
Automatic Transformation of Series Expressions

into Loops

RICHARD C, WATERS

MIT Artificial Intelligence Laboratory

The benefits of programming in a functional style are well known. In particular, algorithms

that are expressed as compositions of functions operating on sequences/vectors/streams of data

elements are easier to understand and modify than equivalent algorithms expressed as loops.

~Tnfortunately, this kind of expression is not used anywhere near as often as it could be, for at

least three reasons: (1) most programmers are less familiar with this kind of expression than with

loops, (2) most programming languages provide poor support for this kmd of expression; and

(3) when support is provided, it 1s seldom efficient

In any programming language. the second and third problems can be largely solved by in-

troducing a data type called series, a comprehensive set of procedures operating on series, and

a preprocessor (or compiler extension) that automatically converts most series expressions into

efficient loops. A set of restrictions specifies which series expressions can be optimized If pro-

grammers stay within the limits imposed, they are gllaranteed of high efficiency at all times.

A Common Lisp macro package supporting series has been in use for some time. A prototype

rfemonst rates that series can be straightforwardly supported in Pascal.

Categories and Subject Descriptors D. 1.1 [Programming Techniques] Applicative (Func-

tional) Programming; D. 3.2 [Programming Languages]: Language Classificat ions—Pascal,

Lzsp; D.3.3 [Programming Languages]: Language Constructs-control stTuctur-es; D 34 [Pro.

gramming Languages]: Processors—preprocessors, nptr,mr,zatzo~ E.1 [Data Structures] —
lzsts; I 2.2 [Artificial Intelligence]: Automatic Programming—program tran.sfownatton

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Sequences, Vectors, Streams, Series

1. SEQUENCE EXPRESSIONS

The mathematical term sequence refers to a mapping from the non-negative integers

(or some initial subset of them) to values. Whether called sequences [5, 37], vec-

tors [24, 32, 33, 37], lists [37], streams [6, 20, 26, 31], sets [36], generators [19, 49], or

flows [35], data structures providing complete (or partial) support for mathematical

sequences are ubiquitous in programming.

The most common use for sequence data structures is as mutable aggregate stor-

age. Almost every programming language provides operations for accessing and

altering the elements of at least one such structure.

Author’s address: MIT Artlficial Intelligence Laboratory, 545 Technology Square, Cambridge MA

02139.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to repubhsh, requires a fee and/or specific

permission.
C 1991 ACM 0164-0925/91/0100-0052 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991, Pages 52-98

http://crossmark.crossref.org/dialog/?doi=10.1145%2F114005.102806&domain=pdf&date_stamp=1991-01-01

Automatic Transformation of Series Expressions into Loops “ 53

Sequences have another use that is potentially just as important and yet is sup-

ported by only a few languages: Most algorithms that can be expressed as loops can

also be expressed as functional expressions manipulating sequences. For example,

consider the problem of computing the sum of the squares of the odd numbers in

a file Data. This can be done using a loop as shown in the following Pascal [25]

program.

type FileOf Integer = file of Integer;

function FileSumLoop (var Data: FileOf Integer) : Integer;
var Sum: Integer;

begin
Reset (Data) ;
sum := o;
while not Eof (Data) do

begin
if Odd(Data-) then Sum := Sum+Sqr~Data-);
Get (Data)

end;
FileSumLoop := Sum

end

Alternatively, the sum of the squares of the odd numbers in the file can be

computed using the sequence expression shown below. This expression assumes

that four subroutines have been previously defined: collect sum computes the sum

of the elements of a sequence; MapFn computes a sequence from a sequence by

applying the indicated function to each element of the input; Choose If selects the

elements of a sequence that satisfy a predicate; and ScanFile creates a sequence of

the values in a file.

function FileSum (var Data: FileOf Integer): Integer;
begin

FileSum := CollectSum(MapFn (Sqr, ChooseIf(Odd, ScanFile(Data))))
end

For those who are not accustomed to functional programming, the greater fa-

miliarityof the program FileSumLoop may make it appear preferable. However, the

program FileSum has two important advantages. First, thepatterns of computation

that are mixed together in the loop in FileSumLoop are pulled apart. Second, each

of these subcomputations isdistilled into a subroutine. For example, the pattern of

initializing a variable to o and then repetitively accumulating a result by addition

is distilled into CollectSum.

Because the subcomputations are pulled apart, they can be understood in isola-

tion. The action of the expression as a whole is the composition of the actions of the

subcomput at ions. This makes Fi.leSum more self-evidently correct than File SumLoop.

The separation oft he subcomput ations also means that they can be altered in isola-

tion. This makes FileSum easier to modify. The distillation of the subcomputations

into subroutines makes FileSum shorter and enhances the reusability of the sub-

computations. It also enhances reliability y in two ways. Since the subcomput ations

are being explicitly reused instead of regenerated by the programmer from memory,

there is less chance of error. In addition, since each subroutine can be reused many

times, it is practical to work very hard to ensure that the algorithm used in the

subroutine is robust.

Unfortunately, there are two problems that inhibit most programmers from writ-

ing programs like Fi leSum. First, most programming languages provide very few

ACM TransactIons on Programming Languages and Systems, Vol. 13, No, 1, ,January 1991.

54 “ Richard C. Waters

predefined procedures that operate onsequences as aggregates, rather than merely

operating on their individual elements. Second, even in languages such as APL and

Common Lisp, where a wide range of sequence operations are available, sequence

expressions are typically so inefficient (2 to 10 times slower than equivalent loops),

that programmers are forced to use loops whenever efficiency matters.

The primary source of inefficiency when evaluating sequence expressions is the

physical creation of intermediate sequence structures. This requires a significant

amount of space overhead (for storing elements) and time overhead (for accessing

elements and paging). The key to solving the efficiency problem is the realiza-

tion that it is often possible to transform sequence expressions into a form where

the crest ion of intermediate sequence structures is eliminated. For example, it is

straightforward to transform the expression in FlleSum into the loop in FileSumLoop.

A transformational approach to the efficient evaluation of sequence expressions

has been used in a number of contexts. For example, it is used by optimizing APL

compilers [12, 22], Wadler’s Listless Transformer [39, 40] which can improving the

efficiency of programs written in a Lisp-like language, and Bellegarde’s transfor-

mation system [7, 8] which can improve the efficiency of programs written in the

functional programming language FP [5]. In addition, Goldberg and Paige [18] have

shown that the transformational approach can be used to improve the efficiency of

data base queries.

Unfortunately, it is not possible to completely transform every sequence expres-

sion into an efficient loop. There are two basic ways to deal with this problem.

First, one can hide the issue from the programmer and simply transform what can

be transformed. Second, one can develop a set of restrictions defining what can be

transformed and communicate with the programmer about the transformability of

individual sequence expressions.

The hidden approach, which is followed by all the systems above, has the ad-

vantage that programmers can benefit from increased efficiency in some situations

wit bout having to think about efficiency in any sit uat ion. However, it makes it

difficult for programmers to think about efficiency when they want to, because

they have no way of knowing for sure whether a given sequence expression will be

completely transformed. This is significant, because sequence expressions typically

remain quite inefficient if any part of them fails to be transformed. In addition,

quite simple changes in an algorithm often suffice to change an untransformable

expression into a transformable one. As a result, it is not really a favor to hide the

issue of t ransformabilit y from programmers.

The most important contribution of the research reported here is a set of restric-

tions that can serve as a basis for the communicative approach to the transforma-

tion of sequence expressions into loops. As discussed in Section 2, these restrictions

identify a class of optimizable sequence expressions that can always be completely

transformed. The rest rict ions are novel in two ways. First, they are explicit. While

every system that optimizes sequence expressions implicitly embodies some set of

restrict ions, the rest rict ions used are not explicit except in the work of Wadler [.41].

Second, the restrictions in Section 2 are less strict than most other sets of restric.

tions. In particular, they are less strict than Wadler’s restrictions.

Sections 3–6 show how the communicative approach can be used to add com-

prehensive and efficient support for sequence expressions into any programming

language. This is done by adding a new sequence data type called series and a

ACM TransactIons on Programmmg Languagesand Systems, Vol. 13, No. 1, January 1991.

Automatic Transformation of Series Expressions into Loops “ 55

preprocessor that can transform optimizable series expressions into loops. The

support for series utilizes the optimizability restrictions in two ways. One of the

key restrictions is enforced by selecting the set of predefined series operations so

that the restriction cannot be violated. The rest of the restrictions are explicitly

checked by the preprocessor. Non-optimizable expressions are flagged with warning

messages and left unoptimized. If users take the time to make each series expres-

sion optimizable, they can have complete confidence that every series expression is

efficient. This is facilitated by the fact that simple series expressions that only use

each series once can always be optimized.

Section 3 presents the series data type and a broad suite of associated functions.

Currently, the most comprehensive support for series is in Common Lisp. This im-

plement ation [47, 48] is presented in Section 4, along with an extended Lisp example

showing how series expressions can be used. A prototype implementation [29, 46]

shows that series expressions can also be added into Pascal. This implementation

is presented in Section 5, along with an extended Pascal example of how series ex-

pressions can be used. Readers are encouraged to focus on whichever of Section 4

or 5 discusses the most familiar language.

Section 6 presents the algorithms used to transform optimizable series expressions

into loops. It should be noted that these algorithms are not capable of optimizing

expressions computing series of series. However, it should also be noted that series of

series are not necessary when expressing looping algorithms as series expressions. In

particular, while algorithms involving nested loops can be expressed as expressions

computing series of series, they do not have to be expressed that way.

Section 7 concludes by comparing series expressions with related concepts. The

comparison includes both other implementations of sequences and other approaches

to expressing loops in ways that are easy to understand and modify.

1.1 Getting Rid of Loops

To fully appreciate the practical impact of series expressions in general and optimiz-

able ones in particular, one must return to the perspective of sequence expressions

as a notational variant for loops. The program File Sum is an example based on the

Pascal implementation of series. The series expression in it is optimizable and is

transformed into a loop essentially identical to the one in FileSumLoop. As a result,

it is not merely the case that FileSumLoop and FileSum compute the same result

using the same abstract algorithm; the two programs denote exactly the same de-

tailed computation. Using the expression in FileSum, one gains the advantages of

functional form without paying any price in terms of efficiency or anything else,

because there is no change in anything other than the form.

The value of optimizable series expressions as an alternate notation for loops is

directly related to the percentage of loops that can be profitably replaced by them.

Any loop can be expressed as an optimizable series expression by converting the

subcomput at ions used in it into series operations and composing them together. (At

worst, the entire loop becomes a single series operation.) The value of doing this

depends on how many fragments the loop can be decomposed into and how many

of these fragments correspond to familiar computations. In general, the change is

advantageous as long as there is at least one familiar fragment, because at the least,

there is value in separating the familiar from the unfamiliar.

An informal study [42] revealed that approximately 80% of the loops program-

ACM Transactions on Programmmg Languages and Systems, Vol 13, No 1, January 1991

56 “ Richard C. Waters

mers typically write are constructed solely by combining just a few dozen familiar

looping fragments. (A somewhat similar study is reported in [16].) Experience

with the Lisp implementation of series indicates that at least 95% of loops contain

some familiar comput at ion. Given this, the practical benefit of opt imizable series

expressions can be summarized as follows:

Optimizable series expressions are to loops

as structured control constructs are to gotos.

Structured control constructs (If. then. else , case, while do, etc.) are not

capable of expressing anything that cannot be expressed using got os. In addition,

there are probably a few algorithms for which the use of gotos is preferable. Nev-

ertheless, in almost every situation, structured control constructs are much better

to use than gotos. They are better, not because they allow more algorithms to be

expressed, but because they allow the same algorithms to be expressed in a way

that is much easier to understand and modify.

Optimizable series expressions have exactly the same advantage. They do not

allow algorithms to be expressed that cannot be expressed as loops. However, they

allow algorithms to be expressed in a much better way. The only place where

the analogy with structured control constructs breaks down is that while one can

argue that gotos are never needed, there are definitely some algorithms that can be

expressed better as loops than as opt imizable series expressions.

At the current time, most programs contain one or more loops and most of the

interesting computation in these programs occurs in these loops. This is quite

unfortunate, since loops are generally acknowledged to be one of the hardest things

to understand in any program. If opt imizable series expressions were used whenever

possible, most programs would not cent ain any loops. This would be a major step

forward in conciseness, readability y, verifiability, and maintainability.

2. OPTIMIZABLE SEQUENCE EXPRESSIONS

As noted above, the primary source of inefficiency when evaluating sequence ex-

pressions is the creation of physical intermediate sequences. There are two aspects

to this. First, a sub expression may waste time computing sequence elements that

are not used by the rest of the expression. Second, even when all the elements of an

intermediate sequence are used, constructing a physical data structure containing

the elements wastes a significant amount of time and space.

The problem of computing unused sequence elements can be overcome by using

lazy evaluation [17] to ensure that sequence elements are not computed until they

are needed. (This also makes it easy to support unbounded sequences.) However,

lazy evaluation does little to reduce the waste associated with constructing physical

intermediate sequences. In particular, in sit uat ions where the elements of a sequence

are all used, lazy evaluation wastes time and does not save any space. Time is

wasted, because coordination overhead is required to decide when to compute the

elements. The same space is used, because a physical intermediate sequence is still

crest ed. (Each element has to be stored somewhere after it is computed; otherwise,

a later reuse of the element would require recomputation.)

All of the waste associated with constructing physical intermediate sequences

and much of the waste associated with computing unused sequence elements can

be eliminated by pipelining the evaluation of a sequence expression.

ACM TransactIons on Programming Languages and Systems, Vol. 13, No 1, January 1991

Automatic Transformation of Series Expressions into Loops o 57

Definition 1 (pipelined) The evaluation of a sequence expression E is pipelined if

and only if the following two conditions hold for every sequence S computed by any

sub expression of E. First, each element of S is computed at most once. Second,

when an element is computed, it is used wherever it needs to be used and then

discarded before any other element of S is computed.

The primary implication of Definition 1 is that, while some of the procedures

called by E may buffer sequence elements within themselves, no buffering is needed

when transferring sequence elements between the subexpressions of E. Rather, each

sequence is transmitted one element at a time between the procedure that creates

it and the procedures that use it.

Consider the program CosMax below (which like most of the examples in this

paper, is written using the Pascal implementation of series discussed in Section 5).

The first statement in the body of CosMax computes a sequence Vals of the numbers

in a file Data. The second statement computes a sequence of scaled values by

dividing each value by its cosine. The third statement computes the maximum of

the scaled values.

function CosMax (var Data: FileOfReal) : Real;
var Vals, ScaledVals: series of Real;

begin
Vals : = ScanFile(Data) ;
ScaledVals := MapFn(/, Vals, MapFn(Cos, Vals)) ;
CosMax : = CollectMax(ScaledVals)

end

The body of CosMax can be evaluated in many ways, some of which are pipelined

and some of which are not. The standard non-pip elined method of evaluation

proceeds in four steps. The numbers in the file are read and stored in a physical

interrnediate data structure. The cosine of each number is computed and stored in a

second physical intermediate data structure. The result of dividing each number by

its cosine is stored in a t bird physical intermediate data structure. The maximum

element of the third intermediate structure is determined.

In contrast, the standard pipelined method of evaluation operates on the input

numbers one at a time as follows. Each time a number is read from the file, it

is immediately divided by its cosine and the scaled value is used to update an

accumulator keeping track of the maximum value encountered. Since neither the

number, its cosine, nor the scaled valued is needed for later processing, they are

discarded before the next number is read.

If the basic schedule for what to evaluate when can be determined at compile time

(as opposed to at run time) then the pipelined evaluation of a sequence expression

is as efficient as the evaluation of an equivalent loop. Unfortunately, pipelining

(at compile time or at run time) is not always possible. For example, consider the

program NormalizedMax below. This program is the same as CosMax except that each

input number is divided by the sum of the input numbers, rather than by its own

cosine. (series creates a sequence indefinitely repeating the value of its argument.)

In NormalizedMax, pipelined evaluation is impossible, because the two uses of Vals

place contradictory constraints on the way pipelined evaluation must proceed. In

particular, pipelining requires that each time an element of Vals is computed, it

must be used immediately—i.e., both as part of computing the sum and as the

numerator of a division. However, the division cannot be performed until after the

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991,

58 “ Richard C. Waters

sum has been computed and the computation of the sum cannot be completed until

after all the elements of Vals have been computed. As a result, one either has to

save the elements of Vals in an intermediate data structure, or recompute them

when it is time to do the divisions.

function NormalizedMax (var Data: FileOfReal) : Real;
var Vals, ScaledVals: series of Real;

begin
Vals := ScanFile(Data);
ScaledVals := MapFn(/, Vals, Series(CollectSum(Vals)));
NormalizedMax := CollectMax(ScaledVals)

end

Given the existence of programs like NormalizedMax, it is clear that arrysystem

that supports pipelining can only do so for a restricted class of sequence expressions.

Whatever the system, it invaluable forthese restrictions to be made explicit. Ifin

addition, the programmers given feedback about which expressions failto meet the

restrictions, two further advantages are obtained. The programmer is given a clear

picture of which expressions are efficient and which are not, and the programmer

has the opportunity to change inefficient expressions so that they can be pipelined.

It would be nice to have a set of necessary and sufficient restrictions specifying

exactly which sequence expressions can be pipelined. However, there are a number

of reasons why a somewhat stricter set of restrictions is of greater pragmatic benefit.

First, the restrictions must be associated with practical algorithms that can check

whether the restrictions hold and can actually perform the pipelining. Second, the

restrictions must be sufficiently straightforward that programmers can succeed in

fixing expressions that violate them.

The primary contribution of the work presented here is a set of four restrictions

that are practical and straightforward without being excessively strict. These re-

strictions define a class of optimizable sequence expressions that can be pipelined

at compile time by transforming them into loops, using the algorithms in Section 6.

2.1 Straight-Line Expressions

In the interest of simplicity, optimizable sequence expressions are required to be

straight-line comput at ions, not ,sub ject to any conditional or looping cent rol flow.

While it is likely that looping control flow in sequence expressions must be pro-

hibited, simple conditional control flow could probably be allowed. However, this

would complicate the algorithms in Section 6 in a number of ways. Conveniently,

much of what can be done using conditional control flow can be done using sequence

operations like Choose If instead.

Restrictiorl 1 (straight-line) Optimizable sequence expressions must be straight-

line comput at ions.

One aspect of the simplicity engendered by the straight-line restriction is that it

allows sequence expressions to be represented using simple data-flow graphs. For

example, Figure 1 depicts the data-flow graph corresponding to the body of the

program Normal izedMax. In the figure, procedure calls are represented by boxes.

The inputs and outputs of each procedure are represented by dots on the left and

right edges (respectively) of the boxes. Data flow is represented by arrows between

the ports. Simple arrows indicate the flow of sequences. Cross hatched arrows

indicate the flow of other values. Because the only expressions of int crest are

ACM TransactIons on Programming Languages and Systems. Vol. 13, No 1, January 1991

Automatic Transformation of Series Expressions into Loops o 59

Fig. 1. The sequence expression in Normal izedMax.

straight-line ones, there is no need to consider control flow.

2,2 Static Analyzability

As with most other optimization processes, it is not possible to pipeline a sequence

expression at compile time, unless it can be determined at compile time exactly

what computation is being performed.

Restriction 2 (static analyzability) Optimizable sequence expressions must be

statically analyzable. A sequence expression is statically analyzable if and only if

each sequence value is computed and consumed by explicit calls in the expression

on previously defined sequence procedures whose bodies are statically analyzable.

Static analyzability guarantees that it will always be clear exactly how each

sequence is being computed and used. Unfortunately, it also implies that every

sequence computed in an optimizable sequence expression must be used solely inside

the same sequence expression. Further, a sequence cannot be stored in a sequence

or in any other kind of data structure. Arbitrary storage of sequences in data

structures is bound to block compile-time pipelining. However, certain limited

cases could be allowed. For inst ante, one can sometimes determine how a sequence

cent ained in another sequence is being computed. The practicality y of this has been

demonstrated by compilers for APL [12], Hibol [35], and Model [33].

The static analyzability restriction allows user-defined sequence procedures to be

used. However, it requires that each sequence procedure be defined before its first

use and that this definition be available to the compiler at the point of use. This

is required by any process that calls for the inline compilation of procedure calls.

2.3 The Preorder Restriction

Suppose that a procedure call T uses a sequence computed by another procedure

call G. For the comput at ion of these two calls to be pipelinable, two conditions

must be satisfied. First, it must be the case that the sequence elements are created

and consumed one at a time. Second, the elements must be consumed in the same

order they are created. A good way to ensure that this will always be the case is to

pick some fixed order and require that every procedure process every sequence one

element at a time in that order. Given a desire to support unbounded sequences, a

good order to pick is the natural order of the elements starting with the first.

Restriction 3 (preorder) Every procedure called by an optimizable sequence

expression must be preorder. A procedure is preorder if and only if it processes

the elements of each of its sequence inputs and outputs one at a time in ascending

order starting with the first element.

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1. January 1991.

60 . Richard C. Waters

It is important to note that the restriction above applies to procedures, rather

than functions. In this paper, the word procedure is used to refer to a particular

algorithm that implements a mathematical function, while the word function is

reserved for referring to a mathematical function. The term preorder applies to

procedures, rather than functions, because it is a property of the way a computa-

tion is performed, not of the mathematical relationship between the input and the

output

For example, consider computing the sum of the elements in a sequence. Sum-

mation can be implemented in many different ways, some of which are preorder and

some of which are not. The procedure CollectSum operates in preorder, reading the

sequence elements one at a time and adding each one into a running sum. However,

one could choose to read the elements in reverse order, or two at a time, or in some

other non-preorder way.

Any sequence function can be implemented as a preorder procedure. Therefore,

the preorder rest riction does not limit what functions can be used, but rather only

how they can be implemented. In addition, most of the time, a preorder imple-

ment at ion is no less efficient than any other implement at ion. However, preorder

processing sometimes requires more buffering of input elements than would other-

wise be required. This issue is discussed further at the end of this section.

2.4 The On-Line Cycle Restriction

Before looking at the last restriction optimizable sequence expressions must satisfy,

it is useful to consider the following property.

Definition 2 (on-line and off-line) An input or output port of a procedure is

on-line if and only if it reads or writes a sequence and operates in lock step with

all the other on-line ports of the procedure as follows: The initial element of each

on-line input is read, then the initial element of each on-line output is written, then

the second element of each on-line input is read, then the second element of each

on-line output is written, and so on for the rest of the elements. If the sequence

ports of a procedure are all on-line, the procedure as a whole is on-line. If a port

or procedure is not on-line, it is off-line.

Definition 2 extends the standard definition of the term on-line [1, 23] so that it

applies to individual ports as well as whole procedures. Like the definition of the

term preorder, Definition 2 applies to procedures, rather than functions.

For example, consider the operation of mapping a procedure > over the elements

of one or more sequences. Mapping can be implemented in many different ways,

some of which are on-line and some of which are not. The procedure MapFn operates

in an on-line way, reading the first element of each input sequence, applying 7 to

these values, writ ing the result as the first output element, and so on until the

inputs are exhausted. However, one could choose to implement mapping in an off-

line way by accelerating the reading of one or more inputs or delaying the writing

of the output.

There is a close relationship between on-line processing and preorder processing.

In particular, every on-line procedure is preorder and every preorder procedure that

has only one sequence input or output is trivially on-line. However, when more than

one sequence port is involved, on-line processing is more constrained than preorder

processing. In particular, while every mathematical function can be implemented

ACM Transactions on Programming Languagesand Systems, Vol. 13, No. 1, January 1991.

Automatic Transformation of Series Expressions into Loops o 61

as a preorder procedure, there are many functions that cannot be implemented as

on-line procedures.

For example, consider the operation of selecting the elements of a sequence that

satisfy a predicate P. It is impossible for this to be implemented as an on-line

procedure. The problem is that since some of the elements of the input do not

become elements of the output, the writing of the elements of the output cannot

remain in lock step with the reading of the elements of the input—as soon as an

input element is skipped, the output gets out of phase.

Consider a related function that takes two sequences, a sequence of boolean

values and some other sequence, and returns the elements of the second sequence

that correspond to true values in the first sequence. It is also impossible for this

function to be implemented as an on-line procedure. However, note that the output

is the only problem. There is no difficulty in having the two inputs be on-line.

Definition 2 specifies what it means for individual ports to be on-line in order to

capture the fact that functions like the one proposed in this paragraph can be

implemented in ways that are partly on-line.

Returning to a discussion of pipelinability in general, and the example programs

CosMax and NorrnalizedMax used in the beginning of this section in particular, the

concept of on-line processing is the key to understanding why the computation in

CosMax can be pipelined while the computation in NormalizedMax cannot.

Recall that the evaluation of the sequence expression in NormalizedMax (see Fig-

ure 2) cannot be pipelined, because pipelining imposes contradictory constraints on

the way the output of ScanFile must be computed. The procedure CollectSum re-

quires that all the elements of its input be produced before the sum can be returned

and Series requires that its input be available before it can start producing its out-

put. However, MapFn requires that the first element of its two sequence inputs be

simultaneously available. For pipelining to work, this implies that the first element

of the output of Series (and therefore the output of CollectSum) must be available

before the second element of the output of ScanFile is computed. Unfortunately, if

the output of ScanFile contains more than one element, this is impossible.

The essence of the problem above can be broken down into two parts. First, there

is a cycle of interacting constraints. Second, these constraints are inconsistent with

each other.

The expression in Figure 2 is associated with a cycle of interacting constraints,

because it contains a non-directed data-flow cycle. In particular, the data-flow arcs

connecting ScanFile, CollectSum, Series, and MapFn form a non-directed cycle.

If an expression does not contain any non-directed data flow cycles, then all of the

constraints on pipelining are completely independent and cannot be inconsistent.

However, while the presence of a data flow cycle implies that the constraints are not

independent, it does not necessarily imply that they are inconsistent. For example,

the sequence expression in CosMax (shown in Figure 3) is pipelinable even though it

contains a non-directed data flow cycle. It is possible to guarantee that data flow

cycles will not lead to inconsistencies by requiring that they be on-line.

Restriction 4 (on-line cycle) Every non-directed data flow cycle in an optimizable

sequence expression must be on-line. A non-directed data-flow cycle is on-line if

and only if, whenever it passes through two ports of the same procedure call, the

two ports are both on-line.

ACM Transactions on Programmmg Languages and Systems, Vol. 13. No. 1, January 1991.

62 . Richard C Waters

Fig. 2. Theseqllence expression in NormalizedMax

Fig. 3. The sequence expression in CosMax.

The non-directed data-flow cycle in Figure 3 is on-line, because the input and

output of MapFn Cos along with both inputs of MapFn / are on-line. It does not

matter that the output of ScanFile is on-line, because the cycle does not pass

through any other port of ScanFile. In contrast, the non-directed data-flow cycle

in Figure 2 is off-line, both because the output of CollectSum is off-line and because

the input of Series is off-line.

To understand why on-line cycles guarantee pipelinability, it is useful to think

of the cycles in Figures 2 and 3 as consisting of two branches (an upper branch

and a lower branch). If pipelining is to work, the processing of elements along

the two branches must be synchronized. If the cycle is on-line, the lock-step

synchronization each step of the way guarantees that each branch will be com-

pletely synchronized and therefore the two branches will balance. In cent rast, if

(as in Figure 2) one branch contains an off-line port while the other does not, one

branch will be synchronized while the other is not, and the two branches will not

be balanced. (In either case, it does not matter whether the output of ScanFile

is on-line, because the relationship between the processing at this port and the

processing at the other ports of ScanFile is not relevant to either branch of the

cycle.)

The output of CollectSum is off-line because it is a non-sequence port. The pro-

gram PositiveMax below illustrates that off-line sequence ports also block pipelining.

This program is identical to CosMax (see Figure 3) except that MapFn CO. is replaced

with ChooseIf positive. The scaled numbers in Posit iveMax are computed by di-

viding the ith element of Vals by the ith positive element of Vals.

function Posit iveMax (var Data: FileOfReal) : Real;
var Vals ,ScaledVals : series of Real;
function Positive (X: Real) : Boolean;

begin Positive := X>O. O end;
begin

Vals := ScanFlle(Data);

ScaleclVals := IlapFn(/, Vals, ChooseIf(Positive, Vals));
Posit iveMax := CollectMax (ScaledVals)

end

ACM Transactions on Programming Lan~ages and Systems, Vol. 13, No. l,,January 1991.

Automatic Transformation of Series Expressions into Loops ● 63

Fig. 4. The qualitative effect of the on-line cycle restriction.

As in the program NormalizedMax, the two branches of the computation cannot

be reliably synchronized, because the output of Choose If Positive will get out of

phase with Vals as soon as a non-positive element is encountered. In particular,

suppose that the first and third elements of Vals are positive while the second is

not. In this situation, the second output element of Choose If will not be available

until after the t bird element of Vals has been computed. Depending on the input,

the unbalanced delay in Posit iveMax may be very small or even zero. However,

compile-time pipelining is only possible when it is known that there will never be

any unbalanced delay.

The on-line cycle restriction is stronger than it has to be, because it is possi-

ble for both branches of a cycle to contain off-line ports and therefore both be

desynchronized and yet still balance, because they are identically desynchronized.

However, the only common situation where balanced desynchronization occurs in

practice is indirectly handled by the restrictions above. If the non-sequence output

in the lower branch of the cycle in Figure 2 were balanced by a second non-sequence

output in the upper branch, then it would be possible to view the expression as

a whole as two separate expressions (one on the left and one on the right) which

could be individually optimized.

The on-line cycle restriction forces optimizable sequence expressions to take on

the qualitative form illustrated in Figure 4. In particular, the restriction forces

a two-level structure of connectivity. At the bottom level, there are a number of

clusters of procedure calls. Within each cluster, arbitrarily complex interconnection

can be used; however, all of the ports participating in this data flow must be on-

line. In contrast, the overall inputs and outputs of the on-line clusters can be

off-line; however, the top-level data flow connecting the clusters cannot cent ain any

non-directed data-flow cycles.

From a pragmatic perspective, the limits imposed by the on-line cycle restriction

are softened by the fact that several of the most commonly used sequence procedures

compute sequences from sequences in a completely on-line way. Nevertheless, the

on-line cycle restriction is by far the most stringent of the restrictions on optimizable

sequence expressions.

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, <January 1991.

64 “ Richard C. Waters

25 Summary of Restrictions

The four restrictions discussed above can be summarized as follows. A sequence

expression is optimizable if and only if

(1) It is a straight-line computation; and

(2) It is statically analyzable; and

(3) Every procedure called by it is preorder; and

(4) Every non-directed data-flow cycle in it is on-line.

The first restriction greatly simplifies the algorithms in Section 6, but is undoubt-

edly stronger than necessary. It is hoped that it will be weakened in the future. A

restriction analogous to the second one is required for any optimization that is to be

applied at compile time as opposed to run time. The third restriction ensures that

isolated pairs of sequence procedure calls can be pipelined. The fourth restriction

ensures that every optimizable sequence expression will have the form shown in

Figure 4. Together, the restrictions ensure that the following divide-and-conquer

approach can be used to pipeline an optimizable sequence expression.

If an opt imizable sequence expression consists of a single on-line cluster, pipelin-

ing can be achieved by simply evaluating every procedure call in lock step, one

element at a time. If there is more than one cluster, then (since the top-level data

flow is cycle-free) the expression as a whole can always be divided into two non-

overlapping sub expressions that are connected by a single data flow. The expression

as a whole can be pipelined by pipelining the evaluation of the two sub expressions

separately and using a simplified form of lazy evaluation to interleave the evalua-

tion of the subexpressions in a pipelined fashion. The lazy evaluation is simplified

because the method for determining which sub expression to evaluate when is very

simple. The source subexpression needs to be evaluated when and only when the

single destination subexpression needs to read a new value computed by it.

2.6 Obeying the Restrictions

In the implement at ions discussed in the following sections, the preorder restriction

is implicitly enforced by ensuring that every predefine procedure is preorder and

ensuring that there is no way to define a non-preorder procedure. (Note that the

composition of two preorder procedures is preorder.)

The other three restrictions are explicitly checked. Whenever an expression sat-

isfies these rest rictions, the algorithms in Section 6 are used to transform the ex-

pression into an efficient loop. When they are not satisfied, a warning is issued.

In the current Pascal implementation, these warnings are fatal errors. However, in

the Lisp implementation, expressions that do not satisfy the restrictions are simply

left as is and evaluatedicompiled without optimization.

It is straightforward to follow the straight-line and static analyzability restric-

t ions. However, the on-line cycle restriction is significantly more complex. Experi-

ence suggests that the best approach for programmers to take is to write expressions

without worrying about the on-line cycle restriction and then fix any expressions for

which warning messages are reported. The virtues of this approach are enhanced by

the fact that simple expressions are very unlikely to violate any of the restrictions.

In particular, it can be shown that if every sequence procedure in an expression has

only one output and sequence outputs are not stored in variables, then the on-line

cycle rest rict ion cannot be violated.

ACM Transactions on Programmmg Languages and Systems, Vol. 13, No. 1, January 1991

Automabc Transformation of Series ExpressIons into Loops “ 65

{)ScanFilet

MapFn / ~I Collect-
Max

B

thScanFileo ,
Collect-

Sum
) Series 4

Fig. 5. Thesequence expression in NormalizedMaxA.

Violations of the on-line cycle restriction can always be fixed by using code copy-

ing to break the offending cycle. For inst ante, the program Normal izedMax can be

brought into compliance with the on-line cycle restriction by duplicating the call on

ScanFile as in NormalizedMaxA. This breaks the cycle and converts the expression

into one that is opt imizable (see Figure 5).

function NormalizedMaxA (var Data: FileOfReal) : Real;
var ScaledVals: series of Real;

Sum: Real;
begin

sum := CollectSum(ScanFile (Data));
ScaledVals := MapFn(/, ScanFile(Data), Series(Sum));
NormalizedMaxA := CollectMax(ScaledVals)

end

It would be possible to automatically introduce code copying to resolve conflicts

with the on-line cycle restriction. However, this can leadto significant inefficiencies.

It is better to leave it up to the programmer to figure out how to fix conflicts.

For example, the procedure NormalizedMax can be brought into compliance more

efficiently, by realizing that the operations ofcomputing the maximum and dividing

by the sum commute as shown in Normal izedMaxB.

function NormalizedMaxB (var Data: FileOfReal): Real;
var Vals: series of Real;

begin
Vals := ScanFile(Data);
NormalizedMaxB := CollectMax(Vals)/CollectSum(Vals)

end

This example brings up unimportant secondary goal underlying the restrictions

presented here. This goal isto make it easy forprogrammers toreliably tell which

expressions are efficient and which are not. It would be better to make every

expression efficient. However, given that this is not possible, programmers need

accurate information in order to decide what to do.

2,7 Other Approaches to Restrictions

The four optimizability restrictions are the result of research going back thirteen

years. The basic concept of representing common looping subcomputations as op-

erations on sequences was present in some of the earliest work on the Programmer’s

Apprentice [42, 34]. The first attempt tostatea formal set of restrictions appears

in [43, 44]. An intermediate set of restrictions is presented in [45].

ACM Transactions on Programming Languages and Systems. Vol. 13, No. 1, January 1991.

66 . Richard C. Waters

Optimizability restrictions are implicit in all the work on sequence expression

optimizers. However, these restrictions are typically implicit in the way the opti-

mizers work, rather than being explicitly stated. The only other research featuring

explicit restrictions is that of Wadler [41].

Wadler’s work differs from the work presented here in three ways. First, while

Wadler’s restrictions imply the ones presented here, they are needlessly more lim-

iting. Second, he uses his restrictions in a different way. Third, as discussed in the

next subsection, the motivation behind his restrictions is different.

In [41] Wadler only addresses the situation where a sequence procedure with

a single output is composed with a second sequence procedure. His results can

be straightforwardly generalized to the case of statically-analyzable, straight-line

expressions, in which each procedure has only one output and no output value is

used more than once. However, they are not applicable to more complex situations.

The limitation to statically-analyzable, straight-line expressions is no different

from the limitations presented here. However, the implicit requirement that each

procedure have only one output and no output be used more than once is signifi-

cantly more limiting. It has the effect of outlawing off-line non-directed data-flow

cycles, however, it goes way beyond this by outlawing all non-directed data-flow cy-

cles. Since it is often possible to evaluate a sequence expression very efficiently even

t bough it cent ains non-directed data-flow cycles, this is an overly severe restriction.

It is unreasonable (both from the point of view of readability and efficiency) to

require that ever y intermediate value that is used twice be computed twice.

The rest rict ion that Wadler explicitly states (i.e., that procedures must be pre-

order listless) is basically equivalent to the preorder restriction stated here, except

that, as discussed in the next subsection, it also requires that each sequence proce-

dure operate using a bounded amount of internal storage. (Wadler’s definition of

the term preorder by itself is different from the one used here.)

Wadler uses his restrictions in the background to identify situations where com-

putat ions involving a pre-exist ing data type (lists) can be optimized. In contrast,

the approach used here places Restrictions 1–4 in the foreground as a primary fea-

t ure of a new data type. This more active approach is followed for three reasons.

First, since lists cannot represent unbounded sequences, focusing on lists unduly

limits the kind of procedures that can be expressed. Second, lists (and vectors)

have evolved a style of use and a suite of associated operations that are appropri-

ate for that use. These work well for their intended use, but are not as useful as

they could be from the perspective of writing efficient sequence expressions. Devel-

oping a new data type makes it possible to create a new suite of operations that

is more appropriate for this purpose. Third, an important part of the approach

being advocated here is the error messages that report unopt imizable expressions.

These are important if programmers are to achieve efficiency. However, they would

be irritating and counterproductive if they were constantly being reported for list

expressions that the programmers did not intended to be optimizable. By adding a

new data type, programmers can benefit from the restrictions when they choose to

follow them, without being inhibited from using lists and vectors in standard ways.

2.8 Avoiding Unnecessary Storage

Wadler’s work and the work presented here share the goal of evaluating sequence

expressions efficient ly. However, the basic framework of the two approaches is

ACM Transactions on Programming Languagesand Systems, Vol. 13, No 1, January 1991,

Automatic Transformahon of Series Expressions into Loops “ 67

different, because they use different methods to assess whether efficient evaluation

has been achieved.

Consider again the basic situation of an expression F(~(z)), where a procedure

~ is applied to a sequence computed by another procedure G. Suppose further that

.T and Q are individually as efficient as possible. Traditional methods of evaluating

Y(g(x)) are nevertheless inefficient, because they create an intermediate sequence

object representing the value of ~(x).

Wadler’s work and the work presented here use the same basic two-step approach

for eliminating the creation of intermediate sequences. First, they place limits on

the way procedures can operate (i.e., by requiring them to be preorder). This forces

you to use preorder procedures 7’ and ~’ that compute the same results as 7 and

~, but which maybe individually less efficient. Second, they provide algorithms for

combining 7’ and ~’ at compile time into a joint procedure ~’oG’ that does not

cause the creation of an intermediate e sequence. A key question in both approaches

is how is one to assess whether 7’oG’ (z) is really more efficient than ~(~(x))?

The work presented here uses pipelining as its test of efficiency. The basic idea

is that if >’oG’ (z) is pipelined, then the resources used to transmit values from the

computation associated with ~’ to the computation associated with 3’ is reduced to

almost zero. If f“ and ~’ are as efficient as .T and ~, this guarantees that F’0~’ (z)

will be significantly more efficient than .T(~ (z)). Unfortunately, the mere fact that

7’0~’(x) is pipelined does not imply that that 7’ and ~’ are as efficient as 7 and

~. In fact, since 7’ and ~’ must be preorder, they are sometimes forced to be much

less efficient than F and g.

From an efficiency standpoint, the fundamental problem with preorder processing

is that it sometimes requires input elements to be buffered in a way that is not

required by other methods of computation. For example, consider computing a

sequence that cent ains the same elements as an input sequence, but in reverse

order. Reversal can be implemented very efficiently by a procedure that reads the

input elements one at a time beginning with the last, while writing the output

elements start ing with the first. This procedure need not use any buffering of

elements, however, it is not preorder. Since a preorder procedure must process

both its inputs and outputs in order starting with the first element, any preorder

implementation of reverse has to store all the input elements inside itself before it

can begin writing the output elements.

Typically, preorder processing requires the buffering of inputs whenever the func-

tion being implemented calls for the reordering of the elements of an input sequence.

Conveniently, reversal and sorting are the only common sequence functions where

this is the case.

In the expression F(Q(z)), if ~ implements reversal then the preorder implemen-

tal ion 7’ must be so much less efficient than 7 that 3’0~’ (x) cannot be any more

efficient than 7(G (z)). The simultaneous storage of the elements computed by ~

is merely moved from an intermediate sequence computed by G to a buffer inside

7’. While this situation does not violate the letter of the definition of pipelining,

it violates the spirit of what is trying to be achieved.

Wadler uses a limit on the storage used by ~’0~’ (z) as his test of efficiency.

He requires that 7’oG’ (z) operate using bounded internal storage—i.e., storage

over and above the storage needed to represent the overall input and output. Since

sequences are potentially unbounded in length, this guarantees that an intermediate

ACM TransactIons on Programming Languagesand Systems, t’ol 13, No. 1, January 1991

68 . Richard C. Waters

sequence is not being created during the computation. The central theorem in [41]

shows that if an additional restriction requiring that procedures use a bounded

amount of internal storage is added to the preorder restriction, then 3’0!7’ (z) is

guaranteed to use a bounded amount of internal storage.

An important virtue of the bounded internal storage restriction is that it goes

beyond eliminating the physical representation of intermediate sequences by also

ruling out the simultaneous storage of the elements of an intermediate sequence in

a buffer inside a sequence procedure. Unfortunately, although the bounded internal

storage restriction has tile advantage of closing this loophole, it has a number of

disadvantages.

The biggest problem is that the bounded internal storage restriction is really

somewhat beside the point. The real question is whether a preorder sequence

procedure 7’ is as efficient as its non-preorder counterpart 7. This correlates only

very weakly with the question of whether F’ uses bounded storage. It is true that

if .F’ uses unbounded storage and 3 does not, then it is virtually certain that F’

is much less efficient. However, if they both use bounded storage it is still possible

for 3’ to be much less efficient. Further, if unbounded storage is necessary in

both cases, T’ could be just as efficient. In this situation, there would be no need

to outlaw Y’, because while it is very likely expensive to compute, this expense is

inherent rather than engendered by the optimization transformations being applied.

An additional problem with the bounded internal storage restriction is that there

is no practical way to detect whether it is being obeyed. To start with, there is

no useful way to determine whether user-defined sequence procedures require un-

bounded storage. As a result, user-defined sequence procedures would have to be

out Iawed. Worse than this, many of the most common higher-order sequence pro-

cedures are capable of using unbounded storage if given certain kinds of procedures

as their arguments. Draconian limits would have to be set here as well.

Given the problems it causes and the fact that it has nothing to do with pipelin-

ability per se, it was decided that it was better not to include the bounded internal

storage restriction in the definition of an optimizable sequence expression. However,

in the interest of overall efficiency, the set of predefine procedures (see Section 3) is

confined to functions that have preorder implementations that are (nearly) as effi-

cient as the best non-preorder implementation. In particular, t he funct ions reversal

and sorting are omitted. This gets things off on the right foot, without preventing

users from defining whatever functions they feel are useful.

3. SERIES EXPRESSIONS

Vectors, lists, and other such data structures differ in how closely they model the

mat hematical concept of a sequence and in the range of associated operations. The

series data type embodies a set of design decisions that combine full support for the

mathematical concept of a sequence, a wide range of operations, and high efficiency.

As illustrated in the next two sections, support for series can be straightforwardly

added to any programming language. High efficiency is obtained by using a pre-

processor or compiler extension like the one presented in Section 6.

Informally speaking, series are like vectors except that they can be unbounded

in length. Formally, series are defined by the way they can be operated on. The

remainder of this section presents an illustrative selection of these operations as

mat he mat ical functions. (See [9] for an in depth discussion of the mathematical

ACM TransactIon. on Pro~ramming Lan@ages and Systems, Vol. 13, No 1, January 1991,

Automatic Transformation of Series Expressions into Loops “ 69

properties of many of these functions when applied to finite sequences.) The next

two sections present procedures implementing these functions in specific program-

ming languages.

In the following, lowercase letters (r, x) denote arbitrary values, uppercase letters

(R, S) denote series, and calligraphic letters (F, 7) denote functions and predicates.

The notation (a, y, z) denotes a literal series containing the elements z, y, and

so on up to z. The notation r : R denotes the series formed by appending the

element r to the front of the series R—e.g., 6: (7,8) = (6,7, 8).

Series functions can be divided into three categories: collectors compute non-

series values from series, scanners compute series from non-series values, and trans-

ducers compute series from series.

There are two kinds of collectors. Some collectors create an aggregate data struc-

ture cent aining the elements of a series, for inst ante, a hash table containing the

series elements. Other collectors create a summary value computed by some formula

from the elements of a series, for instance, their sum. The Lisp implementation of

series supports 18 collectors. However, one of these (collection, shown below) can

be used to define the rest.

Collection is a higher-order function—a function that takes functions as argu-

ments. The first argument z is used as the initial value of an accumulator. The

second argument is a binary function F, which is used to combine the successive

elements of an input series into the accumulator. (Typically, z is chosen to be a

left identity of .?_.) The final value of the accumulator is returned as the value of

collect ion. The example computes the sum of a series.

collection(z, fi, ()) = z

collection(.z, F, r : R) = collection (fi(.z, r), Y, R)

collection(o, A xv. Z+Y, (1, 2, 3)) = 6

There are also two kinds of scanners. Some scanners create a series of the elements

in an aggregate data structure, for instance, a series of the elements in a hash table.

Other scanners create a series based on some formula, for instance, the successive

powers of a number. The Lisp implement at ion of series supports 15 scanners.

However, one of these (the higher-order function scanning, see below) can be used

to define the rest.

The first argument of scanning is an initial value z, which becomes the first

element of the series created. The second argument is a stepping function 7, which

is used to compute each output element after the first, from the previous element.

The third argument is a predicate ‘P, which is used to determine where the series

should end. The series created contains the elements z, -T(z), f($(z)), and so on,

up to but not including the first value satisfying 7. If no value satisfies P, the series

is unbounded in length. The example computes the powers of 2 less than 100.

{

() if T(z)
scanning(z, .F, F’) =

z : scanning (~(.z), 3, ‘P) otherwise

scanning(l, Az. z+z, Az..zs1OO) = (1,2,4,8, 16,32,64)

Transducers are more complex than collectors or scanners. In particular, there

is no one transducer that serves as a basis for the rest. Nevertheless, four key

higher-order transducers support wide classes of common transduction operations.

ACM TransactIons on Programming Languagesand Systems,Vol 13, No 1, January 1991.

70 . Richard C. Waters

Collecting is the same as collection except that it returns a series of partial results,

rather than just a final value. The length of the output is the same as the length

of the input. The example computes a series of partial sums.

collecting (z, .F, ()) = ()

collecting(z, .T, r : R) = .F(z, r) : coIlecting(.F(z, r), .F, R)

collecting(O, ~xy.z+y, (1,2)3)) = (1,3,6)

By fart he most commonly used series function is mapping, which maps a funct ion

F over some number of series, producing a series of the results. Each element of

the output is computed by applying Y to the corresponding elements of the inputs.

The length of the output is the same as the length of the shortest input. The

example adds the corresponding elements in two series.

mapping(.T, (), . . .) = ()

mapping(.F, rl : RI, rn : Rn) = .F(rl, rn) : mapping (~, RI, Rn)

mapping(~zy .z+y, (1,2,3), (4, 5,6,7)) = (5,7,9)

Truncating cuts off a series by testing each element with a predicate and dis-

carding all the remaining elements as soon as an element satisfying the predicate

is encountered. The example truncates a series before the first negative element.

truncating(~, ()) = ()

truncating(~, r : R) =
{

() if P(r)

r : truncating (~, R) otherwise

truncating(~z .x<O, (0,3,2, –7, 1, –l)) = (0,3,2}

Choosing selects the elements of a series that satisfy a predicate. The example

picks out the negative elements oft he input.

choosing(~, ()) = ()

choosing(T’, r : R) =
{

r : choosing(~, l?) if T(r)

choosing(~, l?) otherwise

choosing(~z. z<O, (0,3,2, –7, 1, –l)) = (–7, –1)

Mingling combines two series into one under the control of a comparison pred-

icate. The comparison is performed as indicated to ensure that the combination

will be stable—if two elements are not ordered by the comparison predicate, the

element from R precedes the element from S in the result. The example shows the

combination of two sorted series into a sorted result.

mingling((), S, F’) = S

mingling(R, (), T) = R

mingling(r : R, s : S, P) =
{

r : mingling(R, s : S, ‘P) if 1’P(s, r)

s : mingling(r : R, S, P) otherwise

mingling((l,3,7), (2,4,5), Axy. x<y) = (1,2,3,4, 5,7)

In addition to the higher-order transducers above, some other transducers are

ACM Trmsact,cns on Programming Lmgua~es and Systems, Vol. 13,NrI. 1, January 1991

Automatic Transformation of Series ExpressIons into Loops ● 71

import ant as well. Catenating appends two series end to end.

catenating (), S) = S

catenating(r : R, S) = r : catenating(R, S)

catenating((6, 7, 8), (9, 10)) = (6,7,8,9, 10)

Spreading is a quasi-inverse of choosing. Spreading takes a series of non-negative

integers R and a series of values S, and creates a series containing the elements

of S. In the output, the elements of S are spread out by interspersing them with

copies of z. If the ith element of R is r, then the ith element of S is preceded by r

copies of z. Taken together with the above example of choosing, the example below

illustrates the relationship between choosing and spreading.

spreading((), S, z) = ()

spreading(R, (), z) = ()

spreading(r : R, s : S, z) = _ : s : spreading(R, S, z)

r copies

spreading((3, 1), (–7, –l), O) = (0,0,0, –7,0, –1)

Sectioning creates a subseries of the elements of its series input. The subseries

begins with the element indexed by m >0 and continues up to but not including

the element indexed by n z O. (The first element in a series-has the index O.) Th~

n input is optional. If n is omitted or fails to be less than the length of the series

input, the out put cent inues until the input runs out of elements. The example

extracts a section out of the middle of a series.

sectioning (), m, n) = ()

sectioning(R, m, O) = ()

sectioning(r : R, O, n) = r : sectioning(R, O, n–l)

sectioning(r : R, m, n) = sectioning(l?, m–l, n–l)

sectioning((l, 1,2,2,3,3,4,4), 2, 5) = (2,2,3)

The function chunking is different from the ones above, because it can produce

more than one output. It has the effect of breaking a series R into (possibly

overlapping) chunks of widt h w >0. Successive chunks are displaced d > 0 elements

to the right, in the manner of a moving window. (For example, if R = (1,5,3, 7),
w = 2, and d == 1 then the chunks are 1 5, 5 3, and 3 7.) Chunking produces w

output series where the first output contains the first element of each chunk, the

second output cent ains the second element of each chunk, etc. Thus, the ith chunk

is composed of the it h elements of the w outputs. The number of chunks (and

therefore the length of each output) is [1 + (IRI – w)ldj, where \Rl denotes the

length of the input series R.

chunking(l, d, ()) = ()

chunking(l, d, r : R) = r : chunking(l, d, sectioning(R, d–l))

chunking(w, d, R) = S1, SW where

Sk = chunking(l, d, sectioning(R, k–l, lRl+k–w))

ACM TransactIons on Programming Languages and Systems, Vol. 13, No. 1, January 1991.

72 ● Richard C. Waters

chunking(2, 1, (1, 5,3,7)) = (1, 5,3), (5,3,7)

mapping(~xy. (z+y)/2, (1,5, 3), (5,3, 7)) = (3,4,5)

By itself, chunking may appear somewhat unusual, however, it is quite useful

in combination with other transducers. For inst ante, the last part of the example

shows how the results of chunking could be used as the basis for computing a moving

average. (Programming languages differ in the mechanisms that could be used to

channel the outputs of chunking to the inputs of mapping.)

The preceding list of functions can be viewed as a recommendation for the kind

of functions that can profitably be supported in conjunction with a sequence data

type. As discussed in Section 7, some languages (e.g., APL) support most of these

functions; others (e.g., Pascal) support almost none of them.

The list of functions is also interesting for what it does not contain. To start with,

it does not contain functions for accessing arbitrary series elements or altering the

value of series elements. This reflects the fact that, unlike vectors or lists, series

are not intended to be used as mutable data storage.

In addition, the list only includes functions that can be implemented just as

efficiently as preorder procedures as any other way. (The only common functions

ruled out by this criteria are ones like reversal and sorting that rearrange the order of

the elements oft heir input.) The list also favors functions that can be implemented

as on-line procedures, because these are more useful in opt imizable expressions.

(The only functions in the list that require off-line implementations are choosing,

mingling, cat enating, spreading, sectioning, and chunking.)

4, A COMMON LISP IMPLEMENTATION

Eeries can be added into essentially any programming language by adding an

implementation of the series data structure and defining a set of procedures sup-

porting the series functions in Section 3. The optimization of series expressions can

be supported by a preprocessor (see Section 6). It is in the nature of Lisp, that both

of these things are easy to do using a macro package. Such a macro package has

been in regular use for a number of years and is generally available (see [47, 48]).

Series. In the Lisp implementation, unoptimized series are implemented lazily

using closures. A series has a procedural part and a data part. The procedural

part is a generator [19, 30] capable of computing the elements one by one. The

data part records the elements computed so far.

The elements of a series are accessed using a second accessing generator that

enumerates the elements in the data part of the series and then uses the procedural

part to compute additional elements. Each time the accessing generator is called,

it returns another element in the series. The accessing generator takes a procedure

argument specifying what to do when the series runs out of elements.

The preceding two-level generation scheme ensures that elements are not com-

puted until needed, no element is computed twice, and each user of a series can

access all the elements. For those familiar with Lisp, Figure 6 illustrates the im-

plementation of series data structures. The same basic implementation approach

is used in the language Seque [20].

The closure implement ation of series is effective and straightforward; however,

it is not very efficient. No effort has been expended on producing a more efficient

implement at ion, because the focus of series expressions is on the sit uat ions where

ACM Transactmns on Programmmg Languages and Systems, Vol 13, No. 1, January 1991

Automatic Transformation of Series Expressions into Loops o 73

(setq first5 ; Implementation of (1,2,3,4, 5).

(let ((x O))
(list #’(lambda (at-end)

(i-f (< x 5) (setqx (+ x 1)) (funcall at-end))))))

(defun generator (s) ; Returns agenerator fortheelements of a series.
(let ((g (car s)))

#’(lambda (at-end)
(when (null (cdr s))

(setf (cdr s)
(block nil

(liet (funcall g #’(lambda () (return T)))))))
(if (not (eq (cdr s) T))

(car (setqs (ccir s)))
(funcall at-end)))))

(defun choose-if (p s) ; Implementation ofchoosing(’P, S).
(let ((gen (generator s)))

(list #’(lambda (end-action)
(1OOP (let ((x (funcall gen end-action)))

(if (funcall p x) (return))))))))

(defun collect-sum (s) ; Implementation ofcollection(O, ~z~.z+y, S).

(let ((gen (generator s))
(sum o))

(loop (let ((x (funcall gen #’(lambda () (return sum)))))

(setqsnm (+snm x))))))

(collect-sum (choose-if tt’oddp first5)) ~ 9

Fig. 6. Illustration of the Lisp implementation of unoptimized series.

they can be optimized, eliminating the physical representation of series altogether.

In situations where optimization is impossible, it is usually better to represent a

sequence as a vector or list than as a series.

The protocol for obtaining an accessing generator for the elements of a series and

thencetheelements themselvesisnot anexportedpart ofthe series implementation.

Users must manipulate series using the procedures below. This is important inthe

interest of optimizability in general and static analyzability in particular.

Series procedures. The series functions describedin Section 3 are all supported

by Lisp procedures as shownin Figure7. In addition, the #macro character syntax

#z(z y z) is provided for reading and printing literal series.

(catenate #Z(l 2) (choose-if #’ockip #Z(8 -7 -6 l))) = #Z(l 2 -7 1)
(subseries (mingle #Z(l 5 9) #Z(2 6 8) #’i) 2 4) * #Z(5 6)
(multiple-value-bind (XS ys) (chunk 2 1 #Z(l 5 3 7))

(map-fn T #’(lambda (x y) (/ (+ x y) 2)) xs ys)) ~ #Z(3 4 5)

The higher-order procedures implementing scanning, collecting, mapping, trun-

cating, and collection are extended so that they can accept multiple series argu-

ments and produce multiple values. (Series oftuples could be usedto get the same

effect in any given situation. However, using multiple series values is usually more

convenient and almost always more efficient than using tuples.)

The examples below illustrate the Lisp procedure scan-fn, which supports scan-

ning. In the second example, atwo-valued stepping procedure is used and two series

are returned (an unbounded seriesof the natural numbers and aseries oftheir par-

tial sums). While scanning is in progress, twointernal state values are maintained.

The stepping procedure must accept as many values as it returns. Each ofthese

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991.

74 ● Richard C. Waters

Series Function Lisp Implementation

collection(z, .’F_, R) (collect-fn type 2 Y RI R,,)

scanning(zi ~i 7) (scsr-fn type Z f ?)

collecting(z, 7. R) (collecting-fn type Z F Rl R,n)

mapping(>, RI. ., ,, R,n) (map-fn type F R1 R.)

trlmrating(~, l?) (until-lf T’ Rl R.)

choosing(~, R) (choose-If P R)

mingling(R, S, ‘P) (mingle R S ‘P)

catenating(R, S) (catenate R S)

spreading(R, S, z) (spread R S z)

sectioning(l?, m, n) (subseries R m n)

chunking(u, d, R) (chunk tcI d R)

Fig. 7. Lisp support for series functions,

values is treated as a separate state variable.

(scar-fn ‘list #’ (lambda () ‘ (a b c d)) #)cddr #’nuE

> #Z((a b c d) (C d))

(scan-fn ‘ (values Integer Integer)
#’(lambda () (values 1 1))

#’(lambda (1 sum)

(setq i (+ i 1)) (values 1 (+ sum i)))

-#Z(1234. ..)and#Z(l 3610 ...)

1)

Three other features ofscau-fn areworthy of note. First, anew first argument is

introduced, which specifies the type (ortypes) of the values returned bythe stepping

procedure. Given the lack of typing information in Lisp, this argument is necessary

to ensure that the number ofargurnents returned bythe stepping procedure canbe

determined at compile time. Second, the initial value is replaced by a procedure

that returns the initial values. This inconvenient insinuations where multiple initial

values are needed. Third, the predicate argument is made optional. Omitting it

is the same as supplying a predicate that is not true of any value. The first and

second extensions are applied to collect-fn, collect ing-fn, and map-+n as well as

scan-fn.

As a convenience to the user, anumberof specific scanners are providedin ad-

ditiontoscan-fn. These include: serleswhich creates aseries indefinitely repeat-

ing a given value, scan which enumerates the elei~~ents in a list, vector, or string,

scan-range which enumerates the integers in a range, and scan-pllst which creates

a series of the indicators in a property list along with a second series containing the

corresponding values. The first argument of scan specifies the type of object to be

scanned. If omitted, the type defaults to list.

(series “test”) * #Z(’’test” “test” “test,” . . .)
(scan ‘(a b c)) ~ #Z(a b c)
(scau ‘vector ‘#(a b c)) + #Z(a b c)
(scan ‘string llTu~tl) > #Z(#\T #\U #\Z)

(scan-range :from 1 :upto 3) - ?tZ(l 2 3)

(Scan-pllst ‘(a 1 b 2)) - #Z(ab) and ttZ(l 2)

similarly, anumber of specific collectors are provided inclucling: collect which

combines the elements of a series into a list, vector, or string, collect-sum which

adds up the elements of a series, collect-length which returns the number of

elements in a series, and collect-first which returns the last element of a series

ACM Transactions on Programming Lan~a~es and Systems. Vol. 13, No. l, January 1991,

Automatic Transformation of Series Expressions into Loops - 75

(or nil if the series is empty). The first argument of collect specifies the type of

object to be produced. If omitted, the type defaults to list.

(collect #Z(a b c)) * (a b c)
(collect ‘simple-vector #Z(a b c)) > #(a b c)
(collect >string #Z(#\T #\u #\z)) 5- “Tuz”

(collect-sum #Z(l 3 2)) ~ 6
(collect-length #Z(’’fee” “fi” “fo” “fum”)) + 4
(collect-first #Z(’’fee” “fi” “fo” “fum”)) * “fee”
(collect-first #Z()) * nil

Finally, a number of additional transducers are provided including: previous

(based on collecting-fn) which takes in a series and shifts it over one element by

inserting the indicated value at the front and discarding the last element, choose

(based on choose-if) which selects the elements of its second argument that cor-

respond to non-null elements of its first argument, and positions (also based on

choose-if) which returns the positions of the non-null elements in aseries. If given

only one argument, choose returns the non-null elements of this series.

(previous #Z(’’fee” “fi” “fo” “fum”) !! r!) > #z(!! r, l,fee,, !If.ill ,,fo,,)
(choose #Z(Tnil T) #Z(l 2 3)) +- #Z(l 3)
(choose #Z(nll 3 4nll)) =%- #Z(3 4)
(positions (rnap-fn#’oclcip #Z(l 2 3 5 6 8))) * #Z(O 2 3)

Convenient support formapping. In cognizance ofthe ubiquitous nature ofmap-

ping, the Lisp series implementation provides three mechanisms that make it easy

to express particular kindsof mapping. The #macro character syntax #M~converts

a procedure Finto a transducer that maps .F.

(#Msqrt #Z(4 16)) = (map-fn T t#’sqrt #Z(4 16)) * tlZ(2 4)

The form mapping can be usedto specify the mapping of a complex computation

over one or more series without having to write a literal lambda expression. It has

the same basic syntax as let. For example,

(mapping ((x (scan ‘(2 ‘2 3))))

(expt (abs X) 3)) * #Z(8 8 27)

is the same as

(map-fn T #’(lambda (x) (expt (abs X) 3))
(scan ‘(2 -2 3))) * #Z(8 8 27)

The form iterate is the same as mapping except that the value nil is always

returned.

(iterate ((x (scan ‘(2 -2 3))))
(if (plusp x) (prinl x))) * nil ; afterprinting’ ’23”.

To a first approximation, iterate and mapping differ inthe same wayasmapc and

mapc ar. In particular, like mapc, iterate is intended to be used in situations where

the body is being evaluated for side effect rather than for its result. However, due

to the lazy evaluation nature of series, the difference between iterate and mapping

is more than just a question of efllciency. If mapping is used in a situation where

the output is not used, no computation ifi performed, because series elements are

not computed until they are used.

Nested loops. The equivalent of a nested loop is expressed by simply using a

series expression ina procedure that is mapped over a series. This is typically done

ACM Transactions on Pmgrammmg Languages and Systems, Vol. 13, No. 1, January 1991.

76 . Richard C. Waters

(defun bset->list (bset universe)
(collect (choose (#Mlogbltp (scan-range :from O) (series bset))

(scan universe))))

(defun list->bset (items universe)
(collect-fn ‘integer #’ (lambda () O) #~logior

(mapping ((item (scan items)))
(ash 1 (bIt-position iternunlverse)))))

(defun bit-position (item universe)

(or (collect-first (positions (#Meq (series item) (scan urnverse))))

(1- (length (nconc universe (list item))))))

Fig. 8. Converting between hsts and bit sets.

using mapping. In the example, a list ofsums is computed based on a list of lists of

numbers.

(let ((data ‘((1 2 3) (45 6) (78))))

(collect
(mappmg ((number-list (scan data)))

(collect-sum (scan number-list))))) + (6 15 15)

User-defined series procedures. As shown by the definitions of collect-sum and

mappmg below, the standard Lisp forms defun and defmacro can be used to define

new series procedures. However, the series macro package must be informed when

a series procedure is being defined with defun. This is done by using the declara-

tion optimizable-series-function. No special declaration is required when using

defmacro.

(defun collect-sum (numbers)

(declare (optimizable-series-function))
(collect-fn ‘number #’(lambda () O) #’+ numbers))

(clefmacro mapping (var-value-pair-list &body body)
(let* ((pairs (scan var-value-pair-llst))

(arg-llst (collect (#Mcar pairs)))
(value-llst (collect (#Mcadr pares))))

‘(map-fn T #’(lambda ,arg-list ,@ body) ,@ value-llst)))

Example. The following example shows what it is liketo use series expressions

in a realistic programming context. The example consists of two parts: a pair of

procedures that convert between sets represented aslists and sets representedas bits

packed into an integer, and agraph algorithm that uses the integer representation

of sets.

Sets over a small universe can be represented very efficiently as binary integers

where each 1 bit in the integer represents an element in the set. Here, sets repre-

sented as binary integers are referred to as litsets.

Common Lisp provides anumberof bitwise operations on integers ,which canbe

used to manipulate bit sets. In particular, loglor computes the union of two bit

sets while logand computes their intersection.

Theprocedures in Figure 8 convert between sets represented aslists and bit sets.

To perform this conversion, amapping has to reestablished between bit positions

and potential set elements. This mapping is specified by a universe. A universe

is a list of elements. If a bit set integer b is associated with a universe u, then

the ith element in u is in the set represented by b if and only if the ith bit in b

ACM Transactions on Programming Lan~ages and Systems, Vol. 13, N0. l, January 1991

Automatic Transformation of Series Expressions mto Loops “ 77

(defun collect-logior (bsets)
(declare (optitnizable-series-function))

(collect-fn ‘integer #’(lambda () O) #’loglor bsets))

(defun collect-logand (bsets)
(declare (optirnizable-series-function))

(collect-fn ‘integer #’(lambda () -1) #’logand bsets))

Fig. 9. Operations on series of bit sets.

is 1. For example, given the universe (a b c d e), the integer #bOIOll represents

the set {a,b,d}. (By Common Lisp convention, the Oth bit in an integer is the

rightmost bit.)

Given a bit set and its associated universe, the procedure bset->list converts

the bit set into a set represented as a list of its elements. It does this by scanning

the elements in the universe along with their positions and constructing alist of

the elements that correspondto Is in the integer representing the bit set. (When

no :upto argument is supplied, scan-range counts up forever.)

The procedure list->bset converts a set represented as alistof its elements into

a bit set. Its second argument is the universe that is to be associated with the

bit set created. For each element of the list, the procedure bit-position is called

to determine which bit position should be set to 1. The procedure ash is used to

create an integer with the correct bit setto 1. The procedure collect–fnis usedto

combine the integers corresponding to the individual elements together into a bit

set corresponding to the list.

The procedure bit-position takes an item and auniverse and returns the bit

position corresponding to the item. The procedure operates in one of two ways

depending on whether or not the item is in the universe. The first line of the

procedure contains a series expression that determines the position of the item in

the universe. If the item is not in the universe, the expression returns nil.

Iftheitem is not in the universe, the second line of theprocedure adds the item

onto the end of the universe and returns its position. The extension of the universe

is done by side effect so that it will be permanently recorded in the universe.

Figure 9showsthe definition oftwo collectors that operate onseries of bit sets.

The first procedure computes the union of a series of bit sets, while the second

computes the intersection.

Live variable analysis. Asanillustration of the way bit sets might be used, con-

sider the following. Suppose that in a compiler, program code is being represented

as blocks of straight-line code connected by possibly cyclic control flow. The top

part of Figure 10 shows the data structure that represents ablockof code. Each

block Bhasseveral pieces ofinformation associated with it. Twoofthese pieces of

information are the blocks that can branch to B and the blocks B can branch to.

A program is represented as a list of blocks that point to each other through these

fields.

In addition to control flow information, each structure contains information about

the way variables are accessed. In particular, it records the variables that are

written by the block and the variables that are used by the block (i.e., either

read without being written or read before they are written). An additional field

(computed by the procedure determine-l~ve discussed below) records the variables

that are live at the end of the block. (A variable is live if it has to be saved, because

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991.

78 . Richard C. Waters

(defstruct (block (:conc-name nil))
predecessors ;Blocks that can branch to this one.
successors ;Blocks this one can branch to.
written ;Variables written in the block.
used ;Variables read before written in the block
live ;Variables that must be available at exit.
t emp) ;Temporary storage location.

(defun determine-live (prograwgraph)
(let ((universe (list nil)))

(convert-to-bsets program-graph universe)

(perform-relaxation program-graph)
(convert-frori-bsets progra-graph universe))

program-graph)

(clefstruct (tetnp-lxets (:conc-name lxet-))
used written live)

(defun convert-to-bsets (program-graph universe)
(iterate ((block (scan program-graph)))

(setf (temp block)
(make-temp-bsets

:used (list->bset (used block) universe)
:wrltten (list->bset (written block) universe)
:llve O))))

(defun perform-relaxation (program-graph)

(let ((to-do program-graph))
(loop

(when (null to-do) (return (values)))
(let* ((block (pop to-do))

(estimate (live-estimate block)))
(when (not (= estimate (bset-live (temp block))))

(setf (bset-live (temp block)) estimate)
(iterate ((prev (scan (predecessors block))))

(pushnew prev to-do)))))))

(defun live-estimate (block)
(collect-logior

(mapping ((next (scan (successors block))))
(logior (bset-used (temp next))

(loganclcz (bset-live (ternp next))
(bset-written (temp next)))))))

(defun convert-from-bsets (program-graph un,verse)
(iterate ((block (scan program-graph)))

(setf (live block)
(lxset->llst (bset-live (temp block)) universe))

(setf (temp block) nil)))

Fig. lo. Live variable analysis

it can potentially be used by a following block.) Finally, there is a temporary

data field, which is used by procedures (such as determine-live) that perform

computations involved with the blocks.

The remainder of Figure 10 shows the procedure determine-l,ve, which givena

program represent ed as a list of blocks, determines the variables that are live in

each block. To perform this computation efficiently, the procedure uses bit sets.

The procedure operates in three steps. The first step (convert-to-bsets) looksat

each block and sets up an auxiliary data structure containing bit set representations

ACM TransactIons on Programmm~ Languagesand S~stems,Vol. 13, No. 1, January 1991

Automatic Transformation of Series Expressions into Loops “ 79

for the written variables, the used variables, and an initial guess that there are no

live variables. This auxiliary structure is defined by the third form in Figure 10 and

is stored in the temp field of the block. The integer O represents an empty bit set.

The second step (perf orm-relaxat ion) determines which variables are live. This

is done by relaxation. The initial guess that there are no live variables in any block

is successively improved until the correct answer is obtained.

The third step (convert-f rom-bsets) operates in the reverse of the first step. Each

block is inspected and the bit set representation of the live variables is converted

into a list, which is stored in the live field of the block.

On each cycle of the loop in perform-relaxation, a block is examined to determine

whether its live set has to be changed. To do this (see the procedure live-est imat e),

the successors of the block are inspected. Each successor needs to have available

to it the variables it uses, plus the variables that are supposed to be live after it,

minus the variables it writes. (The procedure logandc2 takes the difference of two

bit sets.) A new estimate of the total set of variables needed by the successors as

a group is computed by using collect-logior.

If this new estimate is different from the current estimate of what variables

are live, then the estimate is changed. In addition, if the estimate is changed,

perform-relaxation has to make sure that all the predecessors of the current block

will be examined to see whether the new estimate for the current block requires

their live estimates to be changed. This is done by adding each predecessor onto

the list to-do unless it is already there. As soon as the estimates of liveness stop

changing, the comput at ion stops.

Summary. Figure 10 is a particularly good example of the way series expres-

sions are intended to be used in three ways. First, all the series expressions are

opt imizable. Second, series expressions are used in a number of places to express

computations that would otherwise be expressed less clearly as loops or less effi-

cient ly using operations on lists or vectors. Third, the main relaxation algorithm

in perform-relaxation is expressed as a loop. This is done, because the data flow

in this algorithm prevents it from being decomposed into two or more fragments.

This highlights the fact that optimizable series expressions are not intended to ren-

der iterative programs entirely obsolete, but rather to provide a greatly improved

method for expressing the vast majority of loops.

5. A PASCAL IMPLEMENTATION

Series can be added to Pascal in much the same way as they are added to Lisp. A

prototype system has been construct ed that demonstrates this [29, 46]. However,

the prototype is written in Lisp rather than Pascal and only supports optimiz-

able series expressions. A fatal error is issued whenever optimization is blocked.

Although less complete than the approach of the Lisp implementation, this still

allows loops to be replaced by opt imizable series expressions.

Series. The Pascal series preprocessor supports the declaration of series in anal-

ogy with array declarations as shown below.

type Integers = series of Integer;
var InputData: series of Real;

In line with the general philosophy of Pascal, it is required that all the elements

of a series have the same type. However, the length of a series is not part of its

ACM Transactions on Programmmg Languagesand Systems,Vol 13, No. 1, January 1991.

80 . Richard C. Waters

Series Function Pascal Implementation

collection (z, >, R) CollectFn(z, >, R)

scanning(z, ~, T)

collecting(z. .F, R)

mapping(~, Rl, .,. , I?n)

truncating(~, R)

choosing(~, R)

mingling(R, S, T’)

catenating(l?, S)

spreading(l?, S, z)

sectioning(R, n, m)

chunking(w, d, R)

ScanFn(z, ~, ‘P)
CollectlngFn(z, >, R)

MapFn(~, Rl, , Rn)

TruncateIf(P, R)

ChooseIf(T, R,)

Mingle (R, S, 7)

Catenate (R, S)

Spread (R, S, z)

Subseries (R, n, m)

Chunk(u), d, R, S1, . . . Sm)

Fig 11. Pascal support for series functions

type. This is important to facilitate the definition of series procedures operating

on series of arbitrary length.

Series procedures. The series functions described in Section 3 are all supported

by Pascal procedures as shown in Figure 11. In general, the Pascal procedures have

the same names as the corresponding Lisp procedures with any hyphens removed

(e.g., scan-fn becomes ScanFn). (The examples in [29, 46] show an obsolete set

of names linked to an earlier Lisp implementation of series.) Since Pascal does

not support the concept of a function procedure that returns multiple values, the

out puts of chunking are turned into arguments.

Catenate ((l,2), ChooseIf(Odd, (8,-7,6,-l))) ~ (1,2,-7,1)

Subseries (Mlngle((l ,5,9), (2,6,8), <), 2, 4) ~ (5,6)

Chunk(2, 1, (1,5,3,7), Xs, Ys) ~ Xs := (1,5,3) and YS := (5,3,7)

MapFn(Average, Xs, Ys) ~ (3,4,5)
function Average (x,y: Integer): Integer;
begin

Average := (x+y) div 2
end;

(Since the Pascal implementation does not provide asyntaxforseties literals,

the syntax from Section 2 is used in the examples in this section. Note that while

a notation for literal series is very convenient in small examples, it is of relatively

Iittle importance in other situations.)

The Pascal implementation does not extend the higher-order procedures over

their specifications infection 3for two reasons. Given the strong typing in Pascal,

the preprocessor can obtain type information without needing type arguments.

Since, Pascal does not support the concept of multiple return values, some other

method needs to be employed to avoid the need for tuples.

The procedures in Figure 11 do not follow the usual Pascal restrictions on the

parameters of procedures. Some of the procedures allow the number of arguments

they receiveto vary and they all allow considerable flexibility in the types oftheir

arguments. This is important because the series procedures are inherently generic

in character. For instance, MapFn is naturally applicable to any number and any

type of series aslongas the element types are compatible with the procedure being

mapped.

Due to their generic nature, the procedures in Figure 11 could not be implemented

asuser-defined procedures in Pascal. However, asanextension to the language, they

ACM Transactions on Programming Lan~agss and Systems, Vol 13, N0. l, January 1991.

Automatic Transformation of Series Expressions into Loops “ 81

do not violate the spirit of Pascal. In particular, the predeclared Pascal procedures

are generic in exactly the same way. Several (e.g., Read and write) allow variable

numbers of arguments and most of them are applicable to more than one type

of object. Using a more flexible language such as Ada [51], it would be possible

to implement (at least most of) the higher-order series functions as user-defined

procedures.

All of the specific scanners, collectors, and transducers from the Lisp implemen-

tation that are applicable to Pascal are supported by the Pascal implementation

as well. Given the strong typing in Pascal, scan and Collect do not need type

arguments. Since Pascal has sets, but not lists, these functions apply to sets and

not lists. In keeping with the general style of Pascal, collect takes the destination

vector/string/set as its first argument rather than returning an aggregate value.

Series (’test’) * (’test’, ’test’, ’test’, . ..)

Scan(’Tuz’) ~ (’T’, ’u’, ’z’)

Scan([Men, Wed, Fri]) ~ (Men, Wed, Fri)

ScanRange(l, 3) > (1,2,3)

Collect (X, (’T’, ’u’, ’z’)) { places ‘Tuz’ in X. }

CollectSum((l ,3,2)) ~ 6

CollectLength((’fee’, ’fi’,’fo’ ,’fum’)) * 4

CollectLast ((’fee’, ’fi’,’fo’ ,’fum’)) * ‘fum’

CollectLast((), ‘none’) + ‘none’

Previous((’fee’, ’fi’,’fo’ ,’fum’), ‘ ,) * (> , ,~fee>, >fi),]fo~)
Choose((true,false,true), (1,2,3)) ~ (1,3)

Positions(MapFn(Odd, (1,2,3,5,6,8))) =$=- (0,2,3)

Implicit mapping. To avoid making syntactic extensions, the Pascal implementa-

tiondoes not support constructs analogous tothe Lisp forms mapping and iterate.

However, it supports a related concept that is in many ways even more useful.

Whenever anon-series procedure is applied to aseries, it is automatically mapped

over the elements of the series. For example, in the expression below, Sqr is auto-

matically mapped over the series of numbers created by scanning the set.

CollectSum(Sqr(Scan([2,41)))
= CollectSum(MapFn(Sqr, Scan([2,4]))) * 20

The key virtue of implicit mapping is that it reduces the number of helping

procedures that have to be defined. For instance, in the example of a moving

average on the previous page, you can write the following instead of defining a

procedure Average and explicitly mapping it.

Chunk(2, 1, (1,5,3,7), Xs, Ys); (Xe+Ys) div 2 * (3,4,5)

The conceptof implicit mapping is completely separate from the other concepts

associated with series expressions. As such, it could easily be dispensed with.

However, asshown by experience with APL and the other languages that support

it, implicit mapping is extremely useful. (Although thelack ofreliable compile-time

type information introduces a number of complications, implicit mapping is being

added to the Lisp implementation.)

User-defined series procedures. As shown in the examples below, series proce-

dures in Pascal are simply procedures that either have series inputs or return series

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991.

82 . Richard C. Waters

values. As with series in general, all such definitions are handled directly by the

preprocessor. There isnoneed foranyspecial kind of declaration. Pascal does not

support the concept of macros.

Example. The following example illustrates how series expressions can best be

used in Pascal. As in the last section, all of the expressions are opt imizable. The

example revolves around a job queue data abstraction that might be used in an

operating system. The basic type definitions are shown below. A JobQ is a pointer

to a chain of jobs. A Job is a pointer to a descriptive record containing a number

of fields including a numerical priority.

type JobQ = “JobQentry;
type JobQentry = record; JobInfo: Job; Rest: JobQ end;
type Job = ‘JobRecord;
type JobRecord = record Priority: Real; end;

There are a number of procedures defined that operate on job queues. These

procedures include putting anew job onto a queue (shown below) and removing

a job from a queue (discussed near the end of this section). To add a job onto a

queue, one merely needs to allocate anew queue entry andattach itto the frontof

the queue.

procedure AddToJobQ (J: Job; var Q: JobQ);
var E: JobQ;

begin
new(E) ;
E-.JobInfo := J;
E-.Rest := Q;
Q,=E

end

In addition to ordinary procedures that operate on job queues, it is useful to

define a number of series procedures that operate on job queues. In particular,

as with any aggregate data structure, it is useful to have procedures ScanJobQ and

CollectJobQ that convert job queues to series ofjobs and vice versa. It also turns

out to be usefulto have a procedure ScanJobQtails that enumerates all the tails of

a queue (i.e., (Q, Q-.Rest, Q-.Rest- .Rest, . ..)). AS shown below, ScanJobQtails

can be implemented using the higher-order series procedure scani% and two locally-

defined procedures operating onjob queues.

function ScanJobQtails (Q: JobQ): series of JobQ;
function JobQrest (Q: JobQ): JobQ;

begin JobQrest := Q-.Rest end;
function JobQnull (Q: JobQ): Boolean;

begin JobQnull := Q=nil end;
begin

ScanJobQtails := ScanFn(Q, JobQrest, JobQnull)
end

Among other things, ScanJobQtails can be used to implement ScanJobQ asshown

below. The expression ScanJobQtails(Q) ‘.JobInfo causes the operations of follow-

ing apointer and selecting the Joblnfo field ofa JobQentry to be implicitly mapped

over the job queue pointers returned by ScanJobQtails.

function ScanJobQ (Q: JobQ): series of Job;
begin

ScanJobQ := ScanJobQtaile(Q) -.JobInfo
end

ACM Transactions on Programming Lan~ages and Systems, Vol. 13, No, l, January 1991,

Automatic Transformation of Series Expressions into Loops - 83

The procedure RemoveFromJobq removes a job from the end of a queue. It can be

implemented using ScanJobQtails as shown below. To start with, RemoveFromJobQ

enumerates the tails of the queue and uses CollectLast and previous to obtain

pointers to the last and next to last entries in the queue. The job in the last queue

entry is ‘returned as the result of RemoveFromJobQ. (It is assumed that there is at

least one job in the queue.) The rest pointer in the next to last entry is set to nil,

in order to remove the last entry from the queue. (If there is no next to last entry,

the queue variable itself is set to nil.) The storage associated with the last entry

is then freed.

function RemoveFromJobQ (var Q: JobQ) : Job;
var Qs: series of JobQ;

NextToLast, Last: JobQ;
begin

Qs := ScanJobQtalls(Q);
Last := CollectLast(Qs, nil);
NextToLast := CollectLast(Previous(Qs, nil), nil);
RemoveFromJobQ := Last”.JobInfo;
if NextToLast=nll

then Q := nil
else NextToLast”.Rest := nil;

dispose(Last)
end

The first three statements in the body ofRemoveFromJobQ form a series expression,

while the remaining statements in the body are non-series expressions. From an

eficiency standpoint, it should be noted that since there is only one instance of

ScanJobQtails, the series expression is converted into aloop that only traverses the

queue once.

As a final example of the use of optimizable series expressions, consider the

procedure SuperJob below. This procedure inspects ajob queue and returns the

last (i.e., longest queued) job in the queue whose priority is more than twostan-

darddeviations larger than the average priority of the jobsin the queue. Ifthere

is no such job, nil is returned. The first four statements form a series expres-

sion that computes the basic information needed to calculate the mean and de-

viation of the priorities of the jobs. The last three statements form a second

series expression that selects the jobs that have sufficiently large priorities and

returns the last of these jobs, if any. The queue has to be scanned twice, be-

cause the selection cannot begin until after the mean and deviation have been

computed.

function SuperJob (Q: JobQ): Job;
var Jobs, SuperJobs: series of Job;

N: Integer;
Mean, SecondMoment, Deviation, Limit: Real;

begin
Jobs := ScanJobQ(Q);
N := CollectLength(Jobs);
Mean := CollectSum(Jobs.Priority)/N;
SecondMoment := CollectSum(Sqr(Jobs.Priority))/N;
Deviation := Sqrt(SecondMoment-sqr(Mean));
Limit := Mean+2*Deviation;
Jobs := ScanJobQ(Q);
SuperJobs := Choose(Jobs .Priority>Limit, Jobs);
SuperJob := CollectLast(SuperJobs, nil)

end

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991.

84 ● Richard C. Waters

The programs above are a good example of the way series expressions are intended

to be used. To start with, all of the programs are straightforward in nature. This

reflects the fact that the primary goal of series expressions is to convert the vast

majority of programs that are in fact straightforward programs into dirt simple

programs. When a program is straightforward, it is usually easy to write it in a loop-

free form without having to use anything other than very simple series expressions.

6. THE OPTIMIZATION ALGORITHMS

A preprocessor or compiler extension that transforms optimizable series expressions

into loops can be implemented in three stages: parsing which locates optimizable

expressions and converts them into equivalent data flow graphs, pipelining which

collapses a graph into a single node representing an equivalent loop, and unparsing

which converts this node into appropriate program code and inserts the code in

place of the original expression.

Below, the Pascal implementation of series is used as a concrete illustration. The

Common Lisp implementation works in the same way, except that the characteris-

tics of Lisp simplify the parsing and unparsing stages.

Parsing. When the preprocessor is applied to a program, it begins by parsing

the program. Series expressions are located by inspecting the types of the proce-

dures called by the program. While this is being done, the static analyzability y and

straight-line computation rest rict ions are checked and any violations reported.

In a language like Pascal where complete compile-time type information is avail-

able, implicit mapping can be supported by noting places where non-series proce-

dures are applied to series. Each such application is replaced by an appropriate use

of MapFn.

The final action of the parsing stage is to create a data flow graph corresponding

to each optimizable series expression located. Since each of these expressions is a

straight-line computation, this is easy to do. Each procedure call becomes a node

in the graph and the data flow between the nodes is derived from the way the

procedure calls are nested and the way variables are used.

Pipelining. The operation of the pipelining stage is illustrated in Figure 12. The

series expression in the procedure SumSqrs (which computes the sum of the squares

of the odd elements of a vector) is transformed into the loop shown in the procedure

SumSqrsPipelined. The readability of the loop code is reduced by the fact that it

contains a number of internally generated variables. However, the code is quite

efficient. The only significant problem is that the pipeliner sometimes uses more

variables than strictly necessary (e. g., Reeult 5). However, this need not lead to

inefficiency during execution as long as a compiler capable of simple optimizations

is available.

The pipelining process operates in several steps. In the first step, the divide and

conquer strategy discussed in Section 2.5 is used to partition the data flow graph

for a series expression into clusters where all the data flow connects on-line ports.

While doing this, the pipeliner checks that the expression obeys the on-line cycle

rest rict ion.

Once partitioning is complete, the procedures in each cluster are combined into

a single procedure. The resulting procedures are then combined based on the data

flow between the subexpressions. To support the combination process, each series

ACM Transactions on Programmmg Languagesand Systems,Vol 13, No. 1, January 1991.

Automatic Transformation of Series Expressions into Loops o 85

function SumSqrs (V: array [1. .N1 of Integer) : Integer;
begin

SumSqrs := CollectSum(Sqr(ChooseIf(Odd, Scan(V))))
end

function SumSqrsPipelined (V: array [1..NI of Integer): Integer;
label 0,1;
var Element12, Index15, Result5, Sum2: Integer;

begin
[11
[41
[1] 1:

[11
[11
[21
[31
[41

o:

~ndex15 := O;
sum2 := o;
Index15 := l+Index15;

if Index15>N then goto O;
Element12 := V[Index15];
if not 0dd(Element12) then goto 1;
Result5 := Sqr(Element12);
sum2 := Sum2+Result5;
goto 1;
SumSqrsPipelined := Sum2

end

[11 -- Scan of a vector ---------------------------------

inputs- Vector: array [A’..LI of ElementType;
outputs- Element: Series of ElementType;

vars- Index: Integer;
prolog- Index: l-K;

body- Index := I+Index;
if Index>L then goto O;
Element := Vector[Index];

[2] -- ChooseIf ---

inputs- function P(X: ElementType): Boolean;
Item: Series of ElementTbype;

outputs- Item: Series of E1ementType;
labels- 2;

body- 2: NextIn(Item);
if not P(Item) then goto 2;

[3] -- Implicit mapping of Sqr __________________________

inputs- Item: Series of ElementType;
outputs- Result: Series of ElementType;

body- Result := Sqr(Item);

[4] -- coll~cts~ --

inputs- Number: Series of ElementType;
outputs- Sum: ElementType;

prolog- sum := o;
body- Sum := Sum+Number;

Fig. 12. Transforming optimizable series expressions into loops.

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991.

86 . Richard C Waters

procedure is represented as a loop fragment with one or more of the following parts:

inputs - Input variables.

outputs- Output variables.

vars - Auxiliary variables used by the comput at ion.

labels- Labels used by the computation.

Prolog- Statements that are executed before the computation starts.

body- Statements that are repetitively executed.

epilog- Statements that are executed after the loop terminates.

The bottom part of Figure 12 shows the fragments that represent the procedures

called by the series expression in Sumsqrs. These fragments are combined to cre-

ate the loop in SumSqrsPipelmed. The numbers in the left hand margin indicate

which fragment each line of the loop comes from. Two different combination al-

gorithms are used: one corresponding to data flow between on-line ports and one

corresponding to data flow touching off-line ports.

When two procedures are connected by data flow between on-line ports (e.g, the

data flow from the output of the implicit mapping of Sqr to the input of Collect Sum),

the procedures are combined by simply concatenating the various parts of the corre-

sponding fragments together. In addition, the variables and labels in the fragments

are renamed so that there will be no possibility of conflicts. The data flow between

the procedures is implemented by renaming the input variable of the destination

so that it is the same as the output variable of the source. (The process above is

much the same as an application of the standard compiler optimization technique

of loop fusion [3].)

When two procedures are connected by series data flow terminating on an off-line

input (e. g., the data flow from the output of Scan to the series input of Choose If

in the figure), the fragment representing the destination procedure contains an

instance of the form Next In, which specifies when elements of the input should be

computed. The two fragments are combined exact 1y as in the on-line combination

algorithm except that the body of the source fragment is substituted in place of

the call on NextIn, rather than being concatenated with the body of the destination

fragment. (This process essentially compiles in support for a simple case of lazy

evaluation [17].)

Unparsing. The result of pipelining is a single loop fragment that corresponds to

the series expression as a whole. In the unparsing stage, this fragment is converted

into a loop as indicated below. The combination process eliminates the inputs.

The outputs are connected up to the surrounding code when the loop is substituted

into the program in place of the original series expression. The other parts of the

fragment appear directly in the loop.

label O, 1, Iabek;
var vars;

begin
prolog ;

1: body;

goto 1;
O: epilog;

Once each series expression has been replaced by a loop, the resulting code can

be passed to a standard Pascal compiler.

ACM Transactions on Programming Languages and Systems, Vol 13, No. 1, January 1991.

Automatic Transformation of Series ExpressIons into Loops ● 87

Side-effects. The correctness preserving nature of the transformations above has

only been verified under the assumption that there are no side-effects involved.

However, it is believed that if unoptimized series are implemented as illustrated in

the beginning of Section 4, then the transformations are also correctness preserving

even in the presence of side-effects as long as they are applied to a series expression

that only computes a single overall output.

The reason for this is that the transformed code exactly mimics the lazy evalu-

ation of the untransformed expression. For instance, the off-line port combination

algorithm involves code motion; however, this motion simply moves the generation

of the series elements to the place where lazy evaluation requires the elements of

the series to be first computed.

The above can be made more formal from the point of view of path analysis [1 I].

Path analysis seeks to determine at compile time where in a program each lazy

value will be first used and where it will be reused. This information can be used

to optimize lazy evaluation in two ways. If there is an identifiable place of first use

of a given value, then ordinary evaluation can be used instead of lazy evaluation for

that value. If there is an identifiable last use for a value, the value does not have

to be stored beyond that time.

The restrictions in Section 2 guarantee that for each series, there is an identifiable

place where each element of the series is first used and that, for each element, the

last use precedes the computation of the next element. The transformations above

merely position the computation of the elements at their place of first use and omit

their long term storage.

The above notwithstanding, one should realize that side-effects are still problem-

atical, because lazy evaluation makes it difficult for programmers to figure out what

the net results of side-effects will be. Some situations can be readily understood.

For example, one can depend on the fact that mapping will apply the mapped func-

tion ~ first to the first element of the input, then to the second, and so on, in strict

temporal order. Thus, if ~ interacts with itself or the environment outside of the

cent aining series expression X via side-effects (e.g., by doing input or output), but

does not interact with anything else in X, the result is easy enough to understand.

More complex uses of side-effects should be avoided.

6.1 Systems Based on Similar Algorithms

The algorithms described above have evolved into their current form over thirteen

years. The first generally available implementation was a Lisp macro package called

Lets [43, 44]. The current Lisp implementation [4i’] is available in portable Common

Lisp.

The same basic approach to representing and combining sequence procedures was

independently developed by Wile [49]. However, he does not explicitly address the

question of restrictions and his approach does not guarantee that every intermediate

sequence can be eliminated. Much the same can be said about optimizing APL

compilers [12].

A quite similar approach is also used internally by the Loop macro [13]. How-

ever, as discussed in the next section, the Loop macro is externally very different

from series expressions. In particular, it uses an idiosyncratic English-like syntax

rather than representing computations as compositions of procedures operating on

series.

ACM Transactions on Pro~rammin~ Languagesand Systems,Vol. 13, No. 1, January 1991.

88 “ Richard C. Waters

7, COMPARISONS

There are two primary vantage points from which to compare series expressions

with related concepts. The most obvious comparison is with other support for

sequence expressions. From this perspective, the key feature of series expressions

is that they support most of the operations supported by the vector operations of

APL [32], the sequence operations of Common Lisp [37], and the stream operations

of Seque [20] (along with a few additional ones) while being more efficient.

Another way to view series expressions is that they are a logical continuation

of the trend in programming-language design toward supporting the reuse of loop

fragments. From this point of view, series expressions extend the approach taken

by iterators in CLU [28] and the Lisp Loop macro [13]. The key feature of series

expressions in this context is that they support the reuse of a wider variety of

fragments and are easier to understand and modify, without being any less efficient.

To lend depth to the comments above, the remainder of this section presents

detailed comparisons between series expressions and five other approaches. Each of

these comparisons features the example below. This example shows the definition

of a procedure that computes the sum of the positive elements of a vector. It also

illustrates how a new series procedure can be defined.

function SumPositive (V: arrav [1. .N1 of Integer) : Integer:
function Positive (X: Integ~r) : Boolean; -

begin Positive : = X>O end;
begin

SumPositlve := CollectSum (Choose If(Posltive, Scan
end

function CollectSum (S: series of Integer) : Integer
begin

CollectSum := CollectFn(O, +, S)
end

7.1 Other Support for Sequence Expressions

v)))

There are many programming languages that provide support for sequence expres-

sions, e.g., [5, 6, 20, 26, 33, 35, 36, 37]. So many, that it would not be practical to

make detailed comparisons bet ween each one of these languages and series expres-

sions. Three represent ative languages are discussed below.

APL. One of the oldest and must used languages that takes a functional approach

is APL [24, 32]. A style of writing APL has evolved where vector expressions are

used instead of loops. The correspondence between the series functions discussed

in Section 3 and the APL vector operators is summarized in Figure 13. The APL

concept of the extension of scalar operations to vectors corresponds to implicit

mapping.

As illustrated below, both the vector summation algorithm and user-defined se-

quence procedures can be compactly represented in APL. Since sequences are di-

rect ly represented as vectors, there is no need for an explicit scan operation.

~ SUM= SUMPOSITIVEAPL V

[11 SUM+ COLLECTSUM ((V>O) /V)

v

~ SUM+ COLLECTSUM NUMBERS

[11 SUM~+/NUMBERS

7

ACM Transactions on Programmmg Languages and Systems, Vol. 13, No. 1, January 1991

Automatic Transformation of Series ExpressIons into Loops “ 89

Series Function APL OperatiOn name

collection (z, .F, R) F/R reduction
scanning(z, 2, ~) missing

collecting(~, .’F, R) F\R scanning

mapping(.F, RI, Rn) RI F Rz extension of scalar operations

truncating(P. R) (((P R) L 1)–1) TR take
choosing%’, R) (P R)/R compression

mingling(R, S, T’) missing

catenating(R, S) R,S catenation

spreading (R, S. z) idiom based on expansion

sectioning (R, m, n) (n-m) I m. ~ R take and drop

chunking(w, d, R) missing

simple idioms index generation, membership, inner product, etc.
missing reversal, rotation, grade up/down, modifying elements

Fig. 13. The correspondence between series functions and APL operations.

The key differences between APL and series expressions are that APL vectors can-

not represent unbounded sequences, the set of APL operations is somewhat different,

and users are not given any feedback about what is efficient and what is not.

Although all the series operations could have been supported in APL, there is

no direct built-in support for scanning, mingling, or chunking. In addition, APL

does not support higher-order operations as well as it might initially appear. For

instance, the reduction operator appears to be a higher-order operation. However,

at least in standard APL, the operation to be reduced must be one of the predefine

scalar operations—user-defined operations cannot be used. As a result, the reduc-

t ion operator is actually just part of a naming scheme for a small set of specific

collectors. (This has the collateral benefit of allowing the initial identity value to

be implicit.)

APL supports four operations (reversal, rot ation, grade up, and grade down) that

are not supported by series expressions, because they cannot be implemented in

a preorder fashion without introducing significant inefficiency. APL also allows the

modification of the elements of a sequence. When using series expressions, one

has to rely on other constructs in the host language when performing any of these

operations.

For instance, to sort a series in the Lisp implementation of series, one must

first collect the series into a list or vector and then, sort the resulting structure.

Explicitly creating an intermediate structure makes the expensive nature of sorting

more obvious, however, it does not make sorting more expensive, because sorting

always requires that some physical representation of the sequence be created.

A few APL compilers [12, 22] are capable of producing efficient code in most of

the sit uations where series expressions can be optimized; however, most are not. As

a result, optimizable series expression are typically much more efficient. Further,

even when the compiler supports optimization, programmers are not given any

feedback about whether optimization has occurred. Rather, programmers are (at

least implicit ly) encouraged not to think about such issues.

An area where APL is fundamentally more powerful than series expressions is

that the standard intermediate structure in APL is the array. APL has a number

of powerful array operators (not shown in Figure 13) and a few APL compilers can

opt imize some array expressions. In contrast, while it is possible to have series of

ACM TransactIons on Programming Languagesand Systems,Vol. 13, No. 1, January 1991.

90 “ Richard C, Waters

Series Function Sequence Operatmn

collectlon(z, $, R) (reduce F R)

scanmng(z, >, ‘P) missmg

collecting (z, F, R) missing

mapping(.F, RI, . . l?n) (map type F R1 R~)

truncating(~, 1?) (subseq R O (posltiOn-lf T R))

choosing(P, R) (remove-if-not ‘P R)

mingling(l?, S, P) (merge type R S P)

catenating(R, S) (concatenate type R S)

sprearling(R, S, z) missing

sectiOning(R, m, n) (subseq R m rL)

chunking(u~i d, R) missing

simple idioms elt, length, count, find, some, etc

missing reverse, sort, modifying elements

Fig. 14 Thecnrrespondence between series functions andsequence t~perations.

series, there are no special series operations for operating on them, and they are

never optimized.

Finally, a superficial but striking difference between series expressions and APL

is that series expressions use standard subroutine calling notation while APL uses a

special set of concise, but cryptic, operators.

Common Lisp Sequence Operations. While many (if not most) Lisp programmers

use loops extensively, a style of writing Lisp has evolved where expressions comput-

ing intermediate lists and vectors are used instead of loops. Unfortunately, until

recently, Lisp supported an impoverished set of predefine sequence operations—

it supported mapcar, but not much else. When Common Lisp was designed [37],

this defect was rectified by introducing a relatively comprehensive suite of sequence

operations.

In Common Lisp, the term ‘sequence’ is used to refer to either a list or a vec-

tor. However, since both of these structures are limited to representing bounded

sequences, Lisp sequences are not a complete implement at ion of mathematical se-

quences. The correspondence between the basic series functions and the Lisp se-

quence operations is summarized in Figure 14. Lisp does not support implicit

mapping.

The example below shows how the Common Lisp sequence operations can be used

to express the vector summation algorithm and a user-defined sequence procedure.

Since a vector is a Lisp sequence, there is no need for an explicit scan procedure.

(clefun sum-positive-sequence (v)
(collect-sum (reIIIOVe-if -not #’pluSp V)))

(defun collect-sum (nmnbers)
(reduce #’+ numbers))

Except for the fact that Lisp sequences cannot represent unbounded sequences,

there is no reason why all the series functions could not be supported by sequence

operations. However, there is no direct built-in impport for scanning, collecting,

spreading, or chunking. In addition, the identity value to use for reduce (collection)

is specified in an odd way. The procedure argument must be implemented in such

a way that when called with zero arguments it returns the identity value.

Current Lisp compilers do not optimize sequence expressions. As a result, op-

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991

Automatic Transformation of Series Expressions into Loops o 91

timizable series expressions are much more efficient. In light of the lack of opti-

mization, it is not surprising that Lisp provides no feedback about optimizability.

As in APL, there is no bias toward preorder functions and modification of sequence

elements is allowed. It is also common to have sequences of sequences, however,

Lisp does not provide any special operations for manipulating them.

An interesting aspect of the Lisp sequence operations is that they typically sup-

port a number of keyword arguments that modify their behaviors. For example,

consider the sequence operation count -if, which takes a predicate and a sequence,

and returns a count of the number of elements in the sequence that satisfy the

predicate.

(count-if #’plusp ‘(1 -2 3 4 -5)) ~ 3

The Lisp operation count-if takes two keyword arguments : start and : end,

which can be used to specify a subsection of the input in which counting is to

occur. In addition, a keyword argument : key can be used to specify an access

procedure that will be used to fetch the part of each sequence element that should

be tested by the predicate. Finally, an operation count-if-not exists, which is the

same as count-if except that it automatically negates the values returned by the

predicate.

As illustrated by the example below, none of these options is strictly necessary.

The : start and : end keywords can be dispensed with by using subseq. The :key

keyword and count-if-not can be dispensed with by specifying complex predicates.

(count-if-not #’plusp ‘ ((1) (-2) (3) (4) (-k))
:start O :end 3 :key #’car)

~ (count-if #’ (lambda (element) (not (plusp (car element))))
(subseq ‘ ((1) (-2) (3) (4) (-5)) O 3)) ~ 1

Nevertheless, the various options described above are important for two reasons.

First, they promote efficiency. (Using subseq instead of the : start and : end key-

words is inefficient, because it creates an intermediate sequence.) Second, they

increase the probability that predefine operations can be used as procedure argu-

ments instead of lambda expressions. This makes uses of count-if more concise and

easier to read.

Using series expressions, neither of these issues comes up. In the Lisp series ex-

pression below, the use of subseries does not lead to inefficiency, since pipelining

eliminates the physical creation of its output series. Convenient support for map-

ping makes it possible to avoid the need for an explicit lambda expression. The

desired test and key is simply mapped over the series in question (again without

inefficiency y). Finally, count - if itself can be dispensed with by using a combination

of choose and collect-length. The approach taken by series expressions allows

the individual procedures to be simpler and makes programs more functional in

appearance.

(let ((elements (subseries (SC= ‘((l) (-2) (3) (4) (-5))) o 3)))
(collect-length (choose (#llnot (#Mplusp (#Mcar elements)))))) ~ 1

Seque. Under the name of streams, sequences are the central data type of the

language Seque [20]. Using the same basic lazy evaluation technique discussed in the

beginning of Section 4, Seque supports both bounded and unbounded sequences.

The correspondence between the series functions discussed in Section 3 and the

ACM Transactions on Programming Languages and Systems, Vol. 13, No. 1, January 1991.

92 “ Richard C. Waters

Series Function Seque Operation

collection(z, >, R) Red(R, 7) ! Length(R)

scanning(zi >, P)

collecting(z, F, 1?)

mapping(>, RI, Rn)

truncating(’p, R)

choosing(P, R)

mingling(f?, S, P)

catenating(l?, S)

spreading(R, S, z)

sect, ioning(R, m, n)

chunking(w, d, R)

Idioms based on

Red(R, F)

[F’(R1 I z, , Rn 1 z)]

R\\ [If P(R ! Z) then Z–I] ! 1

[If ‘P(R ! ,) then R 1 ,]

missing

R->S

missing

R{m–l, n–2}

missing

name

reduction

generators

redllction

derived stream

post-truncation

filtering

concatenation

sectiomng

simple idioms Length, referencing, operations over streams, etc.

missing modifying elements

Fig. 1.5. The correspondence between series functions and Seque operations

stream operations provided by Seque is summarized in Figure 15. As in APL, many

of these operations are provided by means of special syntax. In addition, implicit

mapping is supported for many non-stream operations when they are applied to

streams.

As illustrated below, both the vector summation algorithm and user-defined se-

quence procedures can be easily represented in Seque. Since streams are a distinct

data type from vectors, an operation ! equivalent to Scan is required.

procedure SumPositive (V)
return CollectSmn([: IV: lambda(e) if e>O then e])

end

procedure CollectSum (S)
L := Length(S)
return if L=O then O else Red(S, “+”) !L

end

Since unbounded sequences are supported, it would be easy to completely support

all the series functions in Seque. However, there is no direct support for mingling,

spreading, or chunking. In addition, collection is only indirectly supported by col-

lecting, this leads to awkwardness when collection is applied to an empty sequence,

because there is no specification of the correct default value to return. There is

also no direct support for the higher-order function scanning. However, there is an

impressive array of facilities for defining scanning functions, both in Seque and in

the language Icon [19], which Seque is based on. It is interesting to note that like

the series operations, all of Seque’s stream operations are preorder.

Seque does not attempt to optimize the evaluation of stream expressions by

eliminating the computation of unnecessary intermediate streams. As a result,

series expressions are never less efficient and often much more efficient. Seque

programmer’s are encouraged to think in terms of streams of streams and to make

use of assigning to the elements of streams without any regard for the consequences

on efficiency.

Summary. In comparison with the languages above, series expressions have three

principal advantages. They support a wider range of operations than any one of

the languages. Except in comparison with the best of APL compilers, they are

much more efficient. They give clear feedback about what is efficient and what is

ACM Transactions on Programmmg Languages and Systems, Vol. 13, No. 1, January 1991.

Automatic Transformation of Series Expressions into Loops o 93

not. As part of this, they make the use of procedures that cannot be efficiently

implemented as preorder procedures more awkward, by forcing the programmer to

use the facilities of the host language.

7.2 Looping Notations

The fundamental virtues of series expressions in comparison with looping constructs

are illustrated by the discussion in the beginning of Section 1. However, this dis-

cussion is colored by the fact that it illustrates the use of only the most basic kind

of looping construct. More complex looping constructs support several of the fea-

t ures of series expressions. In particular, they allow the equivalent of scanners and

collectors (but not transducers) to be expressed as localized forms rather than as a

stat ements dispersed in a loop.

Most programming languages contain a for construct, which makes it easy to

express loops that are based on enumerating a range of integers. Some languages

go beyond this by providing special looping forms corresponding to a few additional

scanners. For example, Common Lisp provides a form do list that makes it easy to

implement a loop based on scanning the elements of a list. A couple of languages

go further still by supporting a relatively wide range of st andard looping fragments.

Some of the oldest and most comprehensive support for this is in Lisp.

The Lisp Loop macro. The Lisp Loop macro [13] (which is based on the iterative

statements in the InterLisp Clisp facility [38]) introduces two concepts into Lisp.

First, it supports a looping construct analogous to for that uses an Algol-like

keyword syntax. Second, it goes way beyond most for constructs by supporting

a wide range of looping fragments analogous to scanners and collectors. Because

of its non-Lisp syntax, the Loop macro has always been controversial. However,

because of the utility of its predefine looping fragments, it has gained wide use.

The example below shows a program that uses the Loop macro to implement the

vector summation algorithm. (The Loop macro does not support the definition of

new collector-like fragments.) The code produced by the Loop macro is more or less

identical to the code produced when optimizable series expressions are pipelined.

As a result, the two approaches are equally efficient.

(clefun snm-positive-loop-rnacro (v)
(loop for item being each vector-element of v

when (plusp item)
sum item))

Loop supports a keyword when that is similar to the transducer choosing (see the

example). A call on the Loop macro can also contain an arbitrary body that is

mapped over the values computed by the scanner-like fragments (this is not shown

in the example). However, the Loop macro does not support any other transducer-

like looping fragments.

Although Loop does not support the definition of new collector-like fragments, it

does support the definition scanner-like fragments. However, as illustrated by the

following example (which shows the definition of the keyword vector-element used

in sum-positive-loop-macro), these facilities are quite cumbersome. The user has to

define a procedure that deals with parsing parts of the Loop syntax and that returns

a list of six parts analogous to the parts of the loop fragments discussed in Section 6.

(Recently, the Common Lisp standardization committee decided to adopt most of

the Loop macro as part of Common Lisp. However, on the grounds that it was too

ACM Transactions on Programmmg Languages and Systems, Vol. 1:3, No 1, January 1991.

94 ● Richard C. Waters

complex, they decided not to include the scanner-defining capabilities.)

(define-loop-path vector-element scan-vector (of))

(defun scm-vector (path-name variable data-type prep-phrases
Inclusive? allowed-prepositions data)

(declare (ignore path-name data-type incluslve?
allowed-prepositions data))

(let ((vector (gensym))
(1 (gensym))
(end (gensym)))

‘(((vector) (,i 0) (,end) (variable))
((setq ,vector ,(cadar prep-phrases))

(setq ,end (- (length ,vector) l)))
(> ,i ,end)
(,variable (aref ,vector ,i))
nll
(,1 (+ ,i 1)))))

A subtle difficulty with the Loop macro isthat there are no restrictionson the

computation that canbe in the body and thereis no attempt to prevent the body

from interfering with the computation specified by the looping fragments. As a

result, programmers cannot depend on the fact that these fragments will necessarily

dowhat they are intended to do.

The concept of Generators and Gatherers presented in [30], provides essentially

the same capabilities as the Loop Macro, but with a more functional syntax and

simpler defining forms.

Iteratorsin CLtT. Among Algol-like languages, some ofthe most powerful support

for the use of looping fragments is provided bycLu [28]. In CLU, scanner-like frag-

mentscalled iterators can beusedin forloops to generate a series ofelements that

are processed bythe body ofthe for. CLuprovides anumber ofpredefined scanners,

including one corresponding to scanning a vector, and users can define new ones.

(Alphard [.50] supports a construct called a generator that is essentially identical to

a CLU iterator. More recently, [10] shows how generators can be supported in Ada

using generic packages.)

As an illustration, the example below shows how the vector summation algorithm

can reexpressed in CLU. It also shows the definition of a user-defined scanner. This

is done by writing a coroutine that yields the scanned elements one at a time.

SUM_POSITIVE_CLU = proc(V: ARRAY IINT]) returns (INT)
SUM: INT := O

for ITEM: INT m SCAN_ VECTOR(V) do
if ITEM>O then SUM := SUM+ITEM end

end
return (SUM)

end SUM_ POSITIVE_CLU

SCAN_ VECTOR = iter(V: ARRAY IINT]) yields (INT)

I: INT := ARRAY IINT]$LOW(V)

END: INT := ARRAY IINT]$HIGH(V)

while I<=END do

yield(VII])

I := 1+1

end

end SCAN_VECTOR

Taken together, CLUiterators and the for statement are essentially the sameas

the Loop macro except for three things. Nothing besides mapping and scarmingis

ACM Transactions on Programming Lan~ages and S~stems,Vol 13, N0. l,,January 1991.

Automatic Transformation of Series Expressions into Loops o 95

supported. (In the example above, the operations of choosing and summing are both

represent ed in non-local ways in the body of the loop.) Each for can only cent ain

one it erat or instead of many. CLU’S method for defining iterators as corout ines is

significantly easier to use than the Loop macro’s scanner-defining form.

A method for supporting multiple iterators in a CLU for statement is described

in [15]. Going beyond this, [14] describes how one could support collectors (again

restricted to only one in each loop). While both of these papers merely present

proposals rather than describing actual implementations, there is no doubt that

everything supported by the Lisp Loop macro could be straightforwardly supported

in an Algol-like language.

Summary. The key difference between the looping constructs above and series

expressions is that while the looping constructs support looping fragments corre-

sponding to (potentially unbounded) scanners and collectors and are highly effi-

cient, they do not support the concept of a sequence data structure nor the idea

of t resting loop fragments as procedures. This preserves the iterative feel of the

constructs, however, it is significantly limiting in several ways.

The lack of a sequence data type prevents the constructs from supporting any-

thing other than a few simple transducers. (It is not clear how one could support

transducers in general without having some kind of object that they can act upon.)

The fact that the loop fragments are not procedures means that the way the

fragments can be used is intimately tied up with the syntax of the constructs. One

has to learn a new language of combination rather than simply using standard

functional composition. In addition, this new language of combination is much

more rest ricted than functional composition. For inst ante, the only thing that can

be done with a scanner-like fragment is to use it in a call on loop or for and map

some computation over the values scanned.

An interesting thing to note about the looping constructs above is the way they

avoid getting involved with a discussion of the restrictions in Section 2. By not

allowing a sequence data structure to be stored in a variable, only supporting

preorder fragments, largely ignoring transducers (particularly off-line ones), and

limiting the way fragments can be combined, the constructs implicitly enforce these

restrictions without having to talk about them. Unfortunately, the total restrictions

they embody are much stronger than the ones in Section 2. This unnecessarily limits

what can be expressed.

8. BENEFITS

There are three principal perspectives from which to view series expressions. To

start with, series expressions can be looked at as embodying relatively complete

support for sequence expressions in such a way that they can be included in any

programming language without removing any preexisting features of the language,

requiring the use of unusual syntax, or causing inefficiency. This support includes

most of the operations provided by languages such as APL, Lisp, and Seque along

wit h a few additional ones.

An alternate perspective focuses on the fact that programmers are given clear

and immediate feedback about the efficiency of the series expressions they write.

Series expressions that do not violate the restrictions in Section 2 are guaranteed

to be as efficient as they look. By means of error messages, programmers are

encouraged to think of efficient methods for computing the results they want. In

ACM Transactions on Programming Languagesand Systems,Vol. 13, No. 1, January 1991.

96 s Richard C, Waters

particular, unlike APL, Lisp, or Seque, programmers are never tempted to think

that all sequence expressions are equally efficient.

A final perspective is summarized by the statement that “optimizable series ex-

pressions are to loops as structured control constructs are to gotos.” By using

optimizable series expressions, it is possible to banish loops from most programs.

Given that expressions are much easier to understand and modify than loops, this

has the potential for being a step forward at least as important as banishing gotos.

In the context of this final perspective, it is worthy of note that it has been

shown [42, 34] that it is possible to analyze loops and automatically convert them

into series expressions. As a result, it should be possible to construct a tool that

automatically converts the loops in pre-exist ing programs into series expressions.

This would allow programmers to obtain the full benefits of using series expressions

when maintaining old code.

While the idea has not yet been explored, optimizable series expressions might

also be helpful in the cent ext of parallelism. Even though it is oriented toward

sequential machines, the pipelining applied to opt imizable series expressions is very

much the same as the ‘software pipelining’ of loops for execution on very large

instruct ion word machines [27] and for execution by the processors of systolic ar-

rays [2, 21]. If programs were written using series expressions, the process of an-

alyzing the programs to determine a good schedule for the pipelined computation

might be simplified. In addition, the restrictions in Section 2 appear relevant,

because buffering of elements also causes inefficiency in a parallel context.

The application of optimizable series expressions to non-pipelined parallelism is

less clear. The emphasis in such situations is on locating opportunities for evaluat-

ing subcomputations completely in parallel with no data flow between them. This is

appropriate for mapping, but not for most of the other series operations. Neverthe-

less, using optimizable series expressions might make it easier to detect where such

parallelism exists. For example, this might make it easier to vectorize [4J programs.

ACKNOWLEDGMENTS

The concept of optimizable series expressions has benefited from the suggestions of

a number of people. In particular, A. Meyer, C. Perdue, C. Rich, D. Wile, Y. Feld-

man, D. Chapman, Y. Tan, and P. Anagnostopoulos made suggestions that led to

significant improvements. In addition, the anonymous reviewers made suggestions

that significantly improved both the concept and the presentation.

This paper describes research done at the Artificial Intelligence Laboratory of

the Massachusetts Institute of Technology. Support was provided by the Defense

Advanced Research Projects Agency (under Naval Research contracts NOOO14-75-

C’-O643, NOOOl 4-80-(!-050.5, NOO014-85-K-0124, and NOO014-88-K-0487), the National

Science Foundation (under grants MCS-7912179, MCS-8117633, and IRI-86166.14),

and the IBM, NYNEX, Siemens, Sperry, and Microelectronics and Computer Tech-

nology corporations. The views and conclusions contained in this paper are those

of the author and should not be interpreted as representing the policies, expressed

or implied, of these organizations.

REFERENCES

1. AHO, A , HOPCRAFT, J , AND ULLMAN, J. The Design and Analysis of Computer .41gorithms.

Addison-Wesley, Reading, IvIA, 1974.

ACM Transactions on Programmmg Languages and Systems, Vol 13, No. 1, January 1991

Automatic Transformation of Series Expressions into Loops - 97

‘2. AIKEN, A., AND NICOLAU, A. Optimal 100P parallelization. In Proceedings of the SIGPL.4N

’88 Conference on Programming Language Design and Implementation (Atlanta, GA, .Jlme

1988). ACM, New York, 1988, 308–317.

3. ALLEN, F., AND COCKE, J. A catalogue of optimizing transformations. In Design and Opti-

mization of Compilers. R. Rust in, Ed., Prentice Hall, New York. 1971.

4. ALLEN, R., AND KENNEDY, K Automatic translation of Fortran programs to vector form.

ACAI Tkans. Program. Lang, and Syst. 9, 4 (Oct. 1987), 491-542.

5. BACKUS, J. Can programming be liberated from the Von Neuman style? A functional style
and its algebra of programs. Cbmmun. ACM 21. 8 (Aug. 1978), 613–641.

6. BARSTOW) D. Automatic programming for streams. In Proceedings of the 9th International

Joint Conference on Artificial IntelJigenre (Aug. 1985). 232–237.

7. BELLEGARDE, F. Rewriting systems on FP expressions that reduce the number of sequences

they yield. In Proceedings ACM Symposium on Lisp and Functional Programming (Aug.

1984). ACM, New York, 1984, 63–73.

8. BELLEGARDE, F. Convergent term rewriting systems can be used for program transformation.
In Proceedings Workshop on Programs as Data Objects. Springer-Verlag, New York, 1985.

24–41.

9. BIRD) R. An introduction to the theory of lists. In Logic of Programming and Calcuh of

Discrete Design. M. Broy, Ed., NATO ASI series, Springer Verlag, New York, 1986, 5-42.

10. BISHOP, J The effect of data abstraction on loop programming techniques. IEEE Trans.

Softw. Eng. 16, 4 (April 1990), 389-402.

11 BLOSS, A., HUDAK, P., AND YOUNG, J. Code optimization for lazy evaluation. Lisp and

Symbolic Cornput. 1, 2 (Sept. 1988), 147-164.

12. BUDD, T. An APL Compiler. Springer-Verlag, New York, 1988.

13. BURKE, G., AND MOON, D Loop iteration macro. Massachusetts Institute of Technology

Rep. LCS/TM-169, .July 1980.

14. CAMERON, R. Efficient high-level iteration with accumulators. ACM Trans. Program. Lang.

and Syst. 11. 2 (Feb. 1989), 194–211.

15. ECKART, J. Iteration and abstract data types. AChJ SIGPLAN Not. 22, 4 (April 1987),

103–110.
16. EMERY, J. Small-scale software components. ACM SIGSOFT Softw. Eng. Not. 4, 4 (Oct.

1979), 18-21.

17. FRIEDMAN, D., AND WISE, D. CONS should not evaluate its arglunents. University of Indiana

Computer Science Department Rep. 44, Nov. 1975.

18. GOLDBERG, A., AND PAIGE, R. Stream processing. Rutgers University LabOratOry for COm-

pllter Systems Research Rep. LCSR-TR-46, Aug. 1983.

19. GRISWOLD, R., ANDGRISWOLD,M. The Icon Programming Langnage. Prentice-Hall, Engle-

wood Cliffs, NJ, 1983.

20. GRISWOLD,R., ANDO‘ BAGY, J. Seque: A programming language for manipulating sequences.

Comput. Lang. 13, 1 (Jan. 1988), 13-22.

21. GROSS, T,, AND SUSSMAN, A. L’Iapping a single-assignment language onto the Warp systolic

array. In Functional Programming Languages and C’omputer Architecture. G. Kahn, Ed.,

Springer-Verlag, New York, 1987, 347-363.

22. GUIBAS, L., AND WYATT, D. Compilation and delayed evaluation in APL. In Proceedings

1978 AC’h4 Conference on the Principles of Programming Languages (Sept. 1978). ACM, New

York, 1978.

23. HARTMANIS, J., LEWIS, P., AND STEARNS,R. Classification of computations by time and

memory requirements. In Proceedings IFIP Congress 65. Spartan Books, Washington DC,

1965, 31–35.

24. IVERSON) K. Operators. ACAI Trans. Program. Lang. and Syst. 1, 2 (Oct. 1979), 161–176
25. JENSEN, K., AND WIRTH, N. Pascal User Nlanua] and Report. Springer-Verlag, New York,

1985.

26. KAHN, G., AND MACQUEEN, D. Coroutines and networks of parallel processes. In Proceedings

1977 IFIP Congress. Nortll-Holland, Amsterdam, 1977.

27 LAM, hl. Software pipehning: An effective scheduling technique for VLIW machines. In

Proceedings SIGPLAN ’88 Conference on Programming Language Design and Implementation

(Atlanta, GA, June 1988). ACM. New York, 1988, 318-328.

ACM Transactions on Programming Languages and Systems, Vol. 13, No, 1, January 1991.

98 “ Richard C, Waters

28. LISROV. B., et. al CZU Reference ilIan,~aJ, Springer-Verlag. New York, 1981.

29 ORWANT,J. Support of obviously synchronizable series expressions in Pascal. Massachllsetts
Instit,,te of Technology Rep. AI/WP-312i Sept. 1988.

30. PERDUE,C , AND WATERS,R. Generators and gatherers. In Common Lisp: the language.

2nd Ed. C, Steele Jr., Ed., Digital Press, Burlington, MA, 1990, 9.56-959

31. PINGALI, K., AND ARVIND Efficient demand-driven evaluation, part 1. .iCM Trana Program.

Lang and Syst 7, 2 (April 1985), 311–333.
3z, poL~v~A, R., .AND PAKIN, S, APL, The -Language and Its Usage. Prentice-Hall, Englewood

Cliffs, NJ. 1975.

33. PRYWES, N., PNUELI, A., AND SHASTRY, S IJse of a non-procedural specification language

andassociated program generator insoftware clevelopmeIlt. AC’MTrans Program Lang and

,SySt. I, 2 (Oct. 1979), 196–217.

34. RICH, C., AND WATERS,R. The Programmer’s Apprentice. Addison-Wesley, Reading MA,
1!290.

35. RUTH, G , ALTER, S , AND MARTIN, W. A very h@ level lanwaw fOr business data Pro-

cessing. Massachusetts Institlite of Technology Rep LC!S/TR-254, 1981.

36. SCHWARTZ, J et. aI. Programming l’t;ith Sets. An Introduction To SETL Springer-Verlag,

New York, 1986.

37. STEELE, G JR C’ommon Lisp: The Language. Digital Press, Maynard, MA, 1984.

38 TFXTELMAN, W Interlisp Reference Manual. Xerox PARC, 1978.

39. WADLER, P. Applicative languages, program transformation, andhstoperators. In Proceed-

ings .4CM Conference on Functional Programmmg Lang71ages and Computer Architecture

(Ott. 1981). ACM, New Ycmk, 1981,2.5-32

W WADLER, P Listlessn~ss R better than laziness; Lazy evaluation and garbage collection at

compde-time. In Proceedings ACM L$ymp. on Lisp and Functional Programmmg (Aug. 1984).

ACM, New York, 1984, 45–52.

41 WADLER, P Listlessness is better than laziness II: Composing listless functions. In Proceed-

ings workshop cm Programs as Data Objects. Springer-Verlag, New Ymk, 198.5.

42. WATERS, R A method for analyzing loop programs. IEEE Trans Softrv. Eng. 5, 3 (Mav

1979), ‘237-247.

43 WATERS, R. LetS. An expressional loop notation Massachusetts Institute of Technology

Rep AIhl-680a, Oct. 1982.

44 WATERS, R. Expressional loops. In Proceedings 1984 AC!M Conference on the Principles of

Programming Languages (Jan. 1984). ACM, New York, 1984, 1–10

4.5. WATERS, R Efhclent interpretation of synchronizable series expressions. In Proceedings .4CM

SIGPL.4N ’87 Symposium on Interpreters and Interpretive Techmques. ACM SIGPLAN Not.

22, 7 (.July 1987), 74–85.

46. lVATERS, R Using obviously synrhronizable series expressions instead of loops. In Proceed-

ings 1988 Iuterna tiomd Conference on Computer Languages [Miami, FL, Ott. 1988). IEEE

Computer Society Press, New York, 1988, 338-346.

47. WATERS, R. Optimization of series expressions: part I: A Imer’s manual for the series macro

package. Massachusetts Institute of Technology Rep. AIM-1082, Dec 1989

&3. WATERSR Series. In Common Lisp: The Language, 2nd Ed. G. Steele Jr., Ed., Digital

Press, Burlington, MA, 1990, 923–9.55.

49. WILE, D. Generator expressions. USC Information Sciences Inst,tllte Rep. ISI/RR-83-116,

1983

50. WULF, TV., LONDON, R , AND SHAW-) M An introduction to the construction and verdication
of Alp hard programs. IEEE Trans. Soft w. Eng. 2, -i (Dee. 1976), 253–265.

51 Military Standard Ada Programmmg Language. ANSI/MIL-STD- 181.5A-1983, C7.S. Govern-

ment Printing Office, Feb. 1983.

Received December 1987: revised November 1989 and May 1990; accepted July 1990

ACM TransactIons on Programming Languages and Systems, Vol. 13, N. 1, January 1991

