
C e n t r u m  v o o r  W i s k u n d e  e n  I n f o r m a t i c a

PNA
Probability, Networks and Algorithms

 Probability, Networks and Algorithms

Fast simulation of overflow probabilities in a queue with 
Gaussian input

A. B. Dieker; M.R.H. Mandjes

REPORT PNA-E0404 APRIL 20, 2004



CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the 
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names 
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2004, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3711



Fast simulation of overflow probabilities in a queue
with Gaussian input

ABSTRACT

In this paper, we study a queue fed by a large number n of independent discrete-time Gaussian
processes with stationary increments. We consider the many sources asymptotic regime, i.e.,
the buffer exceedance threshold B and the service capacity C are scaled by the number of
sources (B ≡ nb and C ≡ nc).

We discuss three methods for simulating the steady-state probability that the buffer thresh-
old is exceeded: the single twist method (suggested by large deviation theory), the cut-and-
twist method (simulating timeslot by timeslot), and the sequential twist method (simulating
source by source).

The asymptotic efficiency of these three methods is investigated as n → ∞: for instance,
a necessary and sufficient condition is derived for the efficiency of the method based on a
single exponential twist. It turns out that this method is asymptotically inefficient in practice,
but the other two methods are asymptotically efficient. We evaluate the three methods by
performing a simulation study.
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1. Introduction

Many systems in real life can be modeled as queues. The generic queueing model consists
of (i) a (random) arrival process, and (ii) a resource, commonly characterized by its service
speed C, and buffer space B. If the traffic arrival rate temporarily exceeds C, work is stored
in the buffer, and, after some delay, served. Traffic that does not fit in the buffer is lost.
Hence, queues are an appropriate tool for describing congestion phenomena.

Gaussian traffic. In this paper, we consider a queue fed by Gaussian sources. We focus
on stationary sources, i.e., the distribution of the traffic offered in an interval only depends
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on the interval length. The study of Gaussian input is mainly motivated by its flexibility
and parsimony: a broad range of correlation structures can be described by few parameters.
Notably, Gaussian processes may exhibit ‘power-law correlations’ closely related to long-
range dependence; an example is fractional Brownian motion (fBm). Models based on these
processes can be used to accurately model network data traffic. The focus on Gaussian
models can also be justified from the fact that in many practical situations a large number
of independent sources are superimposed; by virtue of central-limit-type arguments, one can
argue that the aggregate traffic converges to a Gaussian process, see, e.g., [12].

Asymptotics. It is extremely hard to calculate the full workload distribution of a queue
with Gaussian input; it is only known for simple special cases (Brownian motion, Brownian
bridge). However, some limiting regimes allow explicit analysis. The present paper focuses on
the so-called many-sources regime. In this regime we suppose that there are n i.i.d. Gaussian
sources, and that the queueing resources are scaled with n, i.e., C ≡ nc and B ≡ nb. Buffer
overflow (over level nb) becomes rare when n grows large. For fixed but large n, we study
the probability pn of buffer overflow in a discrete time model. Likhanov and Mazumdar [24]
find the asymptotics of pn, i.e., they identify a function g such that png(n) → 1 as n → ∞.
Based on these asymptotics, one could estimate pn by 1/g(n). However, due to the lack of
error bounds one does not know a priori whether these estimates are any good. Hence, we do
not have an n0 = n0(ε) such that, for all n > n0, it holds that |png(n)−1| < ε, where ε > 0 is
a (small) parameter. In fact, g(n) tends to underestimate pn, since g(n) asymptotically only
involves the probability of overflow at a single time epoch, cf. Equations (2.1) and (3.4) of
[24]. Of course, this is highly undesirable if one is interested in reliable estimates.

Simulation. In absence of analytical results, one could resort to simulation. When simulat-
ing loss probabilities in queues with Gaussian input, two problems arise. The first is that it
is not straightforward to quickly simulate Gaussian processes. Although ‘exact’ methods for
generating (discrete versions of) Gaussian processes are in general quite slow, a sophisticated
simulation technique becomes available by exploiting the stationarity of the sources [10]. In
the important case of fBm, this leads to an extremely fast algorithm (order of T log T for a
trace of length T ) for generating fBm traces. A difficulty with this algorithm is that the trace
length should be known before the simulation is started. We cope with this by estimating an
approximating probability, while controlling the approximation error.

Another problem of simulation is that it is typically hard to estimate small probabilities;
we mainly focus on this difficulty in the remainder. This plays a role in our setting, since the
overflow probability decreases to zero as n → ∞. The general rule is that, for an estimate
with a fixed precision, the number of runs needed is inversely proportional to the probability
to be estimated. Hence it is impractical, or even impossible, to estimate a probability of
less than, say, 10−9 with conventional Monte Carlo simulation. This problem could be cir-
cumvented by performing a ‘fast simulation’ using a technique that is known as importance
sampling. In importance sampling, the simulation is done under a new measure under which
overflow occurs more frequently, where we obtain an unbiased estimator by weighing the
simulation output by likelihood ratios. Inherently, there is considerable freedom in choosing
the importance sampling measure. A widely accepted efficiency criterion for discriminating
between estimators is asymptotic efficiency, sometimes referred to as asymptotic optimality



2. The overflow probability 3

or logarithmic efficiency. The analysis in the present paper is based on this criterion.

Contributions. Estimators based on large deviation results are natural candidates for
efficient simulation. In fact, they are asymptotically efficient in many settings; see Asmussen
and Rubinstein [3] and Heidelberger [19] and references therein. However, Glasserman and
Wang [18] give examples showing that this need not always be the case. A main contribution
of this paper is that we develop conditions for asymptotic efficiency (as n → ∞) of the
large deviation estimator that would apply to our overflow probability. It turns out that this
estimator is predominantly asymptotically inefficient for a wide range of Gaussian inputs,
including fBm and (perhaps surprisingly) standard Brownian motion.

As the large deviation estimator is in practice inefficient, a different approach has to be
taken. We present two other methods that can be proven to be asymptotically efficient. The
first uses ideas of Boots and Mandjes [7], and simulates timeslot by timeslot. The second
is based on a paper by Dupuis and Wang [17], and simulates source by source. In the
latter approach, the change of measure of the source under consideration depends on the
traffic generated by the sources that have already been simulated. We present a performance
evaluation of the (inefficient) large deviation estimator, and the two asymptotically efficient
approaches.

Some related results on fast simulation of queues with Gaussian input have been reported
by Michna [25] and by Huang et al. [20]. Michna focuses on fBm input under the so-called
large-buffer scaling, but does not consider asymptotic efficiency of his simulation scheme
(in fact, one may check that his estimator is asymptotically inefficient). Huang et al. also
work in the large buffer asymptotic regime, and suggest that the large deviation estimator is
asymptotically efficient in the many sources regime; Theorem 1 below entails that this need
not be the case. We would like to stress that we focus here only on the simulation of overflow
in the many-sources regime (not necessarily fBm).

Organization. This paper is organized as follows. Section 2 formalizes the framework of
the paper, and discusses how the simulation horizon can be truncated in order to still obtain
reasonable estimates. Some preliminaries are given in Section 3, and Section 4 studies the
properties of the three simulation methods mentioned above. Section 5 contains a numerical
evaluation of these methods, and we conclude the paper with a discussion in Section 6.

2. The overflow probability
The present section contains the description of our queueing model. In particular, we show
that the buffer overflow probability relates to an infinite time horizon, see Section 2.1. To
simulate the overflow probability, this horizon needs to be truncated, where the neglected
probability mass is below a tolerable level. This truncation issue is addressed in Section 2.2.

2.1 Description of the model – many sources framework
Traffic model. We start by describing the traffic model. We consider n i.i.d. sources feeding
into a buffered resource. The sources are assumed to be stationary, so that the distribution
of the traffic generated in an interval [s, s + t) only depends on the interval length t (and not
on the ‘position’ s).

Define An(·) as the aggregate cumulative traffic process. More precisely, let An(t) denote
the traffic generated by the n sources in {1, . . . , t}; for notational convenience, we set An(0) :=
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0 and we suppose that time is indexed by N. In this paper we assume that the sources are
Gaussian, so that the distribution of An(·) is completely determined by the mean input rate
and the covariance structure. Let µ denote the mean input rate of a single source, so that
EAn(t) = nµt. Because the stationarity of the sources results in stationary increments of the
process An, the covariance structure is determined by the variance function σ2(t) = VarA1(t).
We suppose that σ2(t)t−α → 0 as t → ∞ for some α ∈ (0, 2); the Borel-Cantelli lemma then
shows that A1(t)/t → µ almost surely.

It is readily deduced that the covariance of An(·) is given by Γn(s, t) = nΓ(s, t), where

Γ(s, t) := Cov(A1(s), A1(t)) =
σ2(s) + σ2(t) − σ2(|s − t|)

2
.

An important special case of Gaussian input is fractional Brownian motion (fBm), in which
σ2(t) is proportional to t2H .

Queueing model. We now turn to the queueing model. In this paper we let the queue’s
(deterministic) service rate scale with the number of sources: the queue drains at rate C ≡ nc.
To ensure stability, we assume that µ < c.

We are interested in the steady-state probability pn of the buffer content exceeding some
prespecified level, that we again scale with the number of sources: B ≡ nb > 0. It is well-
known that this probability can be expressed in terms of the aggregate cumulative arrival
process An(·), as follows:

pn = P

(
sup
t∈N

[An(t) − nct] > nb

)
. (2.1)

We remark that the probability pn of exceeding level nb in a system with infinite buffer is
often used as an approximation for the loss probability in a system with finite buffer nb.

We emphasize that the behavior of the probability pn in discrete time is essentially different
from continuous time. The overflow probability in continuous time is obtained by replacing N

by R+ in Eq. (2.1). Notably, the asymptotics of the overflow probability in continuous time
differ qualitatively from those in (2.1), see [11]. A further discussion of this issue is relegated
to Section 6.

2.2 The simulation horizon
As argued in the Introduction, no error bounds for the asymptotics in (2.1) are available.
This motivates the research on methods to quickly simulate pn. Representation (2.1) however
shows that the event of overflow corresponds to a probability on an infinite time horizon.
Hence, to estimate pn through simulation, we first have to truncate N to {1, . . . , T}, for some
finite T . Then we approximate pn by

pT
n := P

(
sup

t∈{1,...,T}
[An(t) − nct] > nb

)
. (2.2)

Of course, T should be chosen sufficiently large, in order to make sure that the approximation
error is small. To investigate this error, let τn := inf{t ∈ N : An(t) − nct > nb} denote the
epoch of the first buffer overflow, so that pn = P (τn < ∞). As we propose to approximate pn
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by P (τn ≤ T ), we discard the contribution of P (τn > T ). The resulting estimator is biased:
it has a mean smaller than pn. As in Boots and Mandjes [7], we choose T such that

P (τn > T )
pn

< ε, (2.3)

for some predefined ε > 0. When ε is chosen small, the truncation is clearly of minor impact.
The requirement in (2.3) does not directly translate into an explicit expression for the

simulation horizon T . Following [7], this problem is tackled by establishing tractable bounds
on P (τn > T ) and pn. We write

It :=
(b + (c − µ)t)2

2σ2(t)
.

A lower bound on pn. Obviously, for any t ∈ N,

pn ≥ P (An(t) > nb + nct)

=
∫ ∞
√

n
b+(c−µ)t

σ(t)

1√
2π

exp
(
−1

2
x2

)
dx

≥ 1√
π

1√
nIt +

√
nIt + 2

e−nIt , (2.4)

where the last inequality is a standard bound for the standard normal cumulative density
function (see [26, p. 177–181] for related inequalities and references).

In order to find the best possible lower bound, we compute t∗ := arg inft∈N It and use
the lower bound (2.4) for t = t∗. The existence of t∗ is guaranteed by the assumption that
σ2(t)t−α → 0 as t → ∞ for some α ∈ (0, 2). In case t∗ is unique, it is usually referred to
as the ‘most probable’ overflow epoch: given that overflow occurs, it is most likely that it
happens at epoch t∗; see for instance Wischik [31].

An upper bound on P (τn > T ). By a Chernoff bound argument, we have

P (τn > T ) =
∞∑

t=T+1

P (τn = t) ≤
∞∑

t=T+1

P (An(t) − nct > nb) ≤
∞∑

t=T+1

e−nIt (2.5)

In the present generality, it is difficult to bound this quantity further. We could proceed by
focusing on a specific correlation structure, for instance fBm with σ2(t) = t2H , for H ∈ (0, 1).
Instead, we focus on the somewhat more general situation that the variance function can be
bounded (from above) by a polynomial: σ2(t) ≤ Ct2H , for some H ∈ (0, 1) and C ∈ (0,∞).
For instance, if σ2(·) is regularly varying [6] with index α, then then σ2(t) can be bounded
from above (for t sufficiently large) by Potter’s bound Ctα+ε, for any C > 1 and ε > 0 [6,
Thm. 1.5.6]. Obviously, it is desirable to choose the horizon as small as possible under the
restriction that (2.3) holds; for this, C and H should be chosen as small as possible.

Under σ2(t) ≤ Ct2H we can bound (2.5) as follows:

∞∑
t=T+1

e−nIt ≤
∞∑

t=T+1

exp
(
−n

(c − µ)2

2C
t2−2H

)
≤
∫ ∞

T
exp

(
−n

(c − µ)2

2C
t2−2H

)
dt. (2.6)



6

Since the natural way of finding an upper bound critically depends on the value of H, we
consider the cases H ≤ 1/2 and H > 1/2 separately. As for H ≤ 1/2, the following bound
is readily found (its proof is deferred to Appendix A.1.1). Set C0 := (c − µ)2/(2C) and
q := 1/(2 − 2H) for notational convenience.

Lemma 1 In case H ≤ 1/2, we have∫ ∞

T
exp

(
−nC0t

1/q
)

dt ≤ q

C0n
exp

(
−nC0T

1/q
)

. (2.7)

We now focus on H > 1/2 (and hence q > 1). Let m be the largest natural number such
that q − 1 − m ∈ (0, 1]. Moreover, we define

γq := q − 1 − m, and βq :=
(q − 1) · · · (q − m)

γm
q eγq

. (2.8)

This notation plays a central role in the following lemma, which is proven in Appendix A.1.2.

Lemma 2 In case H > 1/2, we have∫ ∞

T
exp

(
−nC0t

1/q
)

dt ≤ qβq

Cq
0(n − γq)

exp
(
−(n − γq)C0T

1/q
)

.

By combining the upper bounds and the lower bound, we derive the following corollary:

Corollary 1 For H ≤ 1/2, let T (n) be the largest integer smaller than(
− 1

nC0
log

[
1

q
√

π

nC0ε√
nIt∗ +

√
nIt∗ + 2

e−nIt∗
])q

,

and for H > 1/2 let T (n) be the largest integer smaller than(
− 1

nC0
log

[
1

qβq
√

π

(n − γq)C
q
0ε√

nIt∗ +
√

nIt∗ + 2
e−nIt∗

])q

.

Then the error as defined in (2.3) does not exceed ε.
Moreover, T := limn→∞ T (n) = (It∗/C0)1/(2−2H).

We recall that t∗ could be interpreted as the most likely epoch of overflow. Given that
overflow occurs, most of the probability mass will be around t∗. Hence it is not surprising
that T > t∗:

It∗

C0
=

(b + (c − µ)t∗)2

2σ2(t∗)

/
(c − µ)2

2C
> (t∗)2−2H = (t∗)1/q. (2.9)

3. Preliminaries on rare-event simulation

This section provides some background on the simulation of (small) overflow probabilities.
Section 3.1 introduces the concept of importance sampling, one of the standard techniques in
rare-event simulation. The key metric for evaluating simulation approaches is the so-called
asymptotic effiency, as defined in Section 3.2.
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3.1 Importance sampling
Importance sampling is a variance reduction technique in which samples are drawn from a
distribution under which the rare event occurs relatively frequently. The simulation output
is weighed by so-called likelihood ratios, keeping track of the difference between the original
and new measures, thus obtaining unbiased estimates.

More formally, suppose that we are given a probability measure ν on some measurable
space (X ,B), and that we are interested in the simulation of the ν-probability of a given
event A ∈ B, where ν(A) is typically small. The idea of importance sampling is to sample
from a different distribution on (X ,B), say λ, under which A occurs more frequently. This is
done by specifying a measurable function dλ/dν : X → [0,∞] and by setting

λ(B) :=
∫

B

dλ

dν
dν. (3.1)

Since λ must be a probability measure, dλ/dν should integrate to unity with respect to ν.
Assuming the equivalence of the measures ν and λ, set dν/dλ := (dλ/dν)−1 and note that

ν(A) =
∫

A

dν

dλ
dλ =

∫
X

1A
dν

dλ
dλ,

where 1A denotes the indicator function of A. We refer to dν/dλ as the likelihood (or:
likelihood ratio). The importance sampling estimator ν̂λ(A) of ν(A) is found by drawing N
independent samples X(1), . . . , X(N) from λ:

ν̂λ(A) :=
1
N

N∑
k=1

1{X(k)∈A}
dν

dλ
(X(k)). (3.2)

It is clear that ν̂λ(A) is an unbiased estimator, i.e., Eλν̂λ(A) = ν(A). However, one has
the freedom to choose the distribution λ; a good choice results in an estimator with small
variance. In particular, it is of interest to find the change of measure that minimizes this
variance. Since ν̂λ(A) is by construction unbiased, it is equivalent to minimize the second
moment∫

A

(
dν

dλ

)2

dλ =
∫
X

1A

(
dν

dλ

)2

dλ.

It is not difficult to see that a zero-variance estimator is found by letting λ be the conditional
distribution of ν given A, see, e.g., [19]. However, the resulting estimator is infeasible for
simulation purposes, since then dν/dλ depends on the unknown quantity ν(A). This motivates
the use of another optimality criterion, asymptotic efficiency.

3.2 Asymptotic efficiency
In order to compare simulation techniques the notion of asymptotic efficiency was introduced.
Consider a family of probability measures {νn} on a measurable space (X ,B). Suppose we
associate to each νn an importance sampling distribution λn on (X ,B); in Section 4 we study
several choices for λn.
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Let X
(1)
λn

, . . . , X
(N)
λn

be N i.i.d. samples from λn. We define the importance sampling esti-
mator of νn(B) as in (3.2):

ν̂λn(B)N :=
1
N

N∑
k=1

1{
X

(k)
λn

∈B
} dνn

dλn

(
X

(k)
λn

)
. (3.3)

The squared relative error of the importance sampling estimator is defined as

ηN (λn, B) :=
Varλn

(
ν̂λn(B)N

)
νn(B)2

=
Eλn

(
ν̂λn(B)N

)2

νn(B)2
− 1; (3.4)

here the notation Varλn(·) and Eλn(·) indicates integration with respect to λn. Notice that
the relative error, i.e., the square root of (3.4), is proportional to the width of a confidence
interval relative to the (expected) estimate itself; hence, it measures the variability of the
importance sampling estimator. Let N∗

λn
:= inf{N ∈ N : ηN (λn, B) ≤ ηmax} be the number

of samples needed for a prespecified relative error. For asymptotic efficiency we require that
this number vanishes on an exponential scale. Set N∗

λn
:= inf{N ∈ N : ηN (λn, B) ≤ ηmax}.

Asymptotic efficiency is sometimes referred to as asymptotic optimality, logarithmic efficiency,
or weak efficiency.

Definition 1 An importance sampling family {λn} is called asymptotically efficient if

lim sup
n→∞

1
n

log N∗
λn

= 0, (3.5)

for some given maximal relative error 0 < ηmax < ∞.

We note that, under a weak condition on the sets B, asymptotic efficiency is equivalent to
lim supn→∞ En ≤ 2, with

En :=
log

∫
B

(
dνn
dλn

)2
dλn

log νn(B)
; (3.6)

see [15] for more details. For a given n, we refer to En as the relative efficiency.

4. Simulation methods
Using the bounds of Section 2.2, the simulation horizon can be truncated. We therefore focus
in the sequel of the paper on the simulation of this ‘truncated’ overflow probability p

T (n)
n

defined in (2.2).
As argued in Section 3.2, asymptotic efficiency corresponds to the performance of simula-

tion methods for large n. Notice that, by virtue of Corollary 1, we can safely set T (n) = �T 	
for n large enough; for ease set T := �T 	. Conclude that we can restrict ourselves to assess
asymptotic efficiency of methods for estimating pT

n .
In this paper we concentrate on three methods for simulating pT

n . The first, which we refer
to as single exponential twist, is the simplest of the three. We present explicit conditions on
the covariance structure of the Gaussian sources under which the method is asymptotically
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efficient. It appears that for important cases the method does not yield asymptotic efficiency.
Therefore, we also discuss two asymptotically efficient alternatives: the first solves the theo-
retical difficulties by simulating timeslot by timeslot (which we therefore call cut-and-twist),
the second by simulating source by source (sequential twist). The former method uses the
ideas of Boots and Mandjes [7], whereas latter has recently been proposed by Dupuis and
Wang [17].

4.1 The single-twist method
Large deviation theory suggests an importance sampling distribution based on an exponential
change of measure (‘twist’). In a considerable number of simulation settings this alternative
distribution has shown to perform well – in some cases it is asymptotically efficient [2, 8, 9,
21, 22, 29]. However, one has to be careful, as a successful application of such an exponential
twist critically depends on the specific problem at hand [15, 17, 18]. Before deriving conditions
for asymptotic optimality of the exponential twist in the setup of the present paper, we first
provide more background.

We denote by OT ⊂ RT the set of paths that cause overflow up to time T ∈ N, i.e.,

OT := {x ∈ RT : ∃t ∈ {1, . . . , T} : xt + µt ≥ b + ct}
=

⋃
{t:t∈{1,...,T}}

⋃
{y:y+µt≥b+ct}

{x ∈ RT : x(t) = y}. (4.1)

Note that, with ν
(T )
n denoting the distribution of {An(t)/n − µt : t ∈ {1, . . . , T}},

pT
n = ν(T )

n (OT ).

The following lemma, which is proven the appendix, states that ν
(T )
n (OT ) decays exponentially

in n. We let Γ(T ) denote the covariance matrix of {A1(t) − µt : t = 1, . . . , T}, i.e., Γ(T ) :=
(Γ(s, t))T

s,t=1.

Lemma 3 We have

lim
n→∞

1
n

log ν(T )
n (OT ) = −1

2
r∗′

(
Γ(T )

)−1
r∗ = −It∗ , (4.2)

where t∗ := arg inft∈N It, and the vector r∗ ∈ RT is given by

r∗t =
b + (c − µ)t∗

σ2(t∗)
Γ(t∗, t). (4.3)

Time epoch t∗ can be thought of as the most likely epoch of overflow: as n grows the probabil-
ity of overflow decays exponentially, but given that it occurs, with overwhelming probability
the busy period preceding overflow has duration t∗. Likewise, r∗ can informally be interpreted
as the most likely path to overflow; note that indeed r∗t∗ = b + (c − µ)t∗. It is important to
realize that r∗ is piecewise linear only in the case of (scaled) Brownian input (i.e., σ2(t) = Ct
for some C > 0); in general r∗ is a ‘curved’ path.

We can now to introduce the family {λ(T )
n } of exponentially twisted probability measures.

The probability mass assigned to a Borel set A ⊂ RT under this new distribution is

λ(T )
n (A) =

∫
A

exp
(

n
b + (c − µ)t∗

σ2(t∗)
xt∗ − nIt∗

)
ν(T )

n (dx). (4.4)
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By observing that

x′
(
Γ(T )

)−1
r∗ =

b + (c − µ)t∗

σ2(t∗)
xt∗ ,

it can be verified that the new measure λ
(T )
n corresponds to the distribution of a Gaussian

process with mean vector (r∗t )t=1,...,T , and covariance matrix Γ(T )/n. Remark that the mean
vector of the new measure is different from the old mean (in fact, the new Gaussian process
does not correspond to stationary sources anymore), whereas the covariances under the old
and new measure coincide. Since samples from λ

(T )
n tend to follow the most likely path r∗ for

large n, we say that this exponential twist is in accordance with the large deviation behavior
of Lemma 3.

The following theorem is the main result of this subsection. It presents sufficient and
necessary conditions for asymptotic optimality of the estimator determined by (3.3), where
λn is given by (4.4). Its proof is given in Appendix A.2.

We recently came across a related theorem by [5]. An important difference is that these
authors study the continuous-time overflow probability. We wish to remark, however, that
our method can be extended to cover continuous time by applying standard theorems for large
deviations of Gaussian measures on Banach spaces, see for instance [14]. However, we believe
that discrete time is more natural in a simulation framework; see also Section 6. Another
difference is the proof technique; [5] use recent insights into certain Gaussian martingales,
while we take a direct approach.

Theorem 1 Importance sampling under a ‘single exponential twist’ is asymptotically effi-
cient for simulating pT

n if and only if

inf
t∈{1,...,T}

b + (c − µ)t + r∗t
σ(t)

= 2
b + (c − µ)t∗

σ(t∗)
. (4.5)

Clearly

h(t∗) = 2
b + (c − µ)t∗

σ(t∗)
, where h(t) :=

b + (c − µ)t + r∗t
σ(t)

;

hence Theorem 1 states that the change of measure is asymptotically efficient if and only if
h(t) ≥ h(t∗) for all t ∈ {0, . . . , T}.

In the above we represented time by the natural numbers N, i.e., we used a grid with
mesh 1. Obviously, the same techniques can be used to prove a similar statement for any
simulation grid. In the following intermezzo we analyze the impact of making the grid more
fine-meshed.

Intermezzo: refining the simulation grid Consider simulation on the grid mN ∩ [0, T ] for
some grid mesh m > 0. One can repeat the analysis in the appendix to see that the infimum
in (4.5) should then be taken over mN ∩ [0, T ]. Thus, by refining the grid, the left hand side
of (4.5) can be made arbitrarily close to the infimum over [0, T ]. This motivates an analysis
of the function g : R+ → R+ given by g(t) := [b+(c−µ)t + r̄∗(t)]/σ(t), where r̄∗ denotes the
continuous-time analogue of (4.3):

r∗(t) =
b + (c − µ)t∗

2σ2(t∗)
[
σ2(t∗) + σ2(t) − σ2(|t − t∗|)] .
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Hence, there is asymptotic optimality for any grid on [0, T ] if and only if g(t) ≥ g(t∗) for all
t ∈ [0, T ]. Suppose that σ2 is twice continuously differentiable with first and second derivative
denoted by σ̇2 and σ̈2 respectively. Necessary conditions for inft∈[0,T ] g(t) ≥ g(t∗) are then
ġ(t∗) = 0 and g̈(t∗) > 0. Therefore we compute

lim
t↑t∗

ġ(t) =
1
2

b + (c − µ)t∗

σ3(t∗)
σ̇2(0),

so that σ̇2(0) > 0 implies that exponential twisting becomes asymptotically inefficient as the
grid mesh m tends to zero. For the complementary case σ̇2(0) = 0, we can certainly find an
‘inefficient’ grid mesh if limt↑t∗ g̈(t) < 0. After some calculations, one obtains

lim
t↑t∗

g̈(t) =
1
4

b + (c − µ)t∗

σ3(t∗)

[
[σ̇2(t∗)]2

σ2(t∗)
− σ̈2(t∗) − σ̈2(0)

]
, (4.6)

which is negative if [σ̇2(t∗)]2 < σ2(t∗)[σ̈2(t∗) + σ̈2(0)].
Having these conditions at our disposal, we can study the whether the single exponential

twist becomes inefficient as the mesh tends to zero in specific cases. In particular, suppose
that the input traffic A1(t) is a fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0, 1), i.e., σ2(t) = t2H . Note that a special case is Brownian motion, which corresponds
to H = 1/2. If H ≤ 1/2, one has σ̇2(0) > 0 and a single exponential twist is therefore
asymptotically inefficient for grid meshes m small enough. Moreover, if H > 1/2, it follows
from (4.6) and σ̈2(0) = ∞ that limt↑t∗ g̈(t) < 0, so that we arrive at the same conclusion as
in the case H ≤ 1/2.

From the above we also see that it could be that the exponential twist is asymptotically
optimal for some grid mesh m, but loses the optimality at some threshold grid mesh m∗.

Intuition behind (in-)efficiency of exponential twist Having seen that a single exponential
twist can be asymptotically inefficient, one may wonder why this occurs. To this end, consider
the ‘likelihood’ term dνn/dλn following from (4.4):

exp
(
−n

b + (c − µ)t∗

σ2(t∗)
xt∗ + nIt∗

)
,

where the xt∗ corresponds to the value of An(t∗)/n − µt∗. For asymptotic optimality, this
likelihood should be ‘small’ for realizations in the overflow set OT . If there is overflow at
time t∗, then clearly

dν
(T )
n

dλ
(T )
n

≤ e−nIt∗ (4.7)

(use xt∗ ≥ b + (c − µ)t∗). However, if overflow occurs at any other time epoch, clearly the
likelihood can take any (positive) value. Obviously, an extremely high value has a dramatic
effect on the variance of the estimator, but the probability of such an extreme value might
be low. Condition (4.5) gives a criterion to check whether high values for the likelihood are
probable enough to affect (the exponential decay of) the variance of the estimator.
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4.2 The ‘cut-and-twist’ method
In Section 4.1 we have seen that the likelihood may explode while simulating pT

n with a single
exponential twist. This can be overcome by partitioning the event OT into sub-events, and
simulating these individually. To this end, write

pT
n = ν(T )

n


 ⋃

t∈{1,...,T}
OT (t)


 =

∑
t∈{1,...,T}

ν(T )
n (OT (t)), (4.8)

where OT (t) corresponds to the event that overflow occurs for the first time at time t:

OT (t) := {x ∈ RT : xt + µt ≥ b + ct; ∀s ∈ {1, . . . , t − 1} : xs + µs < b + cs};
notice that the OT (t) are disjoint events. Hence, the problem reduces to the simulation of
T probabilities of the type ν

(T )
n (OT (t)). This partitioning approach is based on Boots and

Mandjes [7], where this idea is exploited for a queue fed by (discrete-time) on-off sources.
The resulting simulation algorithm, to be called ‘cut-and-twist’, works as follows. Define

the exponential twisted measure tλ
(T )
n as in (4.4), but with t instead of t∗, and estimate the

probability ν
(T )
n (OT (t)) with the importance sampling distribution tλ

(T )
n . An estimate of pT

n

is found by summing the estimates over t ∈ {1, . . . , T}.
Before considering the efficiency of this method, we summarize the approach by noting

that the estimator equals

1
N

N∑
k=1

∑
t∈{1,...,T}

1{
X

(k)
t ∈OT (t)

} dν
(T )
n

dλ
(T )
n

(
X

(k)
t

)
, (4.9)

where X
(1)
t , . . . , X

(N)
t is an i.i.d. sample from tλ

(T )
n , and the samples X

(·)
t , t = 1, . . . , T are

also independent.
The following theorem is proven in Appendix A.3. Its proof is based on the property that

for any x ∈ OT (t) the corresponding likelihood is uniformly bounded by exp(−nIt), cf. (4.7).

Theorem 2 The ‘cut-and-twist’ method is asymptotically efficient for estimating pT
n .

Despite being asymptotically optimal, the obvious drawback of this method is that it may
take a substantial amount of time to simulate the T probabilities individually.

4.3 The sequential twist method
Recently, Dupuis and Wang [17] introduced an intuitively appealing approach for rare-event
simulation. We now give a brief description of the method in the setting of overflow in
queues with Gaussian input, although the method is known to work in a considerably more
general setting. Consider a sequence Ā1, Ā2, . . . of i.i.d. random vectors taking values in RT ,
where the Āj are distributed as {A1(t) − µt : t ∈ {1, . . . , T}}; as a consequence, the Āj have
distribution ν

(T )
1 . Note that pT

n can be written as

P

(
1
n

n∑
i=1

Āi(t) ∈ B

)
, with B :=

{
x ∈ RT : sup

t∈{1,...,T}
xt − (c − µ)t ≥ b

}
,
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and hence

pT
n =

∫
{(x(1),...,x(n)): 1

n

∑n
i=1 x(i)∈B}

ν
(T )
1 (dx(1)) · · · ν(T )

1 (dx(n)). (4.10)

Instead of twisting νT
n as in the previous methods, the sequential twist method twists ev-

ery copy of ν
(T )
1 (i.e., every source) in Equation (4.10) differently, exploiting the fact that

the sources behave stochastically independently. Recall that exponential twisting for Gaus-
sian random variables corresponds to shifts in the mean (and no change in the covariance
structure).

This gives rise to the following sequential approach. Suppose Ā1, . . . , Āj (i.e., source 1
up to j) are already generated, and we are about to twist the traffic generated by source
j + 1 (for j ∈ {0, . . . , n− 1}). We aim to find the ‘cheapest’ way to reach the overflow set B
given Ā1, . . . , Āj . Hence, we do not change the measure if already 1

n

∑j
i=1 Āi ∈ B (under this

condition it is not rare anymore to reach B, due to EĀj(t) = 0), and otherwise we change
the mean of the distribution of Āj+1 to µj+1, where

µj+1 = arg inf
{y∈RT : 1

n

∑j
i=1 Āi+

1
n

∑n
i=j+1 y∈B}

y′
(
Γ(T )

)−1
y;

here an empty sum is interpreted as zero. The following lemma gives a useful explicit expres-
sion for µj+1. The proof is given in Appendix A.4.

Lemma 4 Define for j ∈ {0, . . . , n − 1}

t∗j+1 := arg inf
t∈{1,...,T}

nb + n(c − µ)t −∑j
i=1 Āi(t)

(n − j)σ(t)
, (4.11)

and denote the corresponding infimum by Jj+1. Then

µj+1 =
Jj+1

σ(t∗j+1)
Γ(·, t∗j+1).

Observe that for j = 0 the formula reduces to the large deviation most probable path,
which is to be expected since no information on the past is then available. The reader may
check that the resulting likelihood is

n∏
j=1

exp

(
− Jj

σ(t∗j)
Āj(t∗j) +

1
2
J2

j

)
. (4.12)

An estimator is obtained by repeating this procedure N times, and computing the estimate
using (3.2); of course, the underlying samples must be independent.

The conditions for the following theorem of Dupuis and Wang [17] are checked in the
appendix.

Theorem 3 (Dupuis-Wang) The ‘sequential twist’ method is asymptotically efficient for
estimating pT

n .
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A drawback of this approach is that all sources should be generated individually. Note that
only one vector is generated in the single-twist method (as the aggregate of Gaussian sources
is again Gaussian), and T vectors for the cut-and-twist method. However, the sequential
approach can obviously also be used with less than n Gaussian vectors while retaining the
property of asymptotic efficiency. This is done by twisting source batches instead of individual
sources. Let M be a batch size such that n/M ∈ N, and define Ā

(M)
i := 1

M

∑M
j=1 Āj+(i−1)M . It

is important that M does not depend on n. We refer to this approach as the batch sequential
twist approach; since

P

(
1
n

n∑
i=1

Āi ∈ B

)
= P


 1

n/M

n/M∑
i=1

Ā
(M)
i ∈ B


 ,

Theorem 3 yields the asymptotic efficiency of the batch sequential estimator.
Although the sequential twist method and its batch counterpart are both asymptotically

efficient, some practical issues arise when M is made (too) large. The relative efficiency then
converges much slower to 2, so that we might not even be close to efficiency for a reasonable
n. This issue is addressed empirically in Section 5.4.

5. Evaluation
While the preceding sections are applicable to any Gaussian process with stationary incre-
ments (satisfying certain conditions), in this section we evaluate the simulation methods for
the practically relevant case of fractional Brownian motion.

Simulation of fractional Brownian motion is highly nontrivial. As the simulation grid is
equispaced, it is best to simulate the (stationary!) incremental process, also called fractional
Gaussian noise. When T is a power of two, the fastest available algorithm for simulating T
points of a fractional Gaussian noise is the Davies and Harte method [10]. In this approach,
the covariance matrix is embedded in a so-called circulant matrix, for which the eigenvalues
can easily be computed. The Fast Fourier Transform (FFT) is then used for maximum
efficiency; the computational complexity is of order T log T for a sample size of length T . For
more details on this method, we refer to [16] and [32].

We evaluate the three methods of Section 4 as follows. First, we check empirically whether
the overflow probability decays exponentially, and whether our simulations support the claims
in Theorems 1, 2, and 3. After this preliminary analysis, we study the reliability of the
methods by refining the simulation grid. Further empirical insight into the methods is gained
by studying the influence of the Hurst parameter on the simulation horizon and of the batch
size on the relative efficiency. The evaluation is concluded by a time-complexity analysis.

5.1 Empirical verification of the theory
In Section 4, we noted that the overflow probability decays exponentially in n and we studied
whether the three discussed simulation methods are asymptotically efficient. In the present
subsection, our aim is to validate these theoretical results by performing a simulation exper-
iment. The need for a variance reduction technique is illustrated by including ‘naive’ Monte
Carlo simulation in our analysis.

The parameters are chosen as follows: b = 0.3, c − µ = 0.1, H = 0.8, M = 1, ε = 0.05,
and ηmax = (0.1/1.96)2. Unless stated otherwise, we use these parameters throughout this
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Figure 1: Empirical verification of the exponential decay of the overflow probability.
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Figure 2: Empirical verification of the asymptotic efficiency of the simulation methods.

section. The choice H = 0.8 is supported by measurements on LAN data traffic [23], and ηmax

is chosen such that the width of the confidence interval is 20% of the estimated probability. It
is left to the reader to check that condition (4.5) does not hold, i.e., the single-twist estimator
is not asymptotically efficient.

We start by checking the exponential decay of pn; see Figure 1. Notice that the probability
is plotted on a logarithmic scale, hence the straight lines. The confidence intervals are not
plotted, since the simulation method has almost no influence on their width by construction.

We next study the asymptotic efficiency of the simulation methods by varying n and
analyzing the number of simulation runs N∗

n needed to achieve the required relative error.
In the left panel of Figure 2, we have plotted log N∗

n for n = 100, 150, . . . , 500 and all four
simulation methods. Note that under asymptotic efficiency log N∗

n should be (ultimately)
sublinear. Therefore, the plots support Theorem 2, Theorem 3, and the fact that the naive
estimator is inefficient.

However, it is not immediate from the left panel of Figure 2 that the single-twist method is
asymptotically inefficient. Although the irregular behavior indicates that this might indeed
be the case, we find more evidence by increasing n further. This is done in the right panel of



16

Figure 2. We have also included the results for the (asymptotically efficient) cut-and-twist
method in order to show the difference.

The unstable behavior in both plots of the single-twist method is closely related to the
interpretation of a possible failure of the exponential twist (see Section 4). As noted there,
overflow occurs at time epoch t∗ in a ‘typical’ simulation run, but it might also happen
that overflow occurs at some other time t �= t∗. Although such a realization is (relatively)
rare, it has an impact on both the estimate and the estimated variance. Since these two
estimated quantities determine whether the simulation is stopped, it may occur that the
number of these ‘rare’ realizations is too low, so that the simulation is stopped too early and
the overflow probability is underestimated.

5.2 Simulation grid
While the observations in the previous subsection were predicted by theory, we now shift our
attention to experiments that give insights into the performance of the methods in practice.
As a first step, investigate the influence of the grid mesh on the estimated probability. We
will see that such an analysis provides valuable insights into the reliability of the estimated
probabilities.

We evaluate

P

(
sup

t∈{α,2α,...}
Ān(t) − n(c − µ)t > nb

)
(5.1)

for a range of α ≥ 0, in such a way that the simulation grid becomes finer. For instance,
one can take α = 1, 1/2, 1/4, 1/8; the probability then increases as α is made smaller, as we
only add grid points. We get some idea how reliable the simulation methods are by checking
whether the estimates indeed increase.

Before we can compare the estimated probabilities for different α, we have to take into
account what happens to the simulation horizon as α decreases. Indeed, if the horizon
decreases as α → 0, one cannot conclude that the above monotonicity of carries over to the
‘truncated’ approximating probabilities. Since An(t) is a scaled fractional Brownian motion
by assumption, the self-similarity property yields that (5.1) equals

P

(
sup
t∈N

αHĀn(t) − nα(c − µ)t > nb

)

= P

(
sup
t∈N

Ān(t) − nα1−H(c − µ)t > nα−Hb

)
.

Therefore, a grid mesh α is equivalent to a unit grid mesh if b and c − µ are replaced by
bα := α−Hb and cα := α1−H(c − µ). Note that then

Iα
t∗ := inf

t∈{α,2α,...}
(b + (c − µ)t)2

2t2H
= inf

t∈N

(b + α(c − µ)t)2

2α2Ht2H
,

so that the (limiting) simulation horizon then becomes, see (2.9),

Iα
t∗

c2
α/2

= inf
t∈N

(b/α + (c − µ)t)2

c2t2H
,
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Figure 3: The influence of the grid mesh on the probability for the single-twist method, the
cut-and-twist method, and the sequential twist method. The solid lines represent the estimates,
while the dashed lines correspond to confidence intervals.

which is monotonic in α and tends to infinity as α → 0. An ideally chosen simulation horizon
has a factor b in place of b/α; this factor does not appear here since we used the lower
bound b ≥ 0 in the approximation procedure, see (2.6). Therefore, for small α, it takes a
substantial amount of effort to account for non-significant contributions to the probability,
but this cannot decrease the probability; the monotonicity is preserved.

In order to investigate whether the estimates indeed decrease in α, we perform some sim-
ulations with parameters n = 150, b = 0.9, c− µ = 0.3, H = 0.8, and M = 1. ε and ηmax are
chosen as before. It would be desirable to do the simulations for grid sizes 20, 21, 22, 23, 24, . . .,
but this quickly becomes computationally too intensive. Therefore, we focus on four sets of
grids; 1/α = 1, 2, 4, 8, 1/α = 3, 6, 12, 1/α = 3, 9, and 1/α = 5, 10.

In Figure 3, we have plotted these four sets using the three different methods. The dotted
lines correspond to the boundaries of the confidence intervals. Note that it is possible to draw
increasing lines between the boundaries of the confidence intervals for every method. However,
we see that the estimates themselves only show the expected (and theoretically correct)
behavior for the sequential twist method. The estimates for the single-twist method are
disappointing, as expected from its asymptotic inefficiency (see Theorem 1). The estimates
for cut-and-twist method are reasonable, with the exception of α = 1/9.
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Figure 4: T̃ (H) as a function of H (left panel) and its derivative (right panel).

5.3 Hurst parameter
In this subsection, we investigate the influence of the Hurst parameter on the simulation
horizon. This is of special interest since the computational effort to obtain estimates with
the cut-and-twist method is extremely sensitive to this horizon.

As already observed, the limiting value (as n → ∞) of the simulation horizon is given by
(It∗/C0)1/(2−2H), which equals by definition

T = T (H) =
(

inf
t∈N

b + (c − µ)t
(c − µ)tH

)1/(1−H)

.

Assuming that the infimum is taken over the entire halfline, we see that T (H) can be ap-
proximated by

T̃ (H) :=
b

c − µ

HH/(H−1)

1 − H
.

It becomes clear that T̃ (H) has a pole at H = 1, but it is insightful to plot T̃ as a function
of H and see how quickly it tends to infinity. Set b/(c−µ) = 1. In Figure 4, we have plotted
this function and its derivative.

It is intuitively clear that T̃ (H) increases in H. The higher H, the more long-term corre-
lations are present, and the more time is required until unusual behavior is diminished. In
practice, it will hardly be possible to simulate the probability with relative error at most ε if
H > 0.95, cf. (2.3).

5.4 Batch size for the sequential twist method
The aim of the present subsection is to investigate the influence of the parameter M in the
batch sequential twist method. That is, the n sources are divided into batches of size M and
each of the batches is considered a single source. Then one only twists n/M times in one
simulation run, which limits the flexibility of the method and therefore makes it less efficient.
Hence, there is a trade-off between the batch size M and the efficiency.
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Figure 5: The relative efficiency as a function of M for small M .

Theorem 3 states that the method is asymptotically efficient as n → ∞, regardless the
value of M . Suppose that for M = 1 the method is ‘near’ efficiency for n ≥ n0. One can
then expect that, for general M , the method is only ‘nearly’ efficient for n ≥ Mn0, i.e., that
the simulation becomes less efficient as M increases. We now check whether this is indeed
the case.

As earlier, we measure efficiency by means of the (estimated) relative efficiency. We set n =
3840 and estimate the relative efficiency for M = 2, 4, 6, 8, 10, 12. The resulting plot is given
in Figure 5. From the plot, it is not so obvious that an increase in M makes the simulation less
efficient. Therefore, we also compute the efficiency for M = 80, 160, 240, 320, 480, 640, 960;
the relative efficiency is then estimated as 1.967898, 1.974371, 1.967983, 1.967482, 1.968573,
1.954502 and 1.953645 respectively. These values indeed suggest that the simulation becomes
less efficient as M increases. Although the differences look small, one must keep in mind that
this quantity is relates the exponential decay rate of the variance of the estimator to the
exponential decay rate of the probability to be estimated.

Therefore, small differences blow up exponentially, and we propose to always chose M as
small as possible. Still, it is an option to increase M if the simulation takes too long due to
the chosen system parameters.

5.5 Time-complexity analysis of efficient methods
As the cut-and-twist method and the sequential twist method are the only efficient methods in
practice, it is natural to ask which one is the fastest. An unambiguous answer to this question
cannot be given, as it depends on the parameters which method should be preferred.

We have already observed that if the simulation horizon is large (i.e., large b/(c − µ) or
large Hurst parameter H), much time is needed to generate the fractional Brownian motion
samples. In the cut-and-twist method, such a sample is needed for each time epoch (of which
there are T ). In the sequential twist method, such a sample is needed for each source (of
which there are n). Moreover, the best twist has to be calculated n times, which amounts to
computing the infimum in (4.11). This computation is of order T .

An obvious advantage of the cut-and-twist method is that the required simulation time
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large cut-and-twist sequential simulation
n + −
H − +

b/(c − µ) − +

Table 1: Comparison of the cut-and-twist method and the sequential simulation method.

mildly depends on n (due to the fact that T (n) → T ). Therefore, the method is more
attractive if n is large. The computational effort of the sequential twist method is roughly
proportional to n.

We summarize our findings in Table 5.5.

6. Discussion

In this section, we stress three issues related to the findings of the present paper. First,
we explain why the overflow probability in discrete time cannot be considered as a good
approximation for its continuous-time counterpart. We also make some remarks on the main
assumption underlying our analysis: the Gaussianity of the sources. Finally, we discuss
another approach that yields asymptotic efficiency, which is not addressed in this paper.

Discrete time vs. continuous time. It is important to realize that the probability (2.1) be-
haves qualitatively different in continuous time, i.e., when N is replaced by R+. We illustrate
this by recalling the asymptotics of (2.1) in both discrete and continuous time. Denote the
probability in continuous time by p

R+
n .

In discrete time, there exists a constant K such that [24]

pn ∼ K√
n

exp
(
−1

2
n

(b + (c − µ)t∗)2

σ2(t∗)

)
,

where t∗ minimizes [b + (c− µ)t]/σ(t). However, in continuous time the asymptotics depend
on the behavior of σ near zero. If σ(t) ∼ Ctγ as t → 0 for constants C ∈ (0,∞) and γ ∈ (0, 2),
then, under suitable regularity assumptions, [11]

pR+
n ∼ K′n

1
γ
−1 exp

(
−1

2
n

(b + (c − µ)t∗)2

σ2(t∗)

)
,

for some constant K′. We note that an unknown constant, Pickands’ constant, appears in the
asymptotics of p

R+
n ; this constant is not present in the discrete time case. To our knowledge,

reliable simulation methods for the continuous-time probability p
R+
n do not exist.

Gaussian input. As pointed out in the Introduction, the study of a queue fed by Gaussian
sources is often motivated by (central) limit theorems. In reality, network traffic is clearly non-
Gaussian (the traffic is non-negative), which raises the question why one may be interested in
an overflow probability with Gaussian input. To answer this question, one should keep in mind
that the overflow probability in a Gaussian model may still be a good approximation for the
‘real’ overflow probability. It is important to realize that the accuracy of the approximation
critically depends on the appropriateness of the imposed scaling. Therefore, this should first
be studied before resorting to a Gaussian model; see the recent paper by Wischik [30] for a
detailed discussion.
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Other approaches. Another approach can be taken to obtain asymptotically efficient esti-
mates (for the discrete-time probability!). The method is discussed in Sadowsky and Bucklew
[28], and is related to the ‘cut-and-twist’ approach, where one simulates for all t the prob-
ability ν

(T )
n (OT (t)) with importance sampling distribution tλ

(T )
n . In the method of [28], a

random t is drawn in each simulation run according to some (arbitrary) distribution P with
support {1, . . . , T}, and then the single-twist method is performed with the distribution tλ

(T )
n .

However, it is unclear what distribution P should be chosen. For instance, if P is mostly
concentrated on t∗, one can expect similar problems as for the single-twist method.

A. Appendix: proofs
In this appendix, we provide proofs of the assertions in this paper. We start in Section A.1
with the proofs related to the simulation horizon T , which apply to all methods discussed
in Section 4. Appendices A.2 and A.3 deal with the single-twist method and cut-and-twist
method respectively. The proof of Lemma 4 is given in Appendix A.4.

A.1 Upper bounds for
∫∞
T e−nC0t1/q

dt
We distinguish the cases q ≤ 1 (Lemma 1) and q > 1 (Lemma 2).

A.1.1 Proof of Lemma 1 Since q ≤ 1 and T ∈ N, we can bound the left hand side of (2.7)
as follows:∫ ∞

T
exp

(
−nC0t

1/q
)

dt =
q

Cq
0

∫ ∞

C0T 1/q

exp(−ny)yq−1dy

≤ q

Cq
0

(
C0T

1/q
)q−1

∫ ∞

C0T 1/q

exp(−ny)dy

=
q

Cq
0n

(
C0T

1/q
)q−1

exp
(
−nC0T

1/q
)

≤ q

C0n
exp

(
−nC0T

1/q
)

,

as claimed.

A.1.2 Proof of Lemma 2 First note that q > 1, which is crucial throughout the proof.
Recall that m ≥ 0 denotes the largest integer such that q−1−m ∈ (0, 1]. As before, we have
by a simple substitution,∫ ∞

T
exp

(
−nC0t

1/q
)

dt =
q

Cq
0

∫ ∞

C0T 1/q

exp(−ny)yq−1dy. (A.1)

The idea is to select β, γ ∈ (0,∞) such that

yq−1 ≤ βeγy (A.2)

for all y ∈ R+. We now discuss how these parameters can be chosen.
If q ∈ (1, 2] (i.e., m = 0), then pq : y �→ yq−1 is concave. Since pq is differentiable at 1 with

derivative q − 1, by Theorem 25.1 of Rockafellar [27] we have for all y ∈ R+,

yq−1 ≤ 1 + (q − 1)(y − 1). (A.3)
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Similarly, since y �→ βeγy is convex and differentiable at 1 with derivative βγeγ , we have for
all y ∈ R+,

βeγy ≥ βeγ + βγeγ(y − 1). (A.4)

By comparing (A.3) to (A.4), we see that yq−1 ≤ βeγy upon choosing γ = q− 1 and β = e−γ .
To find β, γ such that (A.2) holds for q ∈ (m + 1, m + 2] where m > 0, the key observation

is that this inequality is always satisfied for y = 0. Therefore, it suffices to choose β, γ such
that the derivative of the left hand side of (A.2) does not exceed the right hand side. By
applying this idea m times, one readily observes that it suffices to require that β, γ satisfy

βγmeγy ≥ (q − 1) · · · (q − m)yq−m−1. (A.5)

Note that the right hand side of (A.5) is concave as a function of y since q−m−1 ∈ (0, 1], and
that the left hand side is convex as a function of y. Therefore, we are in a similar situation
as we were for m = 0. In this case, we choose β and γ such that

βγmeγ = (q − 1) · · · (q − m)
βγm+1eγ = (q − 1) · · · (q − m)(q − m − 1).

Note that β and γ as defined in (2.8) solve this system of equations uniquely. As before,
Theorem 25.1 of Rockafellar [27] is applied twice to see that for y ∈ R+,

(q − 1) · · · (q − m)yq−m−1

≤ (q − 1) · · · (q − m) + (q − 1) · · · (q − m)(q − m − 1)(y − 1)
= βγmeγ + βγm+1eγ(y − 1) ≤ βγmeγy.

Now that we have found simple bounds on yq−1, the assertion in the lemma follows upon
combining these bounds with (A.1):∫ ∞

T
exp

(
−nC0t

1/q
)

dt ≤ qβ

Cq
0

∫ ∞

C0T 1/q

exp(−(n − γ)y)dy

=
qβ

Cq
0(n − γ)

exp
(
−(n − γ)C0T

1/q
)

.

A.2 Proofs for the single-twist method
The key ingredient in the proof of Theorem 1 is a large deviation principle (LDP) known as
Cramér’s theorem. Therefore, we start by discussing this theorem in more detail.

A.2.1 Large deviations for multivariate Gaussian distributions The analysis in Section 4.1
relies on standard large deviation techniques. The reader is referred to Dembo and Zeitouni
[13] for a rigorous introduction to the theory, or to Deuschel and Stroock [14].

Recall that given some T ∈ N, ν
(T )
n denotes the distribution of the centered process

{An(t)/n− µt : t = 1, . . . , T}. The covariance of ν
(T )
n is given by Γ(T )/n, and this covariance

defines an inner product 〈·, ·〉H and norm ‖ · ‖H on RT as follows:

〈x, y〉H := x′
(
Γ(T )

)−1
y, ‖x‖H :=

√
〈x, x〉H.
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This inner product sometimes referred to as Reproducing Kernel Hilbert Space inner product
or Cameron-Martin inner product.

As this paper deals with Gaussian random vectors, we state Cramér’s theorem for the spe-
cial case of Gaussian distributions. The theorem has been generalized to Gaussian measures
on abstract spaces by Bahadur and Zabell [4].

Theorem 4 (Cramér) {ν(T )
n } satisfies the LDP in RT with rate function I : x → 1

2‖x‖2
H,

i.e.,

(i) for any closed set F ⊂ RT : lim supn→∞ 1
n log ν

(T )
n (F ) ≤ −1

2 infx∈F ‖x‖2
H;

(ii) for any open set G ⊂ RT : lim infn→∞ 1
n log ν

(T )
n (G) ≥ −1

2 infx∈G ‖x‖2
H.

T.he proof can be found in Dembo and Zeitouni [13, 2.2.30], noting that

sup
θ∈RT

(
〈θ, x〉 − log

∫
e〈θ,y〉ν(T )(dy)

)
= sup

θ∈RT

(
〈θ, x〉 − 1

2
θ′Γ(T )θ

)
,

which equals 1
2x′ (Γ(T )

)−1
x = 1

2‖x‖2
H. �

A.2.2 Proof of Lemma 3 Lemma 3 is an application of Cramér’s theorem. We have to
prove that

lim
n→∞

1
n

log ν(T )
n (OT ) = −1

2
inf

x∈OT

‖x‖2
H = −1

2
‖r∗‖2

H. (A.6)

The second equality in (A.6) is due to Addie et al. [1]. We therefore turn to the first equality.
It is readily seen that OT is closed in RT . Cramér’s theorem gives an upper bound on the
decay rate of ν

(T )
n (OT ), as well as a lower bound on the decay rate of ν

(T )
n (OT ), where OT

denotes the interior of OT . The first equality of (A.6) now follows upon combining these
upper and lower bounds with the following lemma (applied for r = 0).

Lemma 5 For all r ∈ RT , we have

inf
x∈OT

‖x + r‖2
H = inf

x∈OT

‖x + r‖2
H = − inf

t∈{1,...,T}
(b + (c − µ)t + rt)2

2σ2(t)
.

F.irst note that the interior of the overflow set is given by

OT :=
{
x = (x1, . . . , xT ) ∈ RT : xt + µt > b + ct for some t ∈ {1, . . . , T}} .

Also, evidently,

inf
x∈OT

‖x + r‖2
H = inf

x∈OT,r

‖x‖2
H,

where

OT,r :=
{

x ∈ R(T ) : xt + µt > b + ct + rt for some t ∈ {1, . . . , T}
}

.

A similar reasoning that led to the second equality in (A.6) now yields the desired. �
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A.2.3 Proof of Theorem 1 As outlined in Section 2.2 of [15], it is a consequence of Lemma 5
(with r = 0) that the single exponential twist is asymptotically efficient if and only if

lim sup
n→∞

1
n

log
∫
OT

dλ
(T )
n

dν
(T )
n

(x)λ(T )
n (dx) ≤ −(b + (c − µ)t∗)2

σ2(t∗)
= −2It∗ , (A.7)

cf. (3.6). In principle, the statement can be proven using Theorem 1 of [15]. However,
the argument can be given directly in this case. We apply Varadhan’s Integral Lemma
(Theorem 4.3.1 of Dembo and Zeitouni [13]) to the left hand side of (A.7). In order to check
the conditions for applying this lemma, we note that for γ > 1,

lim sup
n→∞

1
n

log
∫

RT

exp
(
−nγ

b + (c − µ)t∗

σ2(t∗)
xt∗

)
ν(T )

n (dx) = γ2 [b + (c − µ)t∗]2

2σ2(t∗)
< ∞;

use that for a zero-mean normal random variable U (with variance σ2) the moment generating
function is E exp(θU) = exp(θ2σ2/2). Formally, one proceeds by deriving lower and upper
bounds for the integral on the left hand side of (A.7), but, in view of Lemma 5, the resulting
bounds coincide. We may therefore conclude that the lim sup is actually a proper limit; the
reader is referred to Section 3.1 of [15] for more details on this reasoning. Application of
Varadhan’s Lemma gives

lim
n→∞

1
n

log
∫
OT

dν
(T )
n

dλ
(T )
n

(x)ν(T )
n (dx)

= − inf
x∈OT

[
1
2
‖x‖2

H +
b + (c − µ)t∗

v(t∗)
x(t∗) − (b + (c − µ)t∗)2

2v(t∗)

]

= − inf
x∈OT

[
1
2
‖x‖2

H + 〈x, r∗〉H − 1
2
‖r∗‖2

H

]
= −

[
1
2

inf
x∈OT

‖x + r∗‖2
H

]
+ ‖r∗‖2

H

= −1
2

inf
t∈{1,...,T}

(b + (c − µ)t + r∗t )2

σ2(t)
+

(b + (c − µ)t∗)2

σ2(t∗)
,

where the last equality is due to Lemma 5. The claim follows by combining this with (A.7).

A.3 Proofs for the cut-and-twist method
In this subsection, we proof Theorem 2. Observe that for any j ∈ N, by definition of OT (t),

∫
OT (t)

(
ν

(T )
n

tλ
(T )
n

)j

d tλ(T )
n

=
∫
OT (t)

exp
(

nj
(b + (c − µ)t)2

2σ2(t)
− nj

b + (c − µ)t
σ2(t)

xt

)
d tλ(T )

n

≤ exp
(
−nj

(b + (c − µ)t)2

2σ2(t)

)
= e−njIt .

As an aside we mention that this gives (by choosing j = 1), cf. Section 2.2,

pT
n =

T∑
t=1

ν(T )
n (OT (t)) ≤

T∑
t=1

e−nIt .
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The second moment of the cut-and-twist estimator follows from (4.9):

1
N

∫
RT


 ∑

t∈{1,...,T}
1{xt∈OT (t)}

dν
(T )
n

d tλ
(T )
n

(xt)




2

d 1λ(T )
n (x1) · · · d T λ(T )

n (xT )

=
1
N

∑
t∈{1,...,T}

∫
OT (t)

(
ν

(T )
n

tλ
(T )
n

)2

d tλ(T )
n

+
1
N

∑
s,t∈{1,...,T}

s�=t

sλ(T )
n (OT (t)) · tλ(T )

n (OT (t)),

and therefore it is bounded by

1
N


 ∑

t∈{1,...,T}
exp

(
−n

(b + (c − µ)t)2

2σ2(t)

)
2

≤ 1
N

T 2 exp(−2nIt∗),

where the last inequality is due to the definition of t∗ = arg inft It. Now take logarithms,
divide by n, and let n → ∞ to see that the relative efficiency equals 2, cf. (3.6).

A.4 Proofs for the sequential twist method
A.4.1 Proof of Lemma 4 We have to prove that

arg inf
{y∈RT : 1

n

∑j
i=1 Āi+(1−j/n)y∈B}

‖y‖2
H =

Jj+1

σ(t∗j+1)
Γ(·, t∗j+1).

From Lemma 3, we know that the infimum equals J2
j+1. It is not hard to see that µj+1 attains

this value (by strict convexity of ‖ · ‖H, the minimizing argument is even unique).

A.4.2 Proof of Theorem 3 The two assumptions in Condition 2.1 of Dupuis and Wang [17]
hold: since we are in a multivariate Gaussian setup we obviously have an everywhere finite
moment generating function, and Lemma 5 implies that

inf
x∈OT

x′
(
Γ(T )

)−1
x = inf

x∈Oo
T

x′
(
Γ(T )

)−1
x.

The claim is Theorem 2.1 of Dupuis and Wang [17].
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