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ABSTRACT 
We consider the uplink power control problem in a single cell 
CDMA wireless data system. Each user specifies upper and lower 
QoS bounds. We formulate the considered problem as a game, 
and first examine the non-cooperative case. We then compare it to 
its cooperative counterpart (through the Nash bargaining 
solution). The use of the cooperative scheme shows significant 
reduction in the transmission power of the mobile terminals, while 
the achieved QoS is slightly compromised, compared to the non-
cooperative scheme. 

Categories and Subject Descriptors 
C.2 [Computer-Communication Networks], C.4 [Performance 
of Systems], G.1.6 [Numerical Analysis]: Optimization – 
Constrained optimization, Nonlinear Programming 

General Terms 
Algorithms, Performance, Design, Theory. 

Keywords 
CDMA, power control, Game theory, Nash Bargaining Solution, 
optimization. 

1. INTRODUCTION 
WCDMA has been widely adopted as the air interface technology 
for third generation (3G) networks [1]. WCDMA is based on 
Direct Sequence CDMA (DS-CDMA), which is a spread 
spectrum technology where user signals are spread over the entire 
transmission spectrum. Unique digital codes are used to separate 
the signals from different mobile stations, resulting in simpler 
statistical multiplexing, without the need for complex time or 
frequency scheduling. 

It is well known that minimizing interference using power control 
increases capacity [2], [3], [4], [5], and extends battery lifetime. 
Traditionally, much of the work on power control in CDMA 
wireless networks was limited to voice traffic sources [2], [3]. 
However, in recent years, the demand for wireless data services 
has increased, and significant research effort has been devoted to 
the efficient management of the wireless resources for bandwidth-
elastic data services. 

A popular approach to the power control problem is based on 
economic models, as in [6], [7], [8], [9]. Service preferences for 

each user are represented by a utility function, and game-theoretic 
methods are applied to study and model the interactions between 
selfish users. However, equilibrium points of such games (Nash 
equilibria, [10]) are, typically, not the most efficient operating 
points. As discussed in [12], the introduction of S-Modular games 
with pricing resulted in significantly more efficient (but unfair) 
operating points compared to the Nash equilibrium (NE). Hence, 
the determination of both efficient and fair operating points in the 
power control problem remains an issue to be explored. 

In this paper, we employ the Nash bargaining solution (NBS) [11] 
from cooperative game theory, which, by definition, yields Pareto 
optimal and fair solutions. Close to our work is the arbitration 
scheme that was proposed in [13]. The authors assumed that users 
should enjoy equal signal-to-interference ratio (SIR) and 
maximized the user utility function. The resulting operating point 
is Pareto optimal and fair [17]. However, the authors examined 
the problem without taking QoS constraints into account. In this 
paper, we assume bandwidth elastic, delay intolerant services 
(e.g., voice, video, and real time file transfers), where the rate 
may vary, but long delays are not permitted. Specifically, each 
user imposes individual QoS, SIR-expressed, constraints declared 
to the base station prior to connection establishment. We focus on 
the determination of the NBS point, subject to such user QoS 
constraints.  

The rest of the paper is organized as follows. In Section 2, we 
provide the basic formulations of the non-cooperative power 
control game. In Section 3, we describe a cooperative power 
control scheme. Specifically, we formulate the nonlinear problem 
that corresponds to the NBS, and provide an appropriate 
optimization algorithm for solving it. Section 4 provides 
numerical results. Lastly, in Section 5, we provide our 
conclusions. 

2. POWER CONTROL GAME 
In this section, we formulate the CDMA power control problem 
as a game. Let I = {l, ... , N} be the set of users who share the 
wireless bandwidth of a CDMA cell. User i controls his 
transmitted power pi, which is chosen from set Si = [0,+∞). Let p 
= (p1, …, pN)T be a typical strategy profile vector in the strategy 
space S = S1 × … × SN.  

In CDMA networks, all users transmit, simultaneously, in the 
same band, thus, interfering with one another. The higher the 
power with which a user transmits, the better will be his signal 



quality at the base station, but the higher will be the interference 
to the signals of the other users (and vice versa). The typical 
metric that quantifies the signal quality of user i is his SIR value 
γi, defined as 
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where W is the chip rate, R the transmission rate, hi is the path 
loss from user (mobile terminal) i to the base station, and σ2 the 
additive white Gaussian noise (AWGN) power at the receiver. 
The SIR metric is directly related to the QoS perceived by the 
user, as it directly influences the bit-error-rate (BER), and, thus, 
the achieved throughput.  

In this paper, we assume that user i has certain QoS requirements 
expressed by lower and upper bounds on the achieved SIR, γm,i 
and γM,i, respectively (γm,i < γM,i). Such SIR constraints, define the 
set of power allocations Γ = { p ∈ S: γm,i ≤ γi(p) ≤ γΜ,i , i ∈ I }. It 
can be easily shown that set Γ is a convex polyhedron.  

In order to fully describe the power control game, it is also 
necessary to define the utility functions of the users, i.e., the 
functions that quantify the level of user satisfaction for using the 
system resources. The utility function defined in [12] takes into 
account the achieved QoS as a result of the user’s transmitted 
power and the interference from the other users, as well as the 
resulting energy consumption. Specifically, it expresses the 
number of bits that are successfully received at the base station 
per unit of consumed energy. Let L be the length in bits of a user 
frame, and M the length of the frame including headers (M > L). 
Then, for user i, the utility function ui: Γ → ℜ is as follows: 

( )M
i

i
ie

Mp
LRu γ5.01)( −−=p (bits/Joule)   (2) 

The term ( )Mie γ5.01 −−  is an approximation to the probability of 
correct frame reception for asynchronous FSK modulation, 
assuming an additive Gaussian channel and no channel coding1. 
More details on the adopted utility function can be found in [12]. 
Similar versions of the discussed utility function can be found in 
[15], and [16]. Figure 1 shows the utility function of a user for a 
given interference level. 
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Figure 1. Utility function of a user, for given interference level  

                                                                 
1 This simplistic channel model is considered sufficient for modeling the 

social interaction problem emerging from the power control game [12]. 

2.1 Nash Equilibrium of the Non-cooperative 
SIR-constrained Power Control Game 
In this section, based on the formulations introduced, in the 
previous section, we assume that users act selfishly, i.e., each 
user, given global system information, tries to selfishly maximize 
his utility function. The main issue is the existence and 
uniqueness of a NE, i.e., if, given this selfish user behavior, the 
system will finally settle to a stable state. The definition of the NE  
with respect to the discussed problem follows: 

    Definition 2.1: A power vector p = (p1, …, pN)T is a Nash 
equilibrium of the power control game if for every user i ∈ I, 

ui(pi,p-i) ≥ ui(p΄i,p-i) 

for all p΄i ∈ Si, γm,i < γi(p΄i,p-i) < γM,i, 

where p-i = (p1, …, pi-1, pi+1, …, pN)T. 

 

That is, at the NE, given the power levels of the other users, no 
user can benefit by making individual changes to his transmitted 
power. In the studied problem, there is one and only one NE, as 
shown in the following theorem. 

    Theorem 2.1: There exists a unique Nash equilibrium to the 
non-cooperative power control game. 

    Proof: The proof of the above theorem follows from Debreu's 
Theorem 3.2 in [19], as the utility function given in equation (2) 
is defined over the convex set (polyhedron) Γ and is quasiconcave 
[14] in pi [12].                                                                        ■ 

 

In case no SIR constraints are imposed by the users, every user 
enjoys the same SIR γ*, at the NE (i.e., γi

* = γj
* = γ*, ∀ i,j ∈ I). 

Specifically, the NE SIR γ* derives from the first order optimality 
condition (sufficient in the discussed problem), i.e., ∂ui(p)/∂pi = 0, 
i ∈ I, [12]. It is easy to show that the discussed optimality 
condition takes the following form: 

ieM i
γγ 5.015.0 =+  (3) 

The value of γ* that solves (3) can be readily obtained 
numerically2. However, in case there are SIR constraints, the 
users do not typically enjoy the same SIR, at the NE. Specifically, 
the SIR-expressed NE for the SIR-constrained power control 
game is given as follows:  
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where γ* is the solution of equation (3), as already discussed. 

The NE SIR of a user, as derives through (3) and (4), can be 
easily calculated by the user; it only depends upon the 
characteristics of the specific user (e.g., SIR bounds of the user). 
However, the power to achieve the NE SIR, results through the 
interaction among users, and, thus, depends on their collective 

                                                                 
2 Note that γi = 0 solves (3). However, at that point, the utility function ui(.) 

assumes a zero value, which implies that γ* ≠ 0. 



characteristics. To clarify this we should note that, in distributed 
power control schemes, the transmitted power of user i converges 
to the NE power pi

* (where the target SIR γi
* is achieved) by 

means of the following iterative procedure. 
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where rp(t) is the total received power at the base station at 
timeslot t, i.e., 
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Such information is regularly broadcast by the base station. If 
pi(t+1) exceeds the maximum transmission power of the user 
terminal, pmax, then pi(t+1) is reduced back to pmax.  

It is easy to see that the iterative procedure introduced in (5) is the 
distributed solution to the linear system of equations that derives 
from (1), when solving for the transmitted powers of the users, 
given their target, NE SIRs. This procedure allows solving the 
problem without assuming that users know all system parameters 
(i.e., each user needs only know the total received power at the 
base station rp(t), and his target SIR γi

*).  

By analytically solving the linear system of SIR equations, we 
obtain the following expression of power qi

* = hipi
* with which 

user i will reach the base station: 
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From (6), we observe that for feasible (nonnegative and finite) 
power allocations the following condition must hold: 
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If the condition in (7) does not hold true, the iterative procedure in 
(5) will not converge. Specifically, in the absence of the 
maximum power constraint, pmax, the transmitted power of users 
will become infinite. For the case of bounded transmitted powers, 
all users will transmit at maximum power, without, however 
achieving their target, NE SIR. Hence, it is not possible that all 
users be admitted in the network and at the same time be capable 
of achieving their target SIRs. A mechanism for granting or 
denying network connection to users is required.  

We assume that a new user declares his SIR requirements (i.e., 
γi

*) to the base station before attaching. Then the base station 
applies a simple connection admission control (CAC) procedure 
checking whether (7) is violated by taking into account the 
contribution of the new user. The new user is allowed to attach to 
the base station only if (7) holds true. 

Another important issue is the efficiency of the NE. A common 
indicator of efficiency in multi-objective optimization problems 
(e.g., games) is Pareto optimality (or efficiency). A formal 
definition of Pareto optimality follows. 

    Definition 2.3: The point u ∈ U, where U is the set of 
achievable utilities, is said to be Pareto optimal if for each v ∈ U, 
v ≥ u, then v = u. 

In other words, it is impossible to find another point than the 
Pareto optimum, which yields strictly superior utility for all users 
simultaneously. In the unconstrained, non-cooperative power 
control game considered in [12], the authors proved that the NE is 
Pareto inefficient. Quite similarly, the inefficiency of the NE of 
the SIR-constrained version of the power control game can also 
be proved. Moreover, as will be shown in Section 4, the 
inefficiency of the NE discussed here is evident. 

3. ARBITRATED SIR-CONSTRAINED 
POWER CONTROL 
In this section, we investigate the application of the NBS  in the 
considered power control game. In this setting, users are not 
allowed to act selfishly. By being enforced to cooperate by the 
arbitration mechanism, Pareto optimal and fair results are 
achieved. 

3.1 The Nash Bargaining Solution 
In the context of cooperative game theory, user i, apart from his 
utility function ui, has also a desired initial utility ui

0, which 
corresponds to the minimum utility that he can achieve without 
cooperation (status quo utility). An arbitration mechanism must 
always provide utility that is superior to the status quo utility for 
every user. Otherwise, the user has no incentive to cooperate. 
Here, ui

0 = ui(p*), where p* is the NE power vector. We will refer 
to u0 = (u1

0, …, uN
0 ) as the status quo of the game. 

A formal definition of the NBS follows. 

    Definition 3.1: A mapping F: G → ℜN, where G denotes the set 
of achievable utilities with respect to the status quo u0, is said to 
be a NBS, if the following hold: 

1. F(U, u0) ∈U0, where U0 is the set of achievable utilities that 
are superior to the status quo utility. 

2. F(U, u0) is Pareto optimal. 

3. F satisfies the linearity axiom: if φ: ℜN → ℜN, φ(u) = u΄ with 
u΄j = ajuj + bj, aj > 0, j = 1, …, N, then F(φ(u), φ(u0)) = φ(F(u, 
u0)). 

4. F satisfies the irrelevant alternatives axiom: if V ⊂ U, (V, u0) 
∈ G and F(U, u0) ∈ V, then F(U, u0) = F(V, u0). 

5. F satisfies the symmetry axiom: if U is symmetric with 
respect to a subset J ⊆ {1, …, N} of indices (i.e., u ∈ U 
and i,j ∈ J, then if u0

i = u0
j then F(U, u0)i = F(U, u0)j for 

i,j ∈ J). 

The first and second items are the known axioms regarding the 
superiority of the solution to the status quo and the requirement 
for Pareto optimality, respectively. Items 3, 4, and 5 are often 
referred to as axioms of fairness. The linearity axiom (3) of the 
solution implies that the bargaining solution is scale invariant, i.e., 
it is not affected by affine transformations of the utility functions. 
The irrelevant-alternatives axiom (4) implies that the bargaining 
solution point is not affected by extending the domain of utilities, 
if agreement can be found on a restricted domain. The symmetry 
axiom (5) states that the bargaining solution point is irrelevant to 



specific user labels, i.e., users with the same status quo and utility 
function will always achieve the same outcome. 
The solution of Nash, which satisfies all of the above axioms, is 
achieved at the point where the product of the utility functions of 
the users, with respect to the status quo of the game is 
maximized3. For the problem considered in this paper, the NBS 
point of the power control game is the solution of the optimization 
problem (P). 
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In other words, at the NBS point, the product of utilities of the 
involved users is maximized, subject to the constraint that the SIR 
of every user must be within the respective bounds and that the 
utility of each user must be superior to his status quo utility.  

In order to solve (P), we need to study whether function f(.) has a 
maximum, and whether this is unique. From the quasiconcavity of 
function f(.) over the convex set X [18], it follows that the 
stationary point of the objective function is the global maximum. 
Hence, the optimization problem (P) has a unique solution. 

Let us now define optimization problem (P΄), which is equivalent 
to the problem (P), but less complex, as the objective function 
becomes a sum of functions, rather than a product [22]. In (P΄), 
the objective function is the logarithm of the objective function 
f(.) of (P). 
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As the function composition with the logarithm function, ln: ℜ+→ 
ℜ, is an operation that preserves quasiconcavity, the objective 
function in problem (P΄) is quasiconcave. Hence, it can be readily 
shown that, if problem (P) has a global maximum p~ , then (P΄) 
will have the same global maximum p~  [22]. We, finally, 
formulate the optimization problem (P΄΄), which can be easily 
shown to be equivalent to (P΄). 
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where vj(q) = hjuj(p) and 00
jjj uhv = . In (P΄΄) we need to solve for 

the received power vector q, regardless of the path losses, which 
is more convenient for the centralized control scheme discussed 
here. 

                                                                 
3 This is quite similar to proportional fairness, often encountered in 

networking problems, such as flow control, where a number of flows 
have to pass through a system of finite capacity, and the objective is to 
share this capacity in a fair manner [21].  

3.2 Centralized Algorithm for SIR-
constrained Power Control 
In this section, we discuss the iterative algorithm executed by the 
CDMA base station for solving (P΄΄) (i.e., derive the NBS point 
of the game). Such algorithm is executed every time a new user 
attaches to the system, or when an active user disconnects. After 
such events, the updated optimal received power vector q~  is 
broadcast so that every attached user i adjusts his transmission 
power ip~ = ii hq /~  accordingly. We assume that when iq~  cannot 
be reached, due to the maximum transmitted power limitation, the 
user may disconnect in case his minimum SIR constraint, γm,i, is 
not satisfied. 

The proposed algorithm is based on the conditional gradient 
method [20]. We shall not discuss the details of the algorithm, but 
will provide an overview of its basic components: (1) 
determination of feasible ascent directions, (2) stepsize selection, 
and (3) initial point selection.  

3.2.1 Feasible Direction Finding Subproblem 
A feasible direction method starts with a feasible vector q(0) and 
generates a sequence of feasible vectors {q(n)} according to 

q(n+1) = q(n) + a(n)d(n), 

where d(n) is a feasible direction at q(n), and also an ascent 
direction, i.e., ∇g(q(n))T·d(n) > 0. The stepsize is chosen to be 
positive and such that q(n +1) ∈ X, and 

g(q(n) + a(n)d(n)) > g(q(n)), ∀ n ∈ {0,1,…}. 

In the case, where X is convex (like in the studied problem), the 
feasible direction method can be written in the form 

( ))()()()()1( nnnann qqqq −+=+ , 

where )(nq is some feasible vector, and a(n) ∈ (0,1], and if q(n) 
is non stationary (i.e., ∀g(q(n)) ≠ 0), 

( ) 0)()())((        ,)( >−⋅∇∈ nnngXn T qqqq . 

We now describe how we choose a feasible direction given a 
feasible point q(n). The most straightforward way to generate a 
feasible direction )()( nn qq −  that satisfies the ascent condition 

( ) 0)()())(( >−⋅∇ nnng T qqq  is as follows: 

( ))())((maxarg)( nngn T qwqq
Xw

−⋅∇=
∈

. 

That is to say, point )(nq  is the remotest point of X along the 
gradient direction. 

Such approach is usually adopted when g(.) is nonlinear, whereas 
the constraint set X comprises linear constraints. In such case, we 
have a linear program that is easy to solve. However, in our case, 
the constraint set includes nonlinear constraints (i.e., each user 
must receive strictly superior utility to his status quo utility ). For 
this reason, we propose a two-phase direction finding procedure. 
Firstly, we only consider the linear constraints, i.e., the SIR 
constraints that form the convex polyhedron Γ. Secondly, we 
consider the nonlinear constraints that stem from the fact that 
users must achieve higher utility compared to their status quo 
utility. 



Figure 2 outlines the two-phase direction finding procedure, in a 
two-dimensional space. In Figure 2(a), only the linear constraints 
are taken into account. However, the resulting point )(nq  need 
not necessarily be feasible, as shown in Figure 2(b). It may lie 
outside the set Q0 = {q ∈ S | v(q) > v0}, which implies that at least 
one user receives inferior utility to his status quo utility. 

Note that since the set Q0 is convex4, it is possible to locate a 
point )(nq ′  on the line connecting points q(n) and )(nq , such 
that )(nq ′  ∈ Q0. (see Figure 2(c)). Hence, the second phase of the 
direction finding procedure is to locate the point )(nq ′ ; the 
direction d(n) at step n would then be )()()( nnn qqd −′= . 
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Figure 2. Two-Phase direction selection procedure. (a) 
Optimal direction subject to linear constraints only, (b) The 

optimal direction subject to the linear constraints is not 
feasible, (c) the vector pointing to the initial direction is 

readjusted to fall within the feasible region. 
 

Below, we summarize the feasible direction finding algorithm. 

 

 
                                                                 
4 This is due to the quasiconcavity of the utility function vi(.) – every 

super-level set of function vi(.) is convex, thus, 
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1. Calculate the gradient ∇g(.) of the objective function g(.) at 
point q(n) 

2. Solve the linear problem to determine the point )(nq  that 
maximizes the inner product ∇g(q(n))T·q over the 
polyhedron Γ 

3. If )(nq  is feasible (i.e., )(nq  ∈ Q0 – all users enjoy higher 
utility compared to the status quo), then go to step 8. Else go 
to step 4 

4. Set l_q := q(n), r_q := )(nq , and q := 0.5⋅(r_q + l_q) 

5. If q ∈ Q0 then set l_q := q. Else set r_q := q. 

6. Set q_old := q and q := 0.5⋅(r_q + l_q) 

7. If ||q_old – q||2 < ε, then )(nq  := q, and go to step 8. Else go 
to step 5. 

8. d(n) := )(nq  - q(n). Finish 

The constant ε in step 7 is a sufficiently small positive scalar, 
used for the algorithm termination. Phase one comprises steps 1-
3; phase two covers the steps 4-7. 

3.2.2 Stepsize Selection 
In iterative optimization algorithms, apart from the problem of 
finding feasible ascent directions, the selection of the stepsize is 
also critical for the speed of convergence, as well as for the 
convergence per se. In this paper, we propose a stepsize selection 
method based on the Armijo Rule [20]. Every limit point of the 
conditional gradient method with the Armijo stepsize selection 
rule is stationary [20]. For a direction d(n) such that q(n) + d(n) is 
feasible, let β and s be fixed scalars, with β ∈ (0,1), and s ∈ (0,1). 
We set a(n) = βm(n), where m(n) is the smallest integer m such that 

)())(())(())()(( nngsngnng Tmm dqqdq ⋅∇≥−+ ββ  (8) 

In other words, the stepsizes β, β2,…, are tried successively, until 
the above inequality is satisfied for m = m(n). The stepsize a(n) at 
iteration n is chosen not only to produce a positive improvement 
in the objective function; as per the test (8), such improvement 
shall be sufficiently large. In our simulations, we set β = 0.1 and s 
= 0.2. 

3.2.3 Determination of an Initial Feasible Point 
In order to apply the conditional gradient method we need to have 
an initial feasible point q(0). It is observed that being at the NE, 
by simultaneously reducing each coordinate of the power vector, 
we may achieve a Pareto improvement, i.e., obtain a power vector 
that belongs to Q0. Hence, we may state that the vector (-1, …,-
1)T is a direction of ascent for the objective function g(.) at the NE 
q*. Moreover, if the discounted power vector lies inside the 
polyhedron Γ, such vector is feasible. Hence, by interpreting the 
direction (-1, …,-1)T as the gradient of the objective function5, we 
may provide a feasible direction d originating at point q* (see 
Section 3.2.1). Then, by using the Armijo rule (see Section 3.2.2), 
we may find a suitable step a for the pair (q*, d), thus, 
determining the initial feasible point q(0) = q* + ad. 

                                                                 
5 Note that the gradient of the objective function is not defined at the status 

quo of the game. 



3.2.4 Discussion 
The advantage of the algorithm discussed above is that it does not 
rely on any structure of the constraint set other than its convexity, 
and the generated sequence of feasible points derives simply by 
searching along ascent directions. As shown in [20], the direction 
sequence {d(n)} produced by the conditional gradient method is 
gradient related and converges to a stationary point – here the 
global maximum of the objective function g(.). Specifically, it is 
proven that every limit point of the conditional gradient method 
with the Armijo stepsize selection rule is stationary. 

With regards to the speed of convergence of the conditional 
gradient method, if the constraint set is a polyhedron, the 
asymptotic rate of convergence of the method is not very fast 
[20]. However, as the total number of constraints increases, the 
performance of the method improves [20]. In the studied problem, 
we have 2N linear (SIR) constraints, as well as N nonlinear 
(utility) constraints. As a result, the observed convergence rate 
was quite fast. 

3.3 Enforcement of the NBS Operating Point 
In this section, we discuss how the centrally computed NBS point 
can be enforced to users that are by definition selfish, and may 
have the incentive to deviate. Contrary to the NE, at which no 
user can benefit by changing his strategy unilaterally, i.e., 
constitutes a stable operating point, the NBS point is not stable as 
will be explained below.  

As reported in [16], if user i transmits with a power that yields an 
increase of a W to his power at the base station, compared to his 
NBS power iq~  (i.e., aqi +

~ ), then the user’s SIR γi will increase 
by 

∑
≠

+
=∆

ik
k

i
q

a
R
W

2~ σ
γ . 

At the same time, the SIR of the other users will deteriorate. 
Hence, the system ought to “punish” non-cooperating users so as 
to secure stability. As proposed in [16], the base station, upon 
detecting that user i exceeds his NBS power iq~ , may increase 
intentionally the BER of that user (by flipping the received user 
bits with a probability that is proportional to the extent of user 
disobedience), thus, imposing an upper bound on his achieved 
throughput. As a result, the user cannot benefit by increasing his 
power, since this would imply increased energy consumption with 
no BER improvement [16]. 

3.4 Connection Admission Control 
In this section, we have studied the arbitrated power control 
game. As already discussed, it is anticipated that, at the NBS 
point, users will transmit with decreased power, compared to the 
NE, thus, their SIR will be decreased as well. As a result, more 
users can be, theoretically, admitted, based on the test in (7), 
compared to the non-cooperative setting. However, as will be 
discussed below, such SIR decrease cannot be exploited in order 
to increase the number of admitted users. 

The NBS is inherently linked to the non-cooperative game and the 
respective NE. Specifically, every user involved in the game is 
required to enjoy a utility that is superior to his NE (status quo) 
utility. The notion of the status quo utility is, thus, central in the 
NBS. As a result, a user that cannot be considered, in the non-

cooperative game, cannot be considered in the NBS either. For 
example, if load exceeds system capacity (i.e., (7) does not hold 
true for the NE SIRs), the status quo utilities of the users cannot 
be defined. Hence, problem (P′′) that has the vector of status quo 
utilities as a reference point cannot be solved. In other words, the 
NBS may yield operating points with decreased SIR, however, the 
dependence of the NBS to the status quo confines us to finally 
consider the NE SIRs in (7), when taking CAC decisions. 

4. NUMERICAL RESULTS 
In this section, we provide results of the performance assessment 
of the proposed power control scheme. As reported in [12], the 
unconstrained, non-cooperative power control scheme, with the 
parameters of Table 1, achieves a NE SIR γ* ≈ 12.42 (see also 
equation (3)), and can support up to nine users (see equation (7)). 
In order to keep the work in [12] as a reference point to the 
proposed scheme, our study also involves a population of nine 
users. Without loss of generality, we assume that these nine users 
have the following SIR-expressed QoS requirements: γm = (2, 4, 
8, 5, 6, 5, 3, 12, 14), and γM = (10, 15, 20, 14, 10, 22, 18, 15, 17). 

Table 1. The list of parameters for the single-cell CDMA 
system 

M, total number of bits per frame 80 
L, number of information bits per frame 64 
W, spread spectrum bandwidth 106 Hz 
R, bit rate 104 b/s 
σ2, AWGN power at the receiver 5×10-15 W 
Modulation technique non coherent FSK 
pmax, maximum power constraint 2 W 

 

Figure 3 shows the utility achieved for user i at the NE and NBS 
operating points, regardless of the associated path loss, hi; i.e., 
Figure 3 plots vi( q~ ) = hiui( p~ ), for each i = 1,…,9. Owing to the 
Pareto optimality of the NBS, the anticipated utility improvement 
with regards to the NE is significant. 
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Figure 3. Utility level in the non-cooperative and cooperative 

schemes 
In Figure 4, we compare the received power qi from user i at the 
base station for the non-cooperative and the cooperative scheme, 
qi

* and iq~ , respectively. Observe that the NBS operating point is 
characterized by significant energy savings, compared to the 
selfish, non-cooperative operation. 

In Figure 5, we observe that, at the NBS operating point, the SIR 
is inferior to the NE SIR. However, such deterioration is rather 
minor compared to the achieved energy savings, as reflected in 
the utility values shown in Figure 3. 
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Figure 4. Received power for the non-cooperative and 

cooperative schemes. 
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Figure 5. Signal-to-interference ratio (SIR) for the non-

cooperative and cooperative schemes. 
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Figure 6. Maximum cell radius for the non-cooperative and 

cooperative schemes. 
 

We now study the effect of employing the non-cooperative or 
cooperative scheme at maximum user distance, subject to the 
maximum transmitted power constraint. For user i we assume the 
simple path loss model hi = K1/di

4, where K1 = 0.097, as in [15], 
and di denotes the distance between the user and the base station. 
Given the maximum transmission power pmax (see Table 1), the 
maximum distance di,max from which user i is capable of reaching 
the base station is as follows: 

4 max1
max,

i
i q

pK
d = , (9) 

where qi is equal to qi
* or iq~  for the NE or the NBS operating 

point, respectively. Figure 6 shows that at the NBS operating 

point a considerable increase in the maximum cell range is 
achieved, compared to the NE. 

5. CONCLUSION 
In this paper, we have proposed a centralized power control 
algorithm for CDMA wireless data networks, subject to SIR 
constraints imposed by users. Specifically, we have employed the 
Nash bargaining solution and achieved a Pareto optimal and fair 
outcome. Despite the overhead that a centralized algorithm entails 
to the base station for the determination of the NBS operating 
points, we found that the anticipated Pareto improvement offered 
by the cooperative scheme, compared to the non-cooperative 
scheme, is significant. Specifically, the operating points of the 
proposed cooperative scheme are characterized by significantly 
reduced transmitted power, and a rather limited decrease of the 
signal to interference ratio, thus, leading to an increase in the 
lifetime of the user terminal battery. Furthermore, an increase in 
the maximum range of the cell has also been observed.  

In the future, we plan to extend our study to multi-cell 
environments. Moreover, we would like to study decentralized 
mechanisms for enforcing the NBS point, in a distributed manner, 
e.g., through pricing of wireless resources. 
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