skip to main content
article

A discrete event method for wave simulation

Published:01 April 2006Publication History
Skip Abstract Section

Abstract

This article describes a discrete event interpretation of the finite difference time domain (FDTD) and digital wave guide network (DWN) wave simulation schemes. The discrete event method is formalized using the discrete event system specification (DEVS). The scheme is shown to have errors that are proportional to the resolution of the spatial grid. A numerical example demonstrates the relative efficiency of the scheme with respect to FDTD and DWN schemes. The potential for the discrete event scheme to reduce numerical dispersion and attenuation errors is discussed.

References

  1. Achenbach, J. 1973. Wave Propagation in Elastic Solids. Elsevier, New York.Google ScholarGoogle Scholar
  2. Bekefi, G. and Barrett, A. H. 1977. Electromagnetic Vibrations, Waves, and Radiation. MIT Press, Cambridge.Google ScholarGoogle Scholar
  3. Bilbao, S. D. 2004. Wave and Scattering Methods for Numerical Simulation. Wiley, New York.Google ScholarGoogle Scholar
  4. Brillouin, L. 1953. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Dover, New York.Google ScholarGoogle Scholar
  5. Giambiasi, N., Escude, B., and Ghosh, S. 2000. GDEVS: A generalized discrete event specification for accurate modeling of dynamic systems. Simulation 17, 3, 120--134. Google ScholarGoogle Scholar
  6. Jammalamadaka, R. 2003. Activity characterization of spatial models: Application to the discrete event solution of partial differential equations. M.S. thesis, University of Arizona, Tucson, Ariz.Google ScholarGoogle Scholar
  7. Kofman, E. 2004. Discrete event simulation of hybrid systems. SIAM J. Sci. Comput. 25, 5, 1771--1797. Google ScholarGoogle Scholar
  8. Muzy, A., Aiello, A., Santoni, P.-A., Zeigler, B. P., Nutaro, J. J., and Jammalamadaka, R. 2005. Discrete event simulation of large-scale spatial continuous systems. In Proceedings of the International Conference on Systems, Man and Cybernetics (SMC). IEEE (Hawaii, USA).Google ScholarGoogle Scholar
  9. Muzy, A., Innocenti, E., Aiello, A., Santucci, J.-F., and Wainer, G. 2005. Specification of discrete event models for fire spreading. Simulation 81, 2, 103--117. Google ScholarGoogle Scholar
  10. Muzy, A., Innocenti, E., Santucci, J. F., and Hil, D. R. C. 2003. Optimization of cell spaces simulation for the modeling of fire spreading. In Proceedings of the 36th Annual Simulation Symposium. IEEE (Orlando, Fla.), 289--296. Google ScholarGoogle Scholar
  11. Muzy, A. and Nutaro, J. 2005. Algorithms for efficient implementations of the DEVS & DSDEVS abstract simulators. In Proceedings of the 1st Open International Conference on Modeling & Simulation. ISIMA/Blaise Pascal University (France), 401--407.Google ScholarGoogle Scholar
  12. Nicol, D., Liu, J., and Cowie, J. 2000. Safe timestamps and large-scale modeling. In Proceedings of the 14th Workshop on Parallel and Distributed Simulation. IEEE (Bologna, Italy), 71--80. Google ScholarGoogle Scholar
  13. Nutaro, J. J., Zeigler, B. P., Jammalamadaka, R., and Akerkar, S. R. 2003. Discrete event solution of gas dynamics within the DEVS framework. In Proceedings of the International Conference on Computational Science, P. M. A. Sloot et al., eds. Lecture Notes in Computer Science, vol. 2660. Springer, Melbourne, Australia, 319--328. Google ScholarGoogle Scholar
  14. Shlager, K. and Schneider, J. 1998. A survey of the finite-difference time-domain literature. In Computational Electrodynamics: The Finite-Difference Time-Domain Method, A. Taflove, ed. Artech House, Boston, Mass. 1--62.Google ScholarGoogle Scholar
  15. Taflove, A. 1995. Computational Electrodynamics. Artech House, Boston, Mass.Google ScholarGoogle Scholar
  16. Tang, Y., Perumalla, K., Fujimoto, R., Karimabadi, H., Driscoll, J., and Omelchenko, Y. 2005. Parallel discrete event simulations of physical systems using reverse computation. In Proceedings of the ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation (PADS) (Monterey, Calif.). Google ScholarGoogle Scholar
  17. Wieland, F. 1997. The threshold of event simultaneity. In Proceedings of the 11th Workshop on Parallel and Distributed Simulation. IEEE (Lockenhaus, Austria). 56--69. Google ScholarGoogle Scholar
  18. Zeigler, B. P., Praehofer, H., and Kim, T. G. 2000. Theory of Modeling and Simulation, 2nd Ed. Academic Press, San Diego, CA. Google ScholarGoogle Scholar
  19. Zeigler, B. P., Sarjoughian, H., and Praehofer, H. 2000. Theory of quantized systems: DEVS simulation of perceiving agents. Cybernetics Syst. 31, 6 (Sept.), 611--647.Google ScholarGoogle Scholar

Index Terms

  1. A discrete event method for wave simulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Modeling and Computer Simulation
        ACM Transactions on Modeling and Computer Simulation  Volume 16, Issue 2
        April 2006
        101 pages
        ISSN:1049-3301
        EISSN:1558-1195
        DOI:10.1145/1138464
        Issue’s Table of Contents

        Copyright © 2006 ACM

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 April 2006
        Published in tomacs Volume 16, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader