain period of time. The
authors have suggested tuning K, a shifting window that consists of the number
of most recent updates to be utilized in computing update events arrival rate.
This approach may capture local arrival rate values, as they vary over time, yet
it is more error prone in the borderline, where the arrival rate either sharply
increases or decreases. The technique suggested in [31] is similar to the First
Arrival policy suggested in [20]. In our research we have adopted a different
technique, also suggested in [20], which considers the expected number of ar-
rivals rather than the probability of an update. To avoid misestimation when
histories have changed or have not yet stabilized, we also suggest in this work
an adaptive approach, in which a client may switch between policies whenever
update patterns change.

The policies to estimate object freshness, as proposed in this paper, are based
on stochastic analysis of update history. Several works, including [12, 20, 31]
have suggested modeling updates as a Poisson model. Work in [12, 31] assumes
a model that is homogeneous over time, while our proposed model assumes a
time varying update intensity, which was shown to work better in [20].

In prior work we have considered the importance of estimating the number
of updates in a given interval. In [6] we proposed the use of client profiles, where
a client can define its tolerance towards stale data in terms of the number of
updates to an object since it was last refreshed. It was shown in [20] that clients
that are more tolerant to stale data suffer less latency in processing their data

requests. In this paper we introduce a third aspect to varying levels of tolerance
towards staleness by offering compact methods for improving client estimation
of the number of updates. Equipped with improved methods to estimate the
number of updates to an object, clients can meet the recency requirements of
their applications while reducing unnecessary contacts with remote servers.

Research reported in [15] considers pre-validation policies to validate cached
objects whose TTLs have expired before clients request them; this technique
has been shown to reduce the client-perceived latency caused by unnecessary
validations (freshness misses). These policies can reduce the number of valida-
tions in response to client requests, however, they increase the total number of
contacts with the server because objects must be validated offline. In contrast,
the policies we present in sections 7 and 8 can reduce the number of unnecessary
validations and total contacts with servers while providing comparable recency
to TTL.

Piggybacking to improve freshness was proposed in [28]. In this work, clients
piggyback a list of potentially stale cached objects when they contact a server.
Servers piggyback the subset of those objects that have been updated on their
responses. Qur notion of piggybacking is completely different. In one of our
proposed architectures (see Section 5), servers piggyback the history of updates
to clients to provide clients with a better estimate of when updates occur. This
approach slightly increases the size of a request but can reduce the number of
contacts with the server and reduce latencies.

2.1.2 Synchronizing Collections

Pull-based freshness has also been addressed in the context of synchronizing
a large collection of objects, e.g., web crawlers [9, 12, 13, 14]. These works
propose policies for prefetching objects from remote sources to maximize the
freshness of objects in the cache. The goal is to refresh a collection of objects
offline, rather than handle client requests online; hence, these policies are not
always appropriate for all applications as discussed below. Research reported
in [38, 39] presents pull-based policies to monitor changes to web sources, but
does not model update histories. We describe all of this work below.

Research reported in [13] detects updates to objects by periodically contact-
ing servers, so it may not have complete update histories. Further, this approach
uses available history information to estimate only the average update frequency
of an object, thus ignoring the nonhomegeneity of update patterns. Thus, this
use of update history differs from what we propose in this paper.

There are several important differences between the synchronization prob-
lem addressed in [9, 12, 13, 14] and the problem of estimating the freshness of a
cached object on-demand that we study in this paper. In web crawling, the goal
is to develop crawling strategies to maximize the average freshness of a set of
objects over a period of time subject to resource constraints, e.g., bandwidth.
These strategies typically determine how often to check for updates based on
its average update frequency. They do not attempt to estimate when an ob-
ject is most likely to be updated. This is appropriate for applications such as

web crawling because some degree of staleness is acceptable and it simplifies
implementation.

In contrast, this paper focuses on using history to estimate the freshness of
objects for applications where capturing updates in a timely manner is critical.
This includes on-demand applications such as web browsing, email, and online
auctions, as well as applications such as source monitoring that must capture
all relevant updates to a source. In these cases, using the average update fre-
quency to estimate the freshness of an object is insufficiently accurate and may
not meet the preferences of the client (i.e., the object may be too stale or
important updates may not be captured). Therefore, in this paper we propose
more sophisticated models to estimate the freshness of a cached object.

The WIC algorithm [38] converts pull-based data sources to push-based
streams by periodically checking sources for updates. The algorithm is parame-
terized to allow clients to control the tradeoff between timeliness (being notified
of updates promptly) and completeness (being notified of all changes to an ob-
ject) when bandwidth is limited. At each time interval the algorithm chooses
the objects to refresh based on both client preferences and the probability of
updates to an object. This algorithm is useful for many wide area applications
such as online auctions or archiving web sources. However, the algorithm does
not consider how to determine the probability of an update to an object, which
is an important aspect of any pull-based policy.

CAM [39] also proposes pull-based monitoring of web sources with the goal
of capturing as many updates as possible. This work estimates the probability
of updates by probing sources at frequent intervals during a tracking phase, and
using these statistics to determine the change frequency of each page. However,
CAM does not explicitly model time-varying update frequencies to sources and
cannot eagsily adapt to bursts.

2.2 Push-based policies

Push-based data delivery guarantees that relevant updates are delivered to
clients in a timely manner and is useful for many applications. However, push-
based delivery may not be cost effective or feasible in all situations. The tradeoffs
between push-based and pull-based data delivery have been studied extensively,
(see, for example, [19] for a detailed discussion). Some scenarios are well suited
to push, for example a small group of clients who need to be notified of updates
in a timely manner. In this case push-based delivery could eliminate the need
for clients to frequently poll servers, thereby reducing server load. We note that
just as push-based technologies can benefit from commonalities among client
requests and reduce server loads, our proposed pull-based approaches can ex-
ploit similarities at the proxy level. Thus, a proxy could perform pull-based
monitoring of sources for a large group of clients, further reducing the load at
servers.

Many push-based technologies are currently in use, e.g., BlackBerry and
JMS messaging. However, these solutions require significant changes to servers.
In addition, they require servers to maintain information on every client’s pref-

erences, which may limit scalability. In contrast, our proposed solutions require
minimal modifications to server implementation, do not require servers to store
any client information, and can be deployed incrementally as discussed in Sec-
tion 5.

Finally, we note that many existing “push-based” publish/subscribe services
(e.g., RSS feeds) are actually implemented using periodic pull. The solutions
proposed in this paper can improve the effectiveness of such techniques by re-
ducing the number of contacts with servers in many cases. Thus, we believe our
proposed solutions can improve both pure pull-based delivery as well as many
publish /subscribe solutions.

We discuss existing push-based policies in the context of caching static and
dynamic web content, and research in caching approximate values below.

2.2.1 Static web content

Push-based policies for static web content are considered in [16, 32]. These
policies may be useful for keeping data in client-side web caches up to date, but
impose a large overhead on servers and may not scale well to a large number
of clients. Research reported in [32] compares TTL to a push-based policy and
shows that the push-based policy does not consume significantly more band-
width than TTL in many cases. This comes as no surprise, given that push-
based policies only contact clients when an object actually changes, thus unlike
TTL there are no freshness misses. However, push-based policies also require
additional overhead for servers, and many servers may be unwilling or unable to
implement it. Research reported in [16] proposes an adaptive push-pull scheme
where servers can adaptively push updates to some clients and require others to
use a pull-based policy. The server does not provide any update history infor-
mation to clients. The server determines which clients use push and which must
use pull-based on both the server capacity and the preferences of the clients.
This improves scalability but may not meet client needs when server capacity
is limited.

2.2.2 Caching Dynamic Content

Many works, including [2, 8, 11, 29, 45, 46] consider push-based consistency in
the context of caching dynamic web content. These solutions are well-suited to
improving the performance of dynamic web sites, but do not generalize well to
wide area networks. This is because caching dynamic content requires a high
degree of cooperation between caches and servers. Caches must store database
tuples or page components as well as scripts to generate web pages in response
to client requests. These caches are typically controlled by servers rather than
clients. Since the number of server-side caches is much smaller than the number
of clients accessing the pages, scaling to a large number of clients is not a concern
and pushing updates to the caches is feasible.

Research reported in [8, 11, 29, 46] proposes techniques to determine which
pages the server should invalidate when updates occur to the underlying database.

10

The goal is determining when to propagate updates to cached data, assuming
full knowledge of updates to the underlying database. Push-based consistency
in also considered in [45]. This research evaluates the effects of push-based
consistency on a server workload and shows how servers can limit the amount
of information they can store without significantly impacting data consistency.
However, servers still must store information about clients, which our solution
does not require. Finally, research reported in [2] proposes techniques to cache
database tuples to answer queries. Servers send periodic refresh messages to
notify caches of tuples that have changed, which guarantees that cached data
is consistent with a past database state within some constant time limit. In
contrast, our work provides a pull-based approach that allows clients to contact
servers to maintain their desired level of freshness.

2.2.3 Caching Approximate Values

There is also work in push-based consistency that allows cached objects to
deviate from objects at the remote server [1, 26, 36, 37]. These techniques
can save bandwidth by reducing the amount of communication between servers
and clients. However, as with other push-based policies, servers need to store
the inventory of objects in a client’s cache. In addition, servers need to store
the client’s tolerance towards deviation of object values in the cache from that
stored on the server side. Therefore, approximate caching solutions may impose
excessive overhead on servers when there is a large number of clients, and are
better suited to applications with a small number of clients and servers.

Several recent works in approximate caching aim to provide greater flexi-
bility to both clients and servers and to reduce communication overhead when
bandwidth is limited. Research reported in [36] presents an adaptive policy for
servers to bound the deviation between objects at servers and client copies. For
each object, servers set a window bounding its precision. When the window
exceeds a client’s preferred degree of precision, the client must request a fresh
object from the server. When the server value falls outside this window, the
server must push the update to clients. The authors propose techniques for
servers to automatically adjust the window size to minimize contacts between
clients and servers. This approach is an effective way to reduce communications
between clients and servers, but requires considerable storage and computational
overhead at the server.

In [37] the authors consider synchronizing a set of cached objects when both
cache-side bandwidth and server-side bandwidth may be limited. Servers coop-
erate with clients when determining which objects to refresh, and both clients
and servers can adjust the deviation of a cached object when bandwidth is lim-
ited. This solution is appropriate for applications such as sensor networks where
there is a finite number of clients and bandwidth is limited, but would not scale
well to wide area networks.

11

2.3 Caching in other contexts

For completeness, we briefly present caching in other contexts, namely materi-
alized views and distributed databases and filesystems.

Research in the area of materialized views, e.g., [4, 21, 24] precomputes
answers to database queries to reduce query execution time. Queries can be
answered using precomputed views, which is faster than querying the underlying
database. As in web caching, a key challenge in materialized view research is
keeping the views fresh when updates are made to the underlying database.
However, the challenge is to reduce the computational overhead of recomputing
views, rather than to reduce network latency to clients. This research typically
assumes full knowledge of updates to the underlying database, i.e., push-based
consistency. Therefore, they do not address the issue of how often to check for
updates. Further, since a single database has a finite number of materialized
views, scalability to thousands of clients is not a concern.

There is a considerable amount of research in caching and cache consistency
in distributed filesystems [25, 34], client-server databases [18], and distributed
shared memory [27]. In all of these areas, caching is typically performed on a
relatively small number of machines connected by a high bandwidth network.
Thus, this research does not consider the challenges of scaling to a large number
of clients and limiting bandwidth consumption on wide area networks that we
consider in our work. Further, in distributed databases and filesystems clients
can both read and write to cached copies. Thus, this research typically requires
concurrency control mechanisms with a high communication overhead. In con-
trast, in wide area applications updates occur only at the server and client copies
are read-only.

3 Problem Definition

We start with describing a pull-based model for wide area data delivery and
explicitly state our assumptions. We then present the optimization problem.

3.1 A Pull-Based Model

In a pull-based model, clients request data objects from servers. In this paper,
we use the term client to refer to either an individual user or a proxy, e.g., a
shared cache or a publish/subscribe service that pulls from multiple sources. We
focus on objects that can only be pulled, and therefore, clients need to develop
policies to determine when to pull data. Consider the time period [0, 7], and let
{pi}?_, represent the times the client probes the server for an object. At each
probe i, the client is synchronized with the state of the server at the time of
the probe p;; the information is available immediately. At subsequent probes,
the client is informed of the up-to-date state at the server, e.g., U(p;, pit+1), the
number of updates during the interval (p;, pi+1]- We define py = 0, and require
that 0 <p; <ps <.--<p, <T. We note that we assume that all updates are

12

of equal importance to the client. Research in [38] introduces other parameters
such as urgency which differentiate the importance of updates.

A client can specify constraints or objectives for optimization along the fol-
lowing three dimensions:

Freshness dimension: The freshness dimension indicates the tolerance of a
client towards obsolescent data. We assume that this dimension is specified
in terms of a threshold on the expected number of updates, since a client
can only estimate the number of updates. Recall that a client can compute
the expected number of updates, given some update model, as discussed
in Section 4. Given a threshold 6, the freshness constraint is met if for
two consecutive probes at times p; and p;41,

E[U(pi,piz1)] <0

This means that a user can tolerate up to 6 expected updates that occur
at the server side during the interval (p;, pit1]-

Latency dimension: The latency dimension indicates the tolerance of a client
when it comes to waiting for the data. On the extreme, zero latency
tolerance results in a latency constraint that requires the data to be present
whenever requested. Such a constraint, marked L = 0, is typically handled
by pre-fetching methods to ensure availability. As an example, one may
consider the availability of emails in a mailbox upon accessing it. In less
strict scenarios, a cache can determine whether to service a client from
the cache (assumed to have zero latency) or to request a fresh copy from
the server with some upperbound on the latency. In our research, we
simplify this constraint; a client is willing to accept indefinite latency,
marked L = oco. An example for the latter may be that of web browsing.
Optimizing for minimum latency has been handled elsewhere [6].

Resource dimension: The resource dimension indicates the amount of re-
sources a client may devote to pull data. For example, a politeness con-
straint [17] sets an upperbound on the number of pull requests to a single
source in a time interval. As another example, consider bandwidth con-
straints [38] which considers an upperbound on the total number of pull
requests to all servers.

Each of the above dimensions may be either a constraint or a target of
optimization. For example, in [17], the resource dimension is considered to be
a hard constraint, while the freshness dimension is the target of optimization.
The latency dimension was not considered at all.

3.2 Optimization Problem

Let r = {r;}7, represent a set of client requests. Let p = {p;}}.; represent
the (times of) probes to the server. The goal of our optimization is to minimize

13

n, the total number of probes to the server, subject to freshness and latency
constraints. The freshness dimension is considered a hard constraint. For the
latency dimension, we consider two variants. In the first, latency is not a hard
constraint and we assume that client requests may be satisfied either from the
cache or from the server. By minimizing n, the number of probes to the server,
we also minimize latency. For this variant, since some or all of the client requests
may be served from the cache, it follows that the (times of the) probes are
synchronized with the client requests, and the set of probes p C r and n < m.
In the second, latency is a hard constraint and all requests must be satisfied from
the cache (Latency =0). The goal is to ensure that at all times, independent of
when the actual client requests are made, cached objects satisfy client freshness
constraints. This is needed since we assume we cannot predict when a client
will request an object and all requests must be served from the cache.
Formally, we address the two following optimization problems:

min n
S.T. V]. S 7 S TL,E [U(piypi—i-l)] S 9, (1)
L=x
or
min n
S.T. V1 <4 <n,E[U(pi,pi+1)] < 6, (2)
L=0

Problem 1 is a caching problem and determines the relevance of current cache
content with respect to a specific client request and its freshness requirement.
Since the set of probes p is a subset of the set of requests r, this formulation
ensures that for any request r; where p; < r; < piy1, E[U(pi,7;)] < 6. Note
that the case (p; < rj < p;j41) corresponds to request r; served from the cache
with no probe to the server, while the case (r; = p;11) corresponds to request
r; being served by a probe to the server. Problem 2 is a prefetching problem,
in which the schedule of probes must ensure that user freshness constraints are
always met by all objects in the cache.

In Section 6 we present two policies AggHist and IndHist; each can provide
provide an optimal solution to problems 1 and 2. However, we note that our
optimal solution only provides a schedule for the expected number of updates.
When the actual behavior of the update pattern deviates from the expected
number of updates, then these solution may no longer be optimal. Our experi-
ments, presented in Section 7, further show that the solutions corresponding to
the AggHist and IndHist policies exhibit better performance on real data traces,
in comparison to existing solutions in the literature.

14

4 Modeling of Updates

Our research assumes that objects can only be pulled and therefore, we need to
be able to estimate the freshness of a copy of an object. This, in turn, depends
on our ability to model updates. Estimation typically uses knowledge such as
past updates over some period of time. Both update frequency and the presence
of a cyclic (i.e., repetitive over time) pattern in an update process can vary con-
siderably for different objects. Some objects may be deterministically updated
at the same time every day, some may experience completely unpredictable up-
date patterns, and some may lie in between these two extremes. Objects that
exhibit cyclic update patterns can be more easily modeled than objects whose
update patterns vary randomly, and are therefore unpredictable.

In this section, we provide a theoretical framework for modeling updates.
We start by defining update times as a stochastic process, which repeats itself,
i.e., it is cyclic, while allowing time-based variations, which we denote as bursts.
A history is then defined as the update arrival intensity over time. Using update
history, we classify update instantiations based on how well they fit with the
model, separating cyclic instantiations (which fit the model well) from acyclic
instantiations (which fail to obey the model), the latter containing bursts.

Section 4.1 provides the basics of the update model. This section is based on
[20] and is given here for completeness sake. We then provide a method for es-
timating model parameters using update instantiation (Section 4.2). In Section
4.3 we classify update instantiations according to the ability of some history to
accurately model the instantiation. Throughout this section we illustrate our
techniques using a real-world data trace (1998 World Cup website [3]). Details
of the trace, as well as two other data traces are in Section 7.1.

4.1 A Model for Cyclic Updates

Models, in general, are an idealized representation of a process. To be useful, we
wish to make accurate predictions regarding the timing of updates to objects.
This section introduces a model, based on [20], for cyclic updates. The model
assumes a compound nonhomogeneous Poisson process with a cyclic intensity
function. Our decision to use a Poisson process stems from the well known fact
that Poisson processes model a world where data updates are independent from
one another. In data sources with widely distributed access, e.g., incoming e-
mails, postings to newsgroups, or posting of orders from independent customers,
such an independence assumption seems plausible.

We next describe the model in three steps. First, we describe a Poisson
process with nonhomogeneous update intensity (which we denote history). We
then generate the compound nonhomogeneous model. Finally, we provide the
model for the cyclic intensity function and provide a compact representation of
a history.

We summarize all the symbols used in this paper in Table 1. Note that some
of these symbols will be introduced later in the paper and should be ignored for
now.

15

O ={oi}], a set of updateable objects

T a stochastic process representing updates arrival

A(t) history (instantaneous intensity function)

J time subsets

H= (-, X) compact history representation

m={t;};2, an instantiated sequence of update events

T random variable, representing the inter-arrival time between consecutive update events
t_refresh time a cached object was last refreshed at the server

tlastmod last known modification time of a cached object

t_request time of the latest client request for an object, for the caching problem
t_next_refresh | next time an object should be refreshed, for the prefetching problem
a tuning parameter of TTL policy

[tuning parameter of history based policies

Tind threshold for Adaptive IndHist/AggHist policy

Thurst threshold for Adaptive IndHist/TTL policy

Table 1: Summary of symbols and their meanings

Let O = {0;};_, be a set of n updatable objects (e.g., a web page) and let T
be a nonhomogeneous Poisson process [41, 43] with an instantaneous intensity
A: R — [0,00), representing update events to O. The number of update events
occurring in any interval (s, f] is a Poisson random variable with expected value
E[U(pi,piy1)] = fsf A(t)dt. We call A(t) an update history (or simply history)
of O.

To illustrate the concept of non-homogeneity, consider Figure 1. Figure
1(a) shows the changes to the intensity of an arrival rate over a period of one
day, using a piecewise-constant model, as will be discussed shortly. Figure
1(b) provides a pictorial representation of a constant arrival rate (i.e., A(%)
is equal to a constant A > 0 for all t), as is the case with a homogeneous
Poisson model. Figure 1(c) and Figure 1(d) demonstrate the accumulation of the
expected numbers of updates over a period of one week. While the accumulation
for the homogeneous Poisson model is linear over time (since fsf Adt = A-(f—9)),
the accumulation in the nonhomogeneous case changes with fluctuations in the
arrival intensity A(%).

The last component of the proposed model involves cyclic modeling of a
history, i.e., the update intensity function. Such modeling assists in predicting
future update events. Given some length of time @, such as one day or one
week, suppose that the intensity function A(t) repeats every @ time units, that
is,

At) = Mt —Q[t/Q]) 3)

for all t € . For A\(t) that satisfy the constraint in Equation 3, we say that the
history A(t) is cyclic.

As an example of the proposed cyclic model assume that the interval [0, Q)
is partitioned into a finite number of subsets J = Ji, ..., Jk, with A(t) constant
throughout each Ji, k = 1,..., K. Each J; is in turn composed of a finite
number of half-open intervals of the form [s, f). For instance, in Figure 1(a)
Q is one day and k = 7. Table 2 shows the A values for each subset. Such a
process is dubbed recurrent piecewise constant (RPC) [20] and is a simplified

16

UPdate Intensity (Per hour)

& 8

Time of Day

UPdate Intensity (Per hour)

30

25

20

Time of Day

[©)

(b)

ExPected Number of UPdates

ExPected Number of UPdates.

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00

Time of Day

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 ~0:00

Time of Day

(©

Figure 1: Homogeneous vs. nonhomogeneous Poisson models.

| Time

| A per hour |

U

0-7

23.81

Jo

7-10

52.07

J3

10-14,22-23

83.40

J4

14-15

98.53

Js

15-17

65.23

Je

17-19

84.27

Jr

19-22,23-24

35.40

(d)

Table 2: An Update History (H = (T, X))

17

nonhomogeneous Poisson process, since A(t) is no longer continuous. Cyclic
histories can be represented compactly as A(t) in the [0,Q) interval. In the
case of the RPC model above, a history is modeled as (H = (J, X)), a vector
representing the effective A value for each time fragment.

Let T'(i) (1 < i <n) be n intervals, defined by the RPC model. Without loss
of generality, assume that time s falls in interval 0 and time f falls in interval
n. Therefore, whenever n > 0, we can compute E [U(p;, pi+1)] to be

E[U(pi,pi+1)] =
n—1

(UB(T(0)) —5)A(0) + i ((UB(T (4)) = LB(T (i))) A(i)) + (f = LB(T (n))) A(n) (4)

where UB (T (i)) and LB (T (i)) represent the upper bound and lower bound
of T (i), respectively.

Determining @ and J can be performed using a variety of methods, ranging
from eye-balling to sophisticated statistical methods such as statistical process
control (SPC) and change-point theory. In earlier experiments on a variety of
data sets, we show that the statistical validity of the model was resilient to
minor changes in the length of () or the boundaries of the various intervals in
J.

4.2 Estimating Histories

Let 7 = {tj};il be an infinite sequence of update times, representing an in-
stantiated sequence of update events to O. Also, let T be a compound nonho-
mogeneous Poisson process with a cyclic history A(¢) in the [0,Q) interval, as
described above. Model fitting is the process of estimating a history A(t) for any
t > 0 using 7' = {t; }?:1 C 7, partial instantiation of consecutive update times
in [0, Q). In this section we provide the details of the model fitting process for
the RPC process. In what follows we assume, for simplicity sake, that for all
1 <j < kthereisnot; <t < tjyq such that ¢ € 7 and ¢t ¢ 7'. For estimat-
ing histories using incomplete update time sequences, the interested reader is
referred to [13].

Recall that the RPC process is constructed from intervals in which X is
held constant, i.e., a homogeneous Poisson model. For such a model, it is well
known that the inter-arrival time between any two consecutive update events is
exponentially distributed with A. Let T be a random variable, representing the
inter-arrival time between two consecutive update events. T ~ exp(}) and the
expectation of T is

E[T] =5 (5)

Using Equation 5 we can now estimate A by averaging inter-arrival tlmes as
follows. leen T , one can compute the sequence of inter-arrival times 7 =
{t; — j_l}j:2. Given J,, asubset of [0, Q), and 7,,, = {t; — t;_1| {tj—1,%;} C Jm}

18

one can estimate A, using Equation 5 as follows:
- 1 1
m = = =
E[T] avgycs, (tj —tj-1)

since average is the unbiased estimator of E [T7].

An RPC model is essentially static over time intervals significantly longer
than its period (). Real-world processes may exhibit a combination of cyclic
behavior and long-term changes, such as the gradual growth of a customer base
or a sharp lasting rise in the popularity of a discussion topic. Thus, it would
be useful to detect when the RPC model should be revised and refitted. The
full methodology of model adaptation involves sequential decision making and
process control techniques, which are beyond the scope of this paper, yet can be
handled by advanced statistical mechanisms, as developed in statistical process
control (SPC) and change-point theory. In these fields, problems of detection
of changes (monitoring), estimation of the current process parameters (filter-
ing), and identifying the change points and regimes (segmentation) have been
tackled in numerous application areas, including industrial quality control, au-
tomatic fault detection in control dynamical systems (e.g., automatic pilots and
robotics), and segmentation and pattern recognition of sound and image sig-
nals, e.g., [35, 44, 30, 40, 42, 33] and numerous references therein), and can be
adopted in our case. The rich machinery supplied by this literature can be used
to develop and implement a powerful, data-driven, and computationaly conve-
nient methodology for monitoring the arrival rate A and identifying its change
points, regimes, and intensity levels. However, such a treatment is beyond the
scope of this article.

4.3 Cyclic and Acyclic Update Instantiations

In this paper we propose adaptive pull-based policies based on history. In order
to adapt, we need to be able to classify update instantiations and the policy
which works best for each type of instantiation. Having introduced the cyclic
update model, an obvious classification is to identify those instantiations that
conform to the cyclic model and those that do not follow the model. We denote
the former cyclic and the latter acyclic. One method of identifying cyclic vs.
acyclic instantiations is by using hypothesis testing (e.g., the one provided in
[20]) on a subset of the instantiation.

The usefulness of such a classification depends on the application domain. In
some cases, a strict adherence to the model is needed to achieve good prediction.
In other cases, even with acyclic instantiations reasonable prediction can be
achieved. We use the World Cup 1998 update trace [3] to illustrate. The data
set consists of all the requests made to the 1998 World Cup web site between
April 30, 1998 and July 26, 1998. We report on 15 days of updates that occurred
during June 10-25, 1998. In these 15 days there were 15,851 update times of a
total of 5,507 objects. 255 of these were updated at least 10 times (172 cyclic,
83 acyclic). We describe our preparation and analysis of this trace in detail in
Section 7.

19

M

-
.
o

N S]

s

X By
R I

180 : e :
BEEER]

180 g R
f‘% ;et;g}(- ™ iﬁ’f
O A .

il
e

.53
S B ot Bl
AT

e

Lia'd

B

1205 * % % &
B E . :
T100[=z e [g W e,
Q. & L 3 3 ?‘E
= e % i o ox
O 80y« 3 ;.g--;] &.%x
B0 o My o e
W, = = ; et i
40—,&%»&"*‘;&;- = e
PR e e
I e T
0 ::':::-.-:: e TR R e oo e | g
0 1 2 3 4 5 12 13 14 15

Figure 2: Cyclic update instantiations in the 1998 World Cup trace

Figure 2 plots the updates to cyclic objects that were updated at least 10
times in the 15-day trace period (172 objects total). In this figure, the x-axis is
the time of day within a 15 day window, and each value on the y-axis represents
a distinct object.

Figure 2 shows objects that exhibit close-to-cyclic behavior that is repeated
daily. By “close-to-cyclic” we mean instantiations that seem to have some order,
but cannot be validated statistically to fit with the proposed cyclic update
model. In this case, objects were updated throughout the 15 days and it can be
observed from Figure 2 that many of the objects are updated at the beginning
of each day. As an example, the rectangle in the graph that spans from day 3 to
day 9 in the graph highlights an object that experienced cyclic update patterns
over this period. The object has a similar number of updates each day, and all
updates occurred towards the end of the day. These objects may correspond to
pages that provided daily updates on World Cup scores and events.

Acyclic instantiations can be modeled as a superposition of two separate
instantiations, one of which is cyclic and the other generates a burst to the
cyclic instantiation. Given an acyclic instantiation 7, modeled by a stochastic
cyclic process T with an instantaneous intensity A : ® — [0, 00), a burst occurs
at time ¢t if an update in 7 at time ¢ cannot be predicted by the history A(t). At
the extreme, the cyclic instantiation is defined by A(¢) = 0 for all ¢, indicating
no pattern. However, in other cases, it may become beneficial to identify the
cyclic pattern of a acyclic instantiation and then identify bursts.

Modeling acyclic instantiations as a superposition of instantiations has sev-
eral conceptual benefits. First, it separates a situation of temporary bursts from
a permanent shift in the update model. The former has a temporary impact
while the latter introduces a lasting change in the model. The use of superposi-

20

tioning allow us to model bursts by adding short-term update model on top of
an existing update model. Also, we have assumed that bursts are unpredictable.
Therefore, we cannot apriori identify when a burst starts or how long it lasts.
In future research we shall discuss extensions to the model, in which bursts
occur in response to external events and can therefore be predicted. Again, us-
ing superpositioning, one can estimate the expected impact of a burst. Finally,
superpositioning extends nicely to situations in which updates occur in static
data sets, where no updates are expected. Modeling it as a superposition of a
null update model (i.e., no updates) with a short-term burst of updates, avoids
the nead to treat such situations separately.

Updates to bursty objects

Object

4o

20

o

i R : F ST] : i :
o O M e emone sMOX MR XB R XX X XX K MO0
O OPORCH MM GO W MM N MM K K L X L
Ty R prAn WRR AR A !

00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Dav

Figure 3: Acyclic update instantiations

Figure 3 shows acyclic update instantiations in the World Cup data trace
with 10 or more updates (83 objects total). In this trace, acyclic instantiations
have most of the updates on the same day, and few updates before or after the
burst (this corresponds to the extreme case where the cyclic update instantia-
tion is defined by A(¢t) = 0 for all ¢). These instantiations may correspond to
information on a specific World Cup event. The box indicates an example of a
burst of updates. As an example, consider the score of a match. Many updates
to the object occur on the day of the match, but few updates occur on other
days.

Figure 4 illustrates an acyclic instantiation that is the result of superimposed
burst over a cyclic instantiation. We generated this pattern synthetically by
merging 55 cyclic objects from the World Cup trace with 55 bursty objects (we
describe this in detail in Section 7.2.1). The arrow indicates an example of a
bursty period.

Identifying bursts is far from being an easy task. The task of identifying
bursts is different from the task of model adaptation mentioned above. Bursts

21

Bursty over cyclic update patterns

x x X x x XX
Xx R xix % o=
x XX x 3
Wx x x x XX x o _x mex X
x x X -k
50+ % x % ix s xox
X'x x K eix i X mx ax %
x X = % o0
x x o x F-+Y H
xx ok oox o xox OX x x % x Tx xom
% H LIS % % % XX
OB O X ix =" XX xR
X Sx x o ox_ om X x o ox x x
x x R ix o x i wx x
X x x x WX X
40% x x x X0 * : .
x o X N R XU O I x
o om e X K o X e x P T A
xx g X Kkl X% XX Xx X Xx &%
x B x x o
o) x = x x X Xx x X X%
a Xx s ok X X % x o ix o&x
K5 xx %
P % 3 000
5] oot X X
S 30r F T o e Zx D me xR
XX %K PR SN Xooxmex W
B R DK 00K 000K 000K MK XX X XK X 0K KX K XA RRXORXORK
o g F-oiie Rl S S e
o) X x =) x
X o« X x = x
oo xS S e e K xooa om0 o MoK
ok X X X ook XX =
Xk me MK e okt ool pe e o mi e e X
O WO B R S K
20+ P B o B T M R N KK
o % Sk XX ek
o ook X i X% Foo i X XX
$X K e XX K O XXX X K e
X X x Xowx X % xR
Pt x 00 o St S pooc XX X
B mor onk X sove orde con et s RS om . ook 0ok, MK ok
S X VR TRy Wy Xx %K x 0% 0, 0 W R
X TomX X _x X ¥ ok X
Ao ok x ORI ek
10F % = X x gk x LRI -
200 Jomen oemom < xomee oG owKHOOC T x5k Xk x| x ek
B e e e X% X X X xx 0 K
Sok mcc oo x a0k oo Somoo x ok x Sumon gmox S x e Kk xox % K Tk wx
OIS OB OBR O R X PO IIOOTIK. Hoe XK XXX X X Hx X
OO MO V0K 9060 RO R 0K R 0K WL 000K 008 om0k
o T me ¢ ok B R e e T S P
BB Mo ook mog omog wx X 3 xR XX X % %
oot TR R TR TR MR % & T X TR Kk kX,

Figure 4: Bursty over cyclic update instantiations

may span a short time period, so statistically validated changes may not be
useful here due to the relatively small amount of available data. Also, we build
histories from non-deterministic data, and therefore minor deviations from what
is expected according to a history H can be easily attributed to normal model
variations rather than a burst. Therefore, we look in this paper into methods for
identifying bursts. In Section 8.2.1 we explain the trade-offs in various methods
for identifying bursts and justify our method of choice.

5 Architectures

This paper introduces several policies (to be presented in Section 6) that es-
timate the freshness of object copies using the update instantiation or history
presented in the previous section. A challenge to implementing any such pol-
icy is determining where computation should be performed, i.e., at the client,
server, or an intermediate proxy. In this section, we present two architectural
approaches to implement pull-based freshness policies that use history. We note
that both of these architectures require minor changes to servers, but fewer
changes than support for push-based policies. These architectures are relevant
for all of our motivating applications including web caching, source monitoring,
and caching for mobile clients [5]. These alternatives differ by both the required
storage and computational overhead for both clients and servers. Both archi-
tectures are suited to both the caching problem and the prefetching problem
defined in Section 3.2. In the following discussion, the term client refers to either
a cache on an individual client machine, (e.g., a mobile device) or a client-side
proxy cache. The term server refers to either a server or a server-side proxy.

22

In the first architecture, client-side, the majority of the computation is done
at the clients, while in the second architecture, server-side, the computation is
done at the server. Both of these architectures are straightforward to imple-
ment by encoding the appropriate information in the HTTP headers of requests
and responses. Support for either of these architectures requires only mutual
agreement between the participating clients and servers and does not require
any changes to the HTTP protocol. Servers and clients that do not support
update histories will simply ignore the headers. Thus, both of these architec-
tures can be deployed incrementally by any server or client that is willing to
support history-based policies and will not affect any clients or servers that do
not support such policies.

5.1 Client-side

The client-side architecture allows clients to maintain histories locally and use
history as they see most appropriate for their applications. In this architecture,
servers cooperate and piggyback history to their responses to client requests, and
clients can choose how to use this information to estimate object freshness. This
increases client flexibility at the cost of increased storage and computational
overhead.

The client-side architecture works as follows:

1. The client requests an object from the server.

2. The server responds with the requested object and piggybacks a history
in the response header.

3. The client caches the object and stores its history.

4. For problem 1 (caching), when the object is requested, the client deter-
mines whether or not to validate the object. The client can choose to use
one among multiple policies to reach a decision. For problem 2 (prefetch-
ing), the client computes the time of the next refresh using some policy,
and refreshes the object at the appropriate time.

The client-side architecture is useful when many individual users share a
single cache, e.g., a client-side proxy cache, and can easily support users with
diverse preferences with respect to recency of data [6]. This architecture also
gives clients greater flexibility to choose how to use histories to estimate up-
dates, and can support adaptive policies (discussed in Section 8) or modeling
techniques other than those described in this paper.

5.2 Server-side

In the server-side architecture, the server cooperates by computing expiration
times of objects in response to a client request. The client does not need to
store update history information or perform any additional computation. This

23

architecture is particularly attractive for clients caching data on mobile devices
with limited power, bandwidth, and cache space. We note that this architecture
could also be implemented using an intermediate proxy to store update histories
and perform the computation to reduce loads on both clients and servers.

The server-side architecture works as follows:

1. The client requests an object from the server. It can optionally include a
parameter, specifying a policy and its desired parameter values in HTTP
header.

2. The server computes an expiration time for the expected object using
history and includes this expiration time in its response to the client’s
request.

3. The client caches the object. For solving Problem 1, if the object is re-
quested before the expiration time, it is served from the cache, otherwise
it is validated at the remote server. For solving Problem 2, the client
refreshes the object at the time computed by the server.

The server-side architecture allows clients to benefit from improved accuracy
of estimating updates to objects without any added storage or computational
overhead. However, since history is not available to the client, the client has less
flexibility in determining which policy to use, e.g., it does not have sufficient
information to decide on whether a burst occurs.

6 Pull-Based Freshness Policies

We describe three policies for estimating the expected number of updates to
objects and scheduling probes to the server, both to sove the caching problem
and the prefetching problem. We use the term refresh to refer to any probe of a
server to check if an object has been updated, and if so, to download the object.
A refresh can be either a validate or a prefetch. A walidate refers to refreshing
cached objects in response to a request for the caching problem (Problem 1). A
prefetch refers to proactively prefetching to refresh cached objects (Problem 2).
The computation to estimate the expected number of updates can be performed
either at the client-side or the server-side for all three policies and for both
problems.

The first policy is based on TTL [10, 22], a widely used heuristic. We develop
two new policies, AggHist and IndHist. AggHist and IndHist are inspired by
existing work in divergence caching [26] and history-based modeling [20]. All
three policies utilize a (different) history model. The specific choice of history
model affects the accuracy of estimating the expected number of updates. We
develop algorithms for each policy (history model) for both the caching problem
and the prefetching problem. We show that the algorithms are optimal with
respect to the specific history model (and its estimation). We note however
that since the actual pattern of updates may deviate from the model prediction,

24

all these algorithms may not be optimal for real traces and we compare their
behavior against three real data traces.

We use ﬁag to denote an aggregate history model (AggHist policy) and ﬁind
to denote an individual history model (IndHist policy). Hina is derived from
updates to a single object. ﬁag is derived from updates to a set of “similar”
objects, where similarity depends of the update patterns of the objects. ﬁind
may be more accurate in forecasting updates (although there is a danger of
over-fitting), yet using it can be expensive. The overhead for the server involves
maintaining Hingfora potentially large number of objects as well as maintaining
indices to rapidly access Hjna 50 as not to delay data delivery upon receiving
a client request. Also, if all updates to individual objects are sent to a client
using a client-side architecture, the amount of storage overhead to any object
sent to the client may be excessive. Furthe_y, the client needs to analyze the
data (online) to determine the next probe. H,, is a less costly alternative both
with respect to storage overhead and computation by the client.

6.1 Time-to-Live (TTL)

Using only the time an object was last modified, clients or caches can use TTL,
a pull-based policy widely used in practice. Recall that we use the generic term
TTL to refer to adaptive TTL [22]. TTL estimates how long an object remains
fresh as a function of its last modification time. Any object that is estimated
to be stale must be validated. TTL can be tuned using a parameter «, which
is typically a real number between 0 and 1. If an object was last refreshed at
the server at time trcfresn, and was last modified at time tj45¢mod, its TTL is
estimated as:

TTL = t’refresh + ax* (tref’resh - tlastmod) (6)

TTL uses a degenerate form of history, in which the time in between last
modification and current time (¢refresh — tiastmod) S€rves in estimating the ex-
pected time in between updates. Given TTL, the expected interarrival time is
computed to be TTL — tj4stmoq- This time serves in designing refresh policies
as will be discussed next. For the ensuing discussion, recall that 6 is an upper
limit on the expected number of updates.

For Problem 1 the TTL policy based probing algorithm is as follows:

Given an object o that was last refreshed at ¢,c¢resn and requested at time
trequest, and a threshold 6, use Equation 6 to compute TTL. If w >
0, i.e., the TTL has expired, validate the object.

For Problem 2 the TTL policy based probing algorithm works as follows:

Given an object o refreshed at time ¢,¢fresn and the time #454m0q Of the last
update before trefresh; calculate tnezt_refresh = trequest + H(TTL - tlastmod);
and refresh o at tpegt_refresh-

The optimality of these policies is ensured by the use of # as an upper bound.
The first policy will not probe the server as long as the estimated number of
updates is less then 6. The second policy will probe the server as soon as the
estimated number of updates is 6.

25

Tuning the a parameter is left to the designer discretion. Common practice
utilizes small o values. Smaller values of a generate more conservative TTL
estimates, which improve data freshness, but increase the number of validations.
To understand better the reason for this gap, recall that TTL is modeled as a
history-based policy, where the interarrival time between updates is computed
as TTL — tjgstmod, using a single observation. Clearly, such an estimation
is extremely inaccurate. To compensate for the high variability of estimation,
more conservative profiles are sought (using a < 1). Our hypothesis, which
was validated in our experiments as well, is that by using a more conservative
approach, many refresh activities are performed in vain. This is because the
variance of the estimation is symmetric, which means that many interarrival
times are actually higher than TTL — t;45tmod-

6.2 Aggregate History Based Policy (AggHist)

The aggregate history based policy (AggHist) uses aggregate history (I;Tag =
(T, X)) of a set of objects. To estimate the update pattern of an individual
object from the aggregate update history, servers scale the aggregate A values
by the relative fraction of updates f, (out of all updates to O) that occurred to
0.

For Problem 1, the AggHist policy works as follows:

Given an object o that was last refreshed at ¢,¢fresn and requested at time
trequest, the aggregated history ﬁag = (f, X), the fraction of updates of 0o € O
with respect to the total number of updates to O, and a threshold 6, use Equa-
tion 4 to compute the expected number of updates to the object since trefresn. If
the expected number of updates exceeds 6, validate the object.

For Problem 2, the AggHist policy works as follows:

Given an object o refreshed at time ¢,.f,¢sn, the aggregated history ﬁag =
(f, X), the fraction of updates of o € O with respect to the total number of up-
dates to O, and a threshold 6, use Equation 4 to calculate the time tpet_refresh
when the expected number of updates will exceed 0, and refresh the object at time
tnezt_refresh-

Similarly to the TTL policies, the optimality of AggHist policies is ensured
by the use of 8 as an upper bound. The first policy will not probe the server as
long as the estimated number of updates is less then . The second policy will
probe the server as soon as the estimated number of updates is 6.

As an example, we illustrate the policy for solving Problem 1 on the World
Cup trace. Table 2 provides aggregated history of all cyclic objects. Suppose
an object o € O is cached at 1:00 and requested at 8:00. We use the A values
from Table 2. If 1% of all updates at the World Cup site occur to object O,
i.e., fo= 0.01, the corresponding A values for the intervals from 1:00 to 8:00 in
Table 2 are scaled as follows:

Time [1:00 - 7:00]: 23.81 * 0.01 = 0.2381

Time [7:00 - 8:00]: 52.07 * 0.01 = 0.5207

The expected number of updates, using Equation 4, is:

26

A1 * 6 hours + A\; * 1 hour = (0.2381 * 6 hours) + (0.5207 * 1 hour) = 1.95
Therefore, if for example the threshold § = 1, the object will be refreshed.

6.3 Individual History Based Policy (IndHist)

The individual history policy (IndHist) uses the individual history (Hing =
(T, X)) to estimate the freshness of an object.

For Problem 1, the IndHist policy works as follows:

Given an object o that was last refreshed at ¢,c¢resn and requested at time
trequest, the individual history Hina = (f, X), and a threshold 6, wuse Fquation
4 to compute the expected number of updates to the object since trefresn- If the
expected number of updates exceeds 6, validate the object.

For Problem 2, the IndHist policy works as follows:

Given an object o refreshed at time t,¢fresn, the individual history I_fmd =
(f, X), and a threshold 6, wuse Equation 4 to calculate the time tnept refresh
when the expected number of updates will exceed 8, and refresh the object at
time tnewt_refresh-

Using the same arguments as given for TTL and AggHist, IndHist policies
are optimal. As an example to the useage of IndHist policies, consider updates
to a single object in the World Cup trace over the 8 day period from June 10-
June 17. During this 8 day period, the object had 1 update in the time period
[11:00, 12:00) (A=0.125), 1 update in the time period [12:00, 13:00)(A=0.125),
and 3 updates in [13:00, 14:00) (A=0.375). If the object was cached at 11:30
and is requested at 14:00, its expected number of updates (using Equation 4) is
% % 0.125 4+ 0.125 + 0.375 = 0.5625.

6.4 Discussion

We briefly discuss the complexity of each of the above policies. TTL can be
computed in constant time. Assuming that the histories (H = (T', X)) are pre-
computed for both IndHist and AggHist, the complexity of both policies is linear
in the number of intervals in the history. We note that servers may also imple-
ment IndHist without pre-computing intervals, i.e., by providing a list of the
times the object was updated. This approach reduces computational overhead
at servers and gives clients greater flexibility. In this case, the complexity of In-
dHist for clients is linear in the number of updates in the history because clients
must first compute (I;T,-nd = (f, X)), then estimate the number of updates.

In most cases we believe the added computational overhead of AggHist or
IndHist will be negligible compared to TTL. Also, AggHist and IndHist are
computed only periodically and this cost can be amortized over all client re-
quests. In terms of storage costs, AggHist has a fixed number of intervals, so
its size is constant. If storage space or computational complexity of IndHist is
an issue, individual histories can be truncated or AggHist can be used.

Choosing the appropriate parameters for each of the above policies depends
on update patterns at the data source, client freshness constraints, and resource

27

constraints. Using client-side architecture (see Section 5), the client can use his-
tory information to estimate the performance of different policies and parameter
settings (as we do in our trace-based experiments in Section 7). Clients can also
adjust parameters on the fly, whenever data is insufficiently fresh or excessive
resources are consumed. We revisit this issue in Section 7.3.2 using examples
from our data traces.

7 Comparison of TTL, IndHist, and AggHist

We now evaluate the AggHist, IndHist, and TTL policies on data traces that
exhibit both cyclic and bursty behavior. We show that our proposed history-
based policies, AggHist and IndHist, are more effective than the widely-used
TTL at meeting our goal of reducing the number of contacts to remote servers
while meeting client profiles. We use trace data from two different applications,
web caching and email to evaluate these policies. The web caching trace is used
to evaluate TTL, AggHist, and IndHist for solving Problem 1, i.e., determining
when to refresh cached objects in response to a client’s request. The email
traces are used to evaluate TTL, AggHist and IndHist for solving Problem 2,
i.e., prefetching cached objects to maintain cache freshness.

We first compare TTL and IndHist on the two email traces, which exhibited
cyclic update patterns. We then compare TTL, AggHist, and IndHist on both
cyclic and bursty objects in the World Cup trace, and motivate the need for
a new class of adaptive policies, to be presented in Section 8, that can choose
among policies according to an object’s update patterns.

7.1 Data Traces

This section provides details of the two data sets we have used in our experi-
ments, namely World Cup data and email data.

7.1.1 World Cup Data

The trace data from the 1998 World Cup web site [3] contains a log of all re-
quests to the site. The World Cup site had servers in four different geographical
locations: Paris, France; Herndon, VA; Santa Clara, CA; and Plano, TX. The
entire trace consists of 1.3 billion requests made from May 1, 1998 to July 23,
1998. In our experiments we used a 15-day subset of this trace from June 10,
1998 to June 25, 1998. This corresponds to the first 15 days of the World Cup
event and includes about 570 million requests. In our experiments, we report
separate results for cyclic and bursty objects. It is worth noting that our poli-
cies do not require this classification for performing well, as will be discussed
in Section 8.2. The separation allows us to analyze performance according to
the pattern of updates. To identify objects in each category, we classified ob-
jects offline using the update histories from all 15 days of the trace, using the
techniques to be described in Section 8.2.
For each request, the trace contains the following;:

28

ClientID: Unique ID of the client making the request. Note that this may
be a proxy.

ObjectID: Unique ID of the requested object.
e Timestamp: The time the request was made.

e Size: Size of the object in bytes.

The trace does not explicitly give information on updates to objects, how-
ever, we can infer updates when an object changes size. Many apparent changes
in an object’s size, however, were caused by temporary inconsistencies at servers
in different geographic locations. Our solution to this problem was to only con-
sider an object changed when the majority of requests to the object had the
new size, and when the object had this size for at least two minutes. This
allowed enough time for updates to propagate to servers in all four locations,
to eliminate the effects of false changes due to server inconsistencies. Asa side
note, it is worth noting that such a method may fail to fully identify updates.
Nevertheless, it serves as a reasonable approximation, which is sufficient for our
needs.

In the 15-day trace, 56 million requests were for cyclic objects and 18 million
requests were for bursty objects. The remaining 496 million requests were for
objects that did not change during the 15 days, most of which were static images.
This last category is modeled as cyclic objects with A = 0 for all ¢. This type
of object requires no download during the experiment lifetime and was useless
for our experiments.

7.1.2 Email Data

Our first email trace (DBWORLD) includes email notifications of postings
to the DBWORLD electronic bulletin board. The data were collected over
seven months and consists of more than 6,400 insertions, from November 9,
2000 through June 17, 2001. Our second email trace (INBOX) is taken from
messages to a client’s inbox from March 3, 2001 - May 24, 2002 and consists
of about 10,000 insertions. We collected the data for both these traces using a
capture program (similar to the way the vacation program works on Unix) to
capture messages and process them.

7.2 Setup
7.2.1 World Cup Experiments

Our experiments with the World Cup trace follow a model of a traditional web
caching scenario. When a client requests a cached object, the cache uses the
policy to determine whether or not to validate the object. Using TTL, an object
is validated if it is requested after it expires. Using IndHist and AggHist, it is
validated if the expected number of updates exceeds a specified threshold 6.

29

We maintained separate caches for each client ID, which may correspond
to either an individual client or a proxy. For each client ID, we assumed an
initially empty cache. To simplify our presentation, we assume all clients had
sufficient space to cache their objects and no objects were evicted from client
caches during the trace period. This is a reasonable model because cache size
affects only the hit rate of the cache. Therefore, a limited cache would have equal
impact on the performance of all estimation policies, and would not change their
relative accuracy. Each experiment included a training period to gather object
update history information, followed by a test period during which we collected
data. We give the length of the training and test periods when reporting the
results of each experiment.

Recall that the World Cup trace contains both cyclic and bursty objects.
Most bursty objects in the World Cup trace had a “burst” of updates on a
single day, and few (if any) updates on other days, as shown in Figure 3. For
these objects (or any object with no history available), TTL is likely to provide
more accurate freshness estimates compared to the IndHist based policy. A
more interesting case occurs when an object that normally has cyclic update
patterns experiences a burst in updates. This could occur for example at a news
web site that is normally updated at regular intervals but experiences a burst
of updates during a breaking news event. For these objects, IndHist is likely to
do well during cyclic periods, but TTL may do better during a burst.

We modified the trace data as follows to generate such objects. We randomly
selected 55 of the most popular bursty objects with respect to client requests and
mapped them to 55 of the most popular cyclic objects (as shown in Figure 4).
In our experiments on bursty World Cup objects, we treated each bursty/cyclic
pair as a single object. These 55 merged objects exhibited cyclic update patterns
for most of the 8 days, but experienced bursts of updates on one day. These
were used for the experiments in sections 7.3.2 and 8.2.

7.2.2 Email Experiments

Our experiments with the email traces model a scenario where a client has a
locally cached mailbox, e.g., on their mobile device, that needs to be refreshed in
the background to promptly notify the client of new messages. This scenario also
applies to source monitoring applications where clients need to receive updates
in a timely manner [38], and other instances of the prefetching problem from
Section 3.2.

For the email application, we compare the TTL and IndHist policies. After
each refresh, for the TTL policy, we computed the time of the next refresh as a
function of the time the last message arrived. For the IndHist policy, after each
refresh we computed the time of the next refresh as the time that the expected
number of updates (i.e., new messages) would exceed some threshold 6. We
used the first week of each trace as a training period to gather a history.

30

7.2.3 Metrics

We use the following metrics:

e Total Validations: This is the number of times requested objects that
were in the cache needed to be validated at the remote server.

e Useful Validations: This is the number of validated objects that had
actually been modified at the remote server.

e Freshness Misses: This is the number of validated objects that had not
been modified at the remote server. These validations add unnecessary
overhead and consume bandwidth without improving data freshness.

e Stale Hits: For the World Cup trace, this is the number of objects that
were served from the cache without validation but had actually been up-
dated at the remote server.

e Average Delay: For the email traces, this is the average amount of time
elapsed between the arrival of a new message and the time it appears in
the client’s mailbox.

By changing «, 6, and other threshold numbers, we tested each policy. This
step returned a varying number of validations and average delay (for email
traces) or stale hits (for the World Cup trace). We then plotted all the results
for each policy for the same validation numbers in a single graph, producing the
graphs in the paper.

7.3 Results

Our experiments show that using either IndHist or AggHist for cyclic objects can
significantly improve the accuracy of estimates of an object’s freshness. In web
caching, improving the accuracy of estimates can increase the number of objects
served from the cache without validation, which in turn reduces costly remote
server accesses for clients and reduces unnecessary contacts with servers. (Recall
that freshness misses may be as many as 30-50% of all cache hits [15]). In email
applications, improving the accuracy of estimates can reduce the delay of new
messages appearing in a client’s mailbox without increasing the mailbox refresh
rate, which is of particular importance to mobile devices. Accurately estimating
when updates occur enables capturing important updates in a timely manner.

7.3.1 Accuracy of Estimates

World Cup Trace We first compare the accuracy of estimating the number
of updates to cyclic objects in the World Cup Trace using TTL, IndHist, and
AggHist. Each time a client requests a cached object, we compare the actual
number of updates to the object against the estimated number using each policy.
Using TTL, we estimate the number of updates to an object at time t as (t —

31

tiastmod) [(TT L—tiastmod), Where tigsimod is the last modified time of the object,
and use an « value of 0.05 (see Section 6.1), which is typical of values used in
practice, e.g, in the Squid cache [7]. We note that other values of a do not show
significantly different results, and we provide an explanation of why the a value
has little effect below. For IndHist and AggHist, we calculate the estimated
number of updates to an object as described in Section 6.

x 10
|l TTL
8 [AggHist
[IndHist

§2}
86
o
o
k]
T4
o)
€
=3
=4

2

0 -3 -2 -1 1 3

0 2
Actual updates — estimated updates

Figure 5: Comparison of three policies for Cyclic objects in the World Cup
Trace

Figure 5 compares the estimated updates to the actual value for each policy.
A value of 0 means the estimate was accurate. A positive error value means the
actual value exceeded the estimated value, and a negative value means the actual
value was less than estimated. AggHist and IndHist have nearly twice as many
accurate estimates as TTL. This shows that using histories can significantly
improve the accuracy of freshness estimates for cyclic objects.

We now explain why changing the value of a has little effect on the accu-
racy of TTL relative to IndHist and AggHist. As observed in Figure 5, TTL
frequently overestimates the number of updates because it (sometimes incor-
rectly) estimates that a recently updated object is likely to be updated in the
near future. However, a recently updated cyclic object may not be updated
again until the next cycle (e.g., the next day). Thus, for a recently updated
cyclic object, even high a values will not significantly affect the accuracy of the
estimated number of updates.

We now compare the TTL, IndHist, and AggHist policies in terms of both
bandwidth consumption and data freshness for cyclic objects. We show the
results for selected a and 6 values in Figure 6. The first observation is that
AggHist and IndHist perform significantly fewer validations than TTL, without
a significant increase in the number of stale hits. When ¢ = 0.20, AggHist and
IndHist have both fewer validations and fewer stale hits than TTL a =0.20.
The @ values can be tuned according to the latency and recency requirements of
an application [6]. As we will show in Section 7.3.2, both IndHist and AggHist
can provide comparable recency to TTL with lower bandwidth consumption,

32

Validations and Stale Hits for Cyclic Objects Validations and Stale Hits for Cyclic Objects

3000000
2500000

BTTL a=0.10 2000000 BTTL a=0.20
W AggHist 6=0.10 1500000 W AggHist 6=0.20
OIndHist 8=0.10 1000000 O IndHist 6=0.20

500000 m
0 M1

° o o © ° o o ©
& & F S & & FS
@ & NS X X N

&) é;“ &® S N (’(;“ &®

S & N S &
N S & N S
Q 2 8 Q)

((@ A) ((@

Figure 6: Comparison of three staleness estimation policies for Cyclic objects

for a wide range of a and € values. Thus, policies that consider past updates
to objects can significantly reduce bandwidth consumption compared to TTL
while providing fresher data to clients.

Email Traces We next consider the accuracy of the IndHist policy for the
email application. We do not consider AggHist for this application because the
trace consists of a single object (the mailbox). Recall that for the email appli-
cation, using IndHist we refreshed the mailbox whenever the expected number
of updates (new messages) exceeded 6. In Figure 7 we compare the expected
number of these updates per validation against the actual average number of
updates per validation. Intuitively, if the average number of updates per vali-
dation is close to the expected number of updates 6, then the model provides
a good estimate. The solid line in Figure 7 indicates the case when the actual
number of updates equals . For the DBWORLD trace, the estimated number
of updates is very close to §. While the estimates are slightly less accurate for
the INBOX trace, they are still close to the solid line for all values of 8, which
shows that IndHist accurately estimates the number of updates.

7.3.2 Number of Validations

We now report on the number of validations required to maintain a given level
of freshness.

Email Traces We first consider the DBWORLD and INBOX traces. Recall
that we use the average delay as our metric. We tune TTL by varying a between
0 and 1 and IndHist by varying 6 between 0 and 1. We plot the number of
validations against the average delay for TTL (for different « values) and IndHist

33

Comparison of estimated updates to actual for
email traces
1.4
g 129 A
o 1 A
E = g — actual = expected
28 081 N actual(DBWORLD)
2306 'Y 4 actual(INBOX)
s > /%
E 0.4 Vs
024 A
AA/
0 ! :
0 0.5 1 15
Expected updates per validation
()

Figure 7: Comparison of the expected and actual updates per validation using
IndHist

(for different € values) in Figure 8. As expected, as the number of validations
increases, the average delay decreases. The key observation is that for any given
average delay, IndHist performs significantly fewer validations than TTL. For
example, in Figure 8(a), to provide an average delay of about 300 seconds, TTL
must perform about 170,000 refreshes while IndHist performs about 80,000, i.e.,
a 47% reduction in the number of validations. Similarly, in Figure 8(b), to
provide an average delay of 500 seconds TTL performs about 50,000 validations
while IndHist performs about 20,000, i.e., a 60% reduction. Thus, IndHist
can reduce the total number of refreshes by more than half. This can provide
significant savings in terms of both power and bandwidth to clients who read
email on their mobile devices. Recall that the email traces generally exhibited
cyclic behavior. These results show that IndHist can indeed perform better than
TTL for cyclic objects.

World Cup Trace Next, we compare the TTL, IndHist, and AggHist in
terms of both number of validations and data freshness of both cyclic and bursty
objects in the World Cup trace. In the experiments for cyclic objects, we used
all 15 days of trace data. We used the first 8 days to construct histories, and ran
the experiments on the next 7 days. In the experiments for bursty objects, we
used 8 days of trace data and performed preprocessing as described in Section
8.2. We used the first 4 days to construct individual update histories, and ran
the experiments on the last 4 days. For the TTL policy, we varied a from
0.05 to 0.7, and for the IndHist and AggHist policies we varied 6 from 0.05 to
0.7. We note that a and 6 are unrelated parameters used for different policies.
However, recall that our purpose is to compare the number of stale hits of
each policy for a given number of validations. For TTL, varying « varies the

34

Average Delay (sec)

a1
o
o
o

40001

N w
o o
o o
(=] (=]

INBOX trace (b)

— TTL
--- IndHist

,,,,,,,,,,,,,,,,,,,,,

300000 400000
Number of Validations

25001

20001

Average Delay (sec)

500t

1500}

1000F !

DBWORLD trace

— TTL
--- IndHist

100000 200000 300000
Number of Validations

Figure 8: Effect of Tuning TTL and IndHist on average delay and validations

number of validations, and similarly varying 6 varies the number of validations

for AggHist and IndHist.

Further, note that for the same 6 value different

policies may perform a different number of validations (as shown below in Table

3).

5 N
x 10 — AggHist
157 --- TTL
.| IndHist
' | = Adaptive AggHist/IndHist
10r
a
T
Q
s
n
5,
0 1 15 2 . 3 35 4
number of validations v1n®

Figure 9: Effect of Tuning TTL, AggHist, and IndHist on data freshness and
validations for cyclic World Cup objects

total validations.

In Figure 9 we report on the number of stale hits given similar levels of
Note that for all values of 8, IndHist did not go beyond

2,500,000 validations and AggHist did not go beyond 3,500,000 validations. For
all three policies, increasing the total number of validations reduces the number
of stale hits. Given the same number of validations, both AggHist and IndHist

35

deliver significantly fewer stale objects than TTL. This is because the improved
accuracy of the freshness estimates of objects reduces the number of unnecessary
validations, and shows once again that using histories can perform better than
TTL for cyclic objects. This is especially true when there are relatively few
validations, i.e., higher values of a and §. For example, when each of the policies
has about 1,500,000 total validations, TTL (a ~0.5) provides ~800,000 stale
hits while AggHist (# ~0.5) provides ~500,000 stale hits and IndHist (6 ~0.3)
provides =300,000 stale hits.

Validations TTL | AggHist | IndHist | Adaptive
~ 1,000,000 | o> 0.7 0=0.7 | 6=0.5 | a=6=0.7
~ 1,500,000 | a=0.5 0=0.5 0=0.3 | a=0=0.3
~ 2,000,000 | «a=0.3 0=0.2 | 6=0.15 | a=6=0.1

Table 3: a and € values corresponding to a given number of validations for each
policy

In Table 3 we show the a and § values that correspond to an approximate
number of validations, for each of the policies shown in Figure 9. We note that
for the parameter settings of each of the algorithms, the number of validations is
approximate. The key observation in this table is that different o or € settings
for two different policies may result in a comparable number of validations.
Thus, the choice of parameter settings for a given policy should be based on the
expected number of validations or data freshness, as discussed below.

Clients can choose a 6 value according to either their desired freshness of
the data, or desired number of validations, and adjust the € value if current
settings do not meet their freshness or resource constraints. If sufficient history
is available, clients can also leverage knowledge of past performance to choose
appropriate parameter settings. In the above example, a client using AggHist
who wants a low number of validations might initially choose §=0.7. Similarly,
a client using IndHist who wants no more than 300,000 stale hits could choose
6=0.3.

A key observation is that IndHist offers an overall improvement over AggHist
because it can model the individual update patterns of objects that may differ
from the average behavior. However, individual history is not always a good
predictor of updates for cyclic objects. If there is insufficient history information
available, the IndHist policy may not be able to accurately predict when updates
will occur. In contrast, since AggHist captures the behavior of objects with
similar update patterns, it is better suited to deal with new objects whose history
is too short to yet be stable. Figure 9 compares an adaptive IndHist/AggHist
policy (described in detail in Section 8) that can combine the benefits of both
policies. This adaptive policy performs better than either policy alone. (We note
that in Figure 9 the T},4 parameter described in Section 8 is set to 0.5.) The
adaptive IndHist/AggHist policy chooses between IndHist and AggHist based
on the available history information, as described in the next section.

Figure 10 compares TTL and IndHist on the bursty objects in the World

36

x 10

4
--- TTL
-+ IndHist
al Y —+— Adaptive TTL/IndHist
12]
£
o2
o}
0
1,
0 0.5 1 1.5
Number of Validations v 108

Figure 10: Effect of Tuning TTL and IndHist on data freshness and validations
for bursty World Cup objects

Cup trace. AggHist performed significantly worse than both of these and we do
not show these results. As expected, TTL performs better than IndHist (yet
not significantly better) because it can more accurately predict when updates
occur during bursty periods. However, we expect that IndHist is more effective
in non-bursty periods. To illustrate, an adaptive TTL/IndHist policy is shown
in Figure 10; it can perform better than TTL alone because it uses IndHist
to estimate updates during non-bursty periods. In Section 8 we evaluate this
adaptive TTL/IndHist policy on both cyclic and bursty objects.

8 Adaptive Pull-Based Policies

Figures 9 and 10 illustrate that adaptive policies that can choose among multiple
policies outperform individual policies. There are several challenges in develop-
ing an effective adaptive policy. One is selecting a pool of individual policies.
The second is determining the criteria to choose (alternate) among the policies,
and the third is making sure the choice is beneficial. We present two adaptive
policies, Adaptive IndHist/AggHist and Adaptive IndHist/TTL. We note that
there are many other adaptive policies that could be used, and we do not claim
that these two are the best. Rather, our contribution is in motivating the use
of adaptive policies, and illustrating their use and benefits.

8.1 Adaptive IndHist/AggHist

We have observed that for cyclic objects, IndHist works well when there is
sufficient individual history available to predict when the object is likely to be
updated. In contrast, AggHist works well for objects with cyclic behavior, but

37

whose histories are too short to be stable. An adaptive policy can exploit both
the aggregate and individual behavior for cyclic objects.

We formalize this policy below. Recall that symbols used in this paper are
defined in Table 1.

8.1.1 Policy

Let NumUpdates be the size of the instantiation set used to estimate a history
and suppose that the number of intervals in ﬁmd is K, representing the different
intensities of our RPC model. We denote by NumSub the number of intervals in
Hna for which an update was recorded. The Adaptive IndHist/AggHist policy
is as follows: Given an individual history and a parameter T;nq, we compute
the ratio NumSub/NumUpdates. If NumSub/NumUpdates > T;nq, AggHist is
used; else IndHist is used.

The lower the threshold T;,q4 is, the more updates are required to switch to
IndHist. 75,4 serves as a measure of confidence in the individual history. If the
total number of updates to the object NumUpdates is equal to NumSub, i.e.,
the ratio NumSub/ NumUpdates = 1, then the object was updated once in each
interval of ﬁmd, suggesting insufficient history to accurately model updates
using IndHist. Therefore, T;,q should be typically restricted to be less than
1. We note that the adaptive policy is based on the ratio of NumUpdates
and NumSub and is independent of the value of K. (Recall that we discussed
choosing an appropriate K value in Section 4.2.)

Intuitively, the ratio gives us a confidence measure of how likely future up-
dates are to occur in the same intervals as previously observed updates. For ex-
ample, if an object has 10 updates and all occurred between 1:00 and 2:00, (i.e.,
NumSub/ NumUpdates = 0.1), we hypothesize that future updates are likely to
occur in the same interval, so IndHist would be a good predictor. On the other
hand, if the object has 10 updates, each of which occurred in a different interval
and only one of which occurred between 1:00-2:00 (i.e., NumSub/ NumUpdates =
1), we have considerably less confidence that another update will occur between
1:00 and 2:00.

Note that for T;,4=1, IndHist is always selected, and for T,4=0 AggHist is
selected. Clients can more aggressively choose AggHist or IndHist by varying
the value of Tj,4.

8.1.2 Results

We report on Adaptive IndHist/AggHist for different T},4 values for cyclic ob-
jects in the World Cup Trace.

Figure 11 plots the number of validations compared to the number of stale
hits. We present curves for three different values of T;,4, as well as for TTL,
IndHist, AggHist, and IndHist- 10 day (described below). We first consider the
impact of using a shorter update history or limited update information on the
accuracy of the IndHist policy. We limited the length of the history to 10 days
prior to the time the object was cached (labeled IndHist- 10 day in Figure 11).

38

15
o.. —— AggHist
q. S TTL
<o IndHist
R o IndHist - 10 day
10 | ‘mg | % Ind/Agg T=0.10
a " —— Ind/Agg T=0.50
ﬁ —o— Ind/Agg T=0.85
s
[
5,
0

1 1.5 2 2.5 3 35 4 4.5
number of validations v 108

Figure 11: Comparison of Adaptive IndHist/AggHist to TTL, IndHist, and
AggHist

Note that in contrast, the policy labeled IndHist includes all prior updates to
an object in the trace, up to all 15 days. For many objects, the IndHist-10 day
policy does worse than TTL and AggHist. This motivates the need for sufficient
history for IndHist, and shows the benefits of AggHist when there is insufficient
history available for an individual object.

Next, we compare the performance of the Adaptive IndHist/AggHist pol-
icy to IndHist (with complete update histories) and AggHist alone. Adaptive
IndHist/AggHist with Tj,4 ranging from 0.50 to 0.85 outperforms TTL, Ind-
Hist, and AggHist. When Tj;,4= 0.1, the policy performs closer to AggHist as
expected. These results suggest that Adaptive IndHist/AggHist is not very sen-
sitive to the selection of T}, 4 and any value around 0.5 that allows the adaptive
policy to switch is effective.

8.2 Adaptive IndHist/TTL

For bursty objects, the IndHist policy performs best during the non-bursty
periods, but performs poorly when objects experience bursts. Further, when
it uses a full update history, including bursty periods, it may estimate updates
less accurately after the bursty period. In contrast, TTL performs best during
bursty periods because it assumes that objects that were recently updated are
likely to be updated again soon. An adaptive IndHist/TTL policy combines the
best features of both policies, as illustrated in Figure 10.

Our adaptive IndHist/TTL policy can detect bursts and dynamically chooses
between IndHist and TTL. Thus, it can generalize well to different types of up-
date patterns, and requires no prior knowledge of whether an object is cyclic or
bursty. We first describe how we detect bursts. We then describe the adaptive

39

policy (Adaptive IndHist/TTL) which dynamically chooses between the Ind-
Hist and TTL policies depending on whether or not an object exhibits bursty

behavior. Thus, for objects with no bursts, it has comparable performance to
IndHist.

8.2.1 Burst Detection and Adaptive IndHist/TTL policy

In Section 4.3 we have defined a burst as a deviation of an instantiation from the
model. In particular, we are interested in bursts in which the update intensity
is increased. Such deviation can be detected whenever the number of actual
updates to an object is considerably higher than that approximated by IndHist.
Consider an object that is cached at time ¢ and created at time #y. We estimate
that a burst occurs when the actual number of updates in a window of size W
prior to t, i.e., all updates in the interval [t — W, t], exceeds the ezpected number
of updates. The expected number of updates is estimated by IndHist, using only
updates that occurred in [tg, t — W] prior to the current cycle.

The adaptive history policy works as follows: Given an intensity function A
for the interval (to, t - W), and * for the interval (t—W , t), a distance function
F(AA*), and a threshold Tyyrse, Adaptive IndHist/TTL identifies a burst if
FA*) > Tyurst- On each request, if f(A, A*) > Tpyrst, Adaptive IndHist/TTL
assumes a burst is occuring and uses TTL. Else, if f(A, *) < Tpurst, Adaptive
IndHist/TTL assumes a cyclic behavior and uses the IndHist policy.

We next provide a distance measure f. This was empirically evaluated to
provide a good estimation of bursty periods in the World Cup trace data. We
note that more research is needed to identify distance measures that will work
on several traces. Let the ezpected number of updates (A) in [t — W, ¢] with
respect to time t be A(W,t), and the actual number of updates (A*) in [t — W,
t] be A*(W,t). Then,

) AA*(%) if A(W,t) >0 (a)
FOWN) =9 Tyurse if A(W,t) =0 and A*(W,t) > 0 ()
0 otherwise (¢

Intuitively, condition (a) covers the case when at least one update was expected
(A(W,t) > 0). A burst occurs when the ratio of observed updates to ezpected
updates exceeds Tpyrs¢- Condition (b) covers the case when no updates were ex-
pected (A(W,t) = 0) and at least one update occurs. Note that when Tjpy,.5:=0,
this policy is identical to TTL, and when T}, =00, this policy is identical to
IndHist, thus, it is a generalization of both policies.

8.2.2 Results

We compare TTL, IndHist, and Adaptive IndHist/TTL. We evaluate the policies
on both the “combined” trace of 55 merged objects and on the remaining cyclic
objects. We ran these experiments on the first 8 days of our 15 days of trace
data. We used the first 4 days to gather history information, and report results

40

on the remaining 4 days. For comparison purposes, we also report on results
for the cyclic objects during the same period.

For Adaptive IndHist/TTL, recall that we estimate when a burst occurred
by considering the number of updates in a window W. Adaptive IndHist/TTL
will use TTL whenever f(A,A*) in a window of size W exceeds the threshold
Tyurst- In our experiments, we report results for W = 1 hour and W = 24
hours, and Tjyyrs:= 2.

(b)
Bursty objects W=1 hour Bursty objects W=1 hour

1600000 900000
1400000 800000
1200000 700000
1000000 ETTL a=0.05 600000 ETTL a=0.30

800000 [500000

600000 400000

400000 388880

W Adaptive W Adaptive
200000 | Il | | ST TL 100000 ‘l I l’ Ol | ingrisyTTL
6=0.05 6=0.30
& & £ & |OindHiste=005 & & & DindHiste=0.30
& & N NZ . \b'tr X \b’b‘ N &QI
\\’b\'\ Q’Z}\ eee' 6\ 4’0\ Q& Q;ee =)
& S s & & S
< & « % @

Figure 12: Validations and Stale Hits for Bursty objects when W=1 hour

For the TTL policy, we varied a from 0.02 to 0.7, for IndHist we varied 6
from 0.02 to 0.7, and for the Adaptive Policy we set a=6 and varied this value
from 0.02 to 0.7. We show the number of validations and stale hits for selected
values of @ (TTL) and 6 (IndHist) when W= 1 in Figure 12. In Figure 12
(a), the number of useful validations are similar for each of the policies, while
TTL has about 40% more validations. Adaptive IndHist/AggHist has fewer
stale hits than IndHist. In Figure 12 (b), the total number of validations of all
three techniques are similar. We note that Adaptive IndHist/AggHist has fewer
stale hits than TTL. It also has fewer stale hits than IndHist, and is thus better
suited to bursts.

We plot the number of stale hits versus the total number of validations in
Figure 13(a). As expected, TTL outperforms IndHist for the bursty objects.
This is because TTL assumes that objects that have been updated recently are
more likely to be updated soon, so it is well-suited during bursty periods. In
contrast, IndHist assumes that an object’s update patterns will be consistent
with its past update history, so it cannot handle bursts as well. However,
Adaptive IndHist/TTL offers improvement over IndHist, especially as the total
number of validations increases. This shows that Adaptive IndHist/TTL can
detect some bursts in updates and chooses TTL when appropriate. Adaptive
IndHist/TTL with W=24 provides fewer stale hits, and in most cases provides

41

T [T
35 . IndHist N —&— IndHist/TTL W=1 hr
N —&— TTL/IndHist W=1hr 5t \ —&— IndHist/TTL W=24 hr
3 —&— TTL/IndHist W=24hr L IndHist
N —— TTL/IndHist W=1hr 3day *
025 Y —©— TTL/IndHist W=1hr 5day 040
T \ T
o 2 o
o S
b5 n 3
1
2L
0.5 .
8.4 0.6 0.8 1 1.2 14 16 25.5 1 15 2 25 3
Number of Validations v 108 Number of Validations v 108

Figure 13: Effect of Tuning TTL, IndHist, and Adaptive IndHist/TTL on data
freshness for (a) bursty and (b) cyclic objects

fresher data than TTL for the same number of validations. This suggests that
larger values of W may be more effective at detecting bursts.

We also consider the effects of truncating update histories for bursty objects.
We consider maintaining a sliding window of individual update histories and
ignoring updates that occured outside this window. We consider windows of
both 3 days and 5 days prior to the time an object was cached. We show these
results in Figure 13 (a) for Adaptive IndHist/TTL with W=1 . The interesting
observation is that using shorter update histories makes the adaptive policy
perform better than TTL. This contrasts with the results in Figure 11, which
showed that shorter update histories caused IndHist to perform worse than TTL
for cyclic objects.

We hypothesize that shorter update histories perform well for objects that
experience bursts because they allow ignoring the bursty period. This improves
the accuracy of the IndHist policy. In contrast, shorter update histories make
IndHist perform worse for cyclic objects because they decrease the amount of
available history information.

Thus, our results show that (1) Adaptive IndHist/TTL performs better than
either TTL or IndHist alone for objects with both cyclic and bursty periods and
(2) when using histories to predict updates, it is important to ignore bursty
periods that are not consistent with the rest of the history. Ignoring bursty
periods (by using shorter histories) significantly improves the accuracy and ef-
fectiveness of Adaptive IndHist/TTL. Developing techniques to detect bursts,
and to ignore them for history construction is an area for future work.

We also compare the performance of IndHist and Adaptive IndHist/TTL on
the cyclic objects over the same 8-day period. Our goal is to ensure that Adap-
tive IndHist/TTL performs as well as IndHist on cyclic objects. We plot these
results in Figure 13 (b). The key observation is that Adaptive IndHist/TTL
has comparable performance to IndHist for cyclic objects, so it can generalize
to both cyclic and bursty objects without requiring any a priori classification of

42

an object’s behavior.

9 Conclusions

The challenge of efficient data delivery across wide area networks is becoming
increasingly important as the number and diversity of wide area applications
continues to grow. As push-based data delivery solutions are difficult to widely
deploy and may not scale to the growing number of clients, pull-based data
delivery is becoming the preferred solution for rapid and widespread deployment
of wide area applications.

In this paper we have presented a framework for pull-based wide area data
delivery, which scales to a large number of clients and servers. We have pre-
sented a model of updates to data sources using object update histories, and a
set of policies that use the model to estimate when updates occur to objects.
We have presented a set of architectures that enable deployment of our policies
with minimal modifications to both clients and servers. These include a server-
side architecture that reduces overhead for clients at the cost of flexibility, and
a client-side architecture that gives more control to clients and minimizes server
overhead. We have also presented a set of adaptive policies to cope with up-
date bursts or to estimate the behavior of objects with insufficient histories
available. Our experimental evaluation of our policies using trace data from
two very different wide area applications shows that our policies can indeed
reduce communication overhead with servers while providing comparable data
freshness to existing pull-based policies.

This work serves as a first step towards scalable pull-based data delivery
that minimizes communication between clients and servers while meeting client
freshness requirements. Future work involves a more thorough analysis of burst
detection and the identification of more adaptive policies for managing the un-
certainty involved in the use of stochastic update models when estimating up-
date events.

Acknowledgments

We thank Chris Olston for helpful comments on an earlier draft of this paper.

References
[1] R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching issues in an information
retrieval system. ACM. TODS Vol. 15, no. 3, 1990.

[2] K. Amiri, R. Tewari, S. Park, and S. Padmanabhan. On Space Management in a Dynamic
Edge Data Cache. Proceedings of WebDB, 2002.

[3] M. Arlitt and T. Jin. 1998 world cup web site access logs. Awailable at
http://www.acm.org/sigcomm/ITA /, 1998.

[4] E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in a multidimen-
sional database. Proc. VLDB, 1997.

43

(5]

L. Bright, S. Bhattacharjee, and L. Raschid. Supporting Diverse Mobile Applications
with Client Profiles. Proceedings of ACM Workshop on Wireless Mobile Multimedia
(WoWMoM), 2002.

L. Bright and L. Raschid. Using latency-recency profiles for data delivery on the web.
Proc. Very Large Data Bases, 2002.

Squid Proxy Cache. http://www.squid-cache.org.

K.S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal. Enabling dynamic
content caching for database-driven web sites. Proc. SIGMOD, 2001.

D. Carney, S. Lee, and S. Zdonik. Scalable application-aware data freshening. Proc.
ICDE, 2003.

V. Cate. Alex - a global filesystem. Proc. USENIX File System Workshop, 1992.

J. Challenger, A. Iyengar, and P. Dantzig. A Scalable System for Consistently Caching
Dynamic Web Data. Proceedings of IEEE INFOCOM, 1999.

J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness. Proc.
ACM SIGMOD Conf., 2000.

J. Cho and H. Garcia-Molina. Estimating frequency of change. ACM Transactions on
Internet Technology (TOIT), 3(3):256-290, 2003.

J. Cho and A. Ntoulas. Effective change detection using sampling. Proc. VLDB Conf.,
2002.

E. Cohen and H. Kaplan. Refreshment Policies for Web Content Caches. Proceedings of
IEEE INFOCOM, 2001.

P. Deolasee, A. Katkar, P. Panchbudhe, K. Ramamritham, and P. Shenoy. Adaptive
push-pull: Disseminating dynamic web data. Proc. 10th WWW Conf., 2001.

J. Eckstein, A. Gal, and S. Reiner. Optimal information monitoring under a polite-
ness constraint. Technical Report RRR 16-2005, RUTCOR, Rutgers University, 640
Bartholomew Road, Busch Campus Piscataway, NJ 08854 USA, May 2005.

M. Franklin, M. Carey, and M. Livny. Transactional Client-Server Cache Consistency:
Alternatives and Performance. ACM Transactions on Database Systems, 22(3):315-363,
1997.

M. Franklin and S. Zdonik. Data in your face: Push technology in perspective. Proc.
ACM SIGMOD Conference, 1998.

A. Gal and J. Eckstein. Managing periodically updated data in relational databases: a
stochastic modeling approach. Journal of the ACM, 48(6):1141-1183, 2001.

H. Gupta. Selection of views to materialize in a data warehouse. Proc. ICDT, 1997.

J. Gwertzman and M. Seltzer. World wide web cache consistency. Proc. USENIX Tech-
nical Conference, 1996.

BlackBerry Wireless Handhelds. http://www.blackberry.com.

V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes efficiently.
Proc. ACM SIGMOD Conference, 1996.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and
M. West. Scale and Performance in a Distributed File System. ACM Transactions on
Computer Systems, 6(1):51-81, 1988.

Y. Huang, R. Sloan, and O. Wolfson. Divergence caching in client-server architectures.
Proc. PDIS, 1994.

P. Keleher, A. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software Dis-
tributed Shared Memory. Proceedings of the 19th International Symposium of Computer
Architecture (ISCA), 1992.

44

(28]

(29]
(30]

(31]

B. Krishnamurthy and C. Wills. Study of piggyback cache validation for proxy caches in
the world wide web. Proc. USENIX Symposium on Internet Technologies and Systems,
1997.

A. Labrinidis and N. Roussopoulos. Update propagation strategies for improving the
quality of data on the web. Proc. VLDB, 2001.

T.L. Lai and J.Z. Shan. Efficient recursive algorithms for detection of abrupt changes in
signal and control systems. IEEE Transactions on Automatic Control, 44:952-964, 1999.
J.-J. Lee, K.-Y. Whang, B. S. Lee, and J.-W. Chang. An update-risk based approach
to TTL estimation in web caching. Proc. Conference on Web Information Systems
Engineering (WISE), 2002.

C. Liu and P. Cao. Maintaining strong cache consistency on the world wide web. Proc.
ICDCS, 1997.

R.L. Mason, Y.-M. Chou, J.H. Sullivan, Z. G. Stoumbos, and J. C. Young. Systematic
patterns in T2 charts. Journal of Quality Technology, 35:47-58, 2003.

M. Nelson, B. Welch, and J. Ousterhout. Caching in the Sprite Network File System.
ACM Transactions on Computer Systems, 6(1):134-154, 1988.

K. Nishina. A comparison of control charts from the viewpoint of change-point estimation.
Quality and Reliability Engineering International, 8:537-541, 1992.

C. Olston, B.T. Loo, and J. Widom. Adaptive precision setting for cached approximate
values. Proc. ACM SIGMOD Conference, 2001.

C. Olston and J. Widom. Best-effort cache synchronization with source cooperation.
Proc. ACM SIGMOD Conference, 2002.

S. Pandey, K. Dhamdhere, and C. Olston. Wic: A general purpose algorithm for moni-
toring web information sources. Proceedings of Very Large Databases (VLDB), 2004.

S. Pandey, K. Ramamritham, and S. Chakrabarti. Monitoring the dynamic web to
respond to continuous queries. Proceedings of the WWW Conference, 2003.

M.R. Reynolds, Jr. and Z.G. Stoumbos. A general approach to modeling CUSUM charts

for a proportion. IIE Transactions on Quality and Reliability Engineering, 32:515-535,
2000.

S. Ross. Stochastic Processes. Wiley, second edition, 1995.

Z.G. Stoumbos, M.R. Reynolds Jr., and W.H. Woodall. Control chart schemes for moni-
toring the mean and variance of processes subject to sustained shifts and drifts. to appear
in the Handbook of Statistics: Statistics in Industry, 22, 2003. C.R. Rao and R. Khattree
(eds.).

H.M. Taylor and S. Karlin. An Introduction to Stochastic Modeling. Academic Press,
1994.

E. Yashchin. Estimating the current mean of a process subject to abrupt changes. Tech-
nometrics, 37:311-323, 1995.

J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering Server-Driven Consistency for
Large Scale Dynamic Web Services. Proceedings of 10th WWW Conference, 2001.

H. Zhu and T. Yang. Class-based Cache Management for Dynamic Web Content. Pro-
ceedings of IEEE INFOCOM, 2001.

45

