
Movement-Based Checkpointing and Logging
for Recovery in Mobile Computing Systems

Sapna E. George Ing-Ray Chen Ying Jin

Department of Computer Science
Virginia Polytechnic Institute and State University

Falls Church, VA, USA 22043

sgeorge@vt.edu, irchen@cs.vt.edu, jiny@vt.edu

ABSTRACT
In this paper, we present an efficient failure recovery scheme for
mobile applications based on movement-based checkpointing and
logging. Current approaches take checkpoints periodically
without regard to the mobility rate of the user. Our movement-
based checkpointing scheme takes a checkpoint only after a
threshold of mobility handoffs has been exceeded. The optimal
threshold is governed by the failure rate, log arrival rate, and the
mobility rate of the application and the mobile host. This allows
the tuning of the checkpointing rate on a per application and per
mobile host basis. We identify the optimal movement threshold
which will minimize the recovery cost per failure as a function of
the mobile node’s mobility rate, failure rate and log arrival rate.
We also calculate the recoverability, i.e., the probability that the
recovery can be done by a specified recovery time, and discuss
the applicability of the approach.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability –Checkpoint/restart;
fault-tolerance; C.2.4 [Computer-Communication Networks]:
Distributed Systems; D.2.8 [Software]: Metrics—Performance
measures;

General Terms
Performance, Design, Reliability.

Keywords
Mobile data management, failure recovery, checkpoint, logging,
recoverability, mobility handoff.

1. INTRODUCTION
Advancement in wireless networking and portable devices is
revolutionizing the way individuals and businesses view
computing. Many industries are now trying to provide services to

this market and mobile applications are expected to become the
norm in the near future. However, certain inherent properties of
mobile computing – a type of distributed computing involving
hosts that may be mobile while retaining network connectivity
through wireless communications - such as host mobility,
disconnections, wireless bandwidth limitations, makes these
applications susceptible to failures typically not encountered in
the traditional computing environments. This paper concerns
failure recovery of mobile applications.

Application recovery is different from database transaction
recovery since an application may involve multiple database
transactions, multiple states and it lacks a formal definition of
application state similar to the mathematical foundations of
database transactions [4]. Typically, distributed systems achieve
fault-tolerance through schemes such as checkpointing, logging
and rollback recovery [2]. During failure-free operation, processes
save their state to a stable storage periodically, called
checkpoints. Upon failure, a failed process recovers by rolling
back to the latest checkpoint and restarting computation from this
intermediate state. However, inter-process dependencies may
result in cascading rollbacks, which in the extreme case may take
the system all the way back to its initial state, often termed
domino effect. Asynchronous recovery of a failed process is
achieved by combining checkpointing with logging, where all the
non-deterministic events that a process executes as well as the
information necessary to replay these events are logged to the
stable storage in addition to the checkpoints. During recovery, the
failed process rolls back to the latest checkpoint and replays all
the logged events in their original order, there by recreating its
pre-failure state independently.

Many approaches have been proposed that refines these basic
mechanisms for improvements in performance and cost during
failure-free operations and recovery [7]. In spite of that, mobile
computing introduces new challenges that preclude the direct
application of these mechanisms to mobile distributed systems.
The properties of the mobile computing environment that drives
the rethinking of failure recovery mechanisms are mobility of
hosts, low bandwidth and unreliable network connectivity, limited
battery life of host devices, lack of stable storage on host devices,
and different types of failures - voluntary disconnection, long
term hardware failures, and short-term software failures.

Due to these characteristics, traditional recovery schemes suffer
from many shortcomings when applied to the mobile computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiDE'06, June 25, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-436-7/06/0006...$5.00.

51

environment. At the same time, the failure-prone nature of the
environment makes it essential to provide some form of explicit
recovery mechanism. In light of the above discussion, this paper
presents a novel movement-based checkpointing strategy
combined with logging for recovery of individual hosts in mobile
computing environments. The approach takes checkpoints after a
certain number of host migrations across cells rather than
periodically. This movement threshold is a function of failure
rate, log arrival rate, and the mobility rate of the application and
MH, which allows adaptation to user and application behavior. To
the best of our knowledge, none of the existing algorithms
consider the effects of mobility on checkpoint intervals, but rather
assume periodic checkpointing. Mobility is factored only into the
management of recovery information such as when to consolidate
logs dispersed across many MSSs [8]. The performance of the
proposed scheme is evaluated through analytic methods and
results are presented later in the paper. In addition, this paper
demonstrates that there exist optimal movement thresholds
depending on operating conditions and recovery deadline.

The proposed movement-based checkpointing and recovery
algorithm is suitable to a wide range of applications and mobile
environments since it considers application/user behavior as
defined by its recovery deadline and log arrival rate, nature of the
mobile environment defined by failure rate and MH behavior
defined by its mobility rate, in determining the optimum
movement threshold to trigger checkpointing. As an example,
consider a mission critical application providing communications
and shared situational awareness to an active military unit. The
failure rate in such a mobile environment is likely to be very high;
mobility rate of users is also likely to be high. At the same time,
fast recovery from failures is more important than minimizing
cost of failure-free operations. Note that recovery time is
governed by how far away the last checkpoint is located from the
MSS in which a host recovers, how many log entries must be
transferred to the recovery MSS, how dispersed these logs are,
and the time it takes to load and execute them at the MH. The
proposed scheme allows the dynamic determination of an
optimum movement threshold, and hence checkpointing rate, that
will minimize recovery time while balancing cost of recovery.
This optimum threshold will ensure that the checkpoints stay
close to the recovery MSS and that the logs are not too widely
dispersed. In contrast, schemes that employ constant periodic
checkpointing do not consider the effect of user mobility on
checkpointing. If the chosen checkpoint rate is too low, the last
checkpoint may be located very far from the recovery MSS and
there may be a large number of logs dispersed across many MSS
resulting in a large recovery time. If the rate is too high, precious
wireless resources may be unnecessary consumed in taking and
managing checkpoints.

The rest of this paper is organized as follows. Section 2
surveys related work and highlights differences from our
approach. Section 3 describes the mobile computing system
assumed in this paper. Section 4 elaborates the proposed
movement-based checkpointing, logging and recovery
mechanism. Section 5 shows the modeling and performance
analysis of the proposed scheme along with mathematical
formulations of relevant performance parameters such as time
required for failure recovery and total recovery cost. Finally,
Section 6 summarizes the paper, discusses the applicability, and
outlines future research areas.

2. RELATED WORK
Application failure recovery in the mobile computing
environment has received considerable attention in the recent
years. The schemes that have been proposed employ
checkpointing, logging or a combination of both, recognizing the
inherent limitations of the mobile computing environment.

Acharya et al. in [1] describes a distributed uncoordinated
checkpointing scheme, where multiple MHs can arrive at a global
consistent checkpoint without coordination messages. However,
this paper does not describe how failure recovery is achieved nor
does it address the issue of recovery information management in
the face of MH movement. Neves and Fuchs [6] also proposed a
checkpointing only scheme that achieves global consistent
checkpoint without additional messaging but is unique in that it
uses time to synchronize checkpoint creation. Pradhan, Krishna,
and Vaidya [10] proposed a recovery scheme that combines
various checkpointing and logging schemes for different mobile
environments. They describe two uncoordinated checkpoint
protocols, no-logging and logging and three strategies for
recovery information management due to MH mobility,
pessimistic, lazy and trickle strategies.

T. Park et al. in [8] proposed a recovery mechanism that enables
independent recovery by MHs by employing periodic
checkpointing and a combination of pessimistic and optimistic
logging. The main feature of this paper that we have adapted in
our scheme is the notion of movement-based management of
recovery information. In their approach, checkpoints are triggered
periodically and when a MH moves outside of a certain range, the
recovery information is transferred reactively to the local MSS. In
contrast to [8] and [10], our approach considers a MH’s
movement pattern in the checkpointing strategy in order to avoid
costly transfers of all recovery information. In [9] T. Park et al.
proposed an asynchronous recovery scheme using checkpointing
and logging. However, in this paper, they also consider the case
of unreliable MSSs where the recovery information of a MH may
be lost due to failure of a MSS. In this case, in order to enable
consistent recovery, every other dependent MHs must be traced
and rolled back.

Yao, Ssu and Fuchs [12] proposed an algorithm that combines
checkpointing and message logging in the Mobile IP
environment. Its components execute on the MSS, the Home
Agent (HA) and the MH. All messages are logged and the MH
takes checkpoints periodically and stored at the MSS that is
serving as the current Foreign Agent. When a MH leaves a cell,
the old MSS informs the HA of the ids of the checkpoint and logs
stored at the MSS. Thus, the HS maintains the latest itinerary of
the MH and can be queried upon recovery to collect the
distributed recovery information. Higake and Takizawa [5]
proposed a hybrid checkpoint recovery scheme. A mobile host
leaves an agent on every MSS in its itinerary. During recovery
processes MHs roll back to a consistent state with the help of
these agent processes. Chen et al. considered [13] recoverability
issue of mobile applications with periodic checkpointing. Our
paper extends the analysis to mobility-based checkpointing.

3. MOBILE COMPUTING SYSTEM
The mobile computing system assumed in this paper follows the
model presented in [1]Error! Reference source not found.. The

52

system consists of a set of mobile hosts (MHs) that are free to
move around. At any time, they maintain network connectivity
through a wireless link to a static mobile support station (MSS).
The MSSs are interconnected through high speed static wired
networks. A MSS handles all communications to and from MHs
within its area of influence known as a cell usually determined by
the range of wireless transmission. Assuming a hexagonal shape
for each cell, a hexagonal network coverage model will be formed
by a community of cells. Thus, sending a message to another MH
consists of two one-hop wireless transmissions between the
sender and receiver MHs and their respective local MSSs in
addition to an arbitrary number of hops across the wired
infrastructure between the sender’s MSS and receiver’s MSS. The
wired and wireless network protocols are assumed to provide
reliable FIFO delivery of messages with arbitrary delay to the
application.

Considering that the MH’s disk cannot be assumed to be stable,
each MSS is equipped with enough volume of stable storage to
store the state and log information for all the MHs currently in its
cell as well as those that were recently in its cell. However, due to
the fact that MSSs must support multiple concurrent MHs, this
storage must be efficiently managed.

The interactions between the MH and the network infrastructure
most relevant to failure recovery are handoff, disconnect and
reconnect. When a MH crosses a cell boundary due to mobility, it
first establishes connection with the new MSS in the new cell
giving the MSS its ID and the ID of the previous MSS. It then
disconnects from the previous MSS. This process usually occurs
instantaneously and is called a handoff. A MH may also
disconnect voluntarily from the network to conserve power and
reconnect at a later time. Due to mobility of hosts, it is common
for a MH to disconnect in one MSS and reconnect in another. In
this case, the MH sends the ID of the previous MSS to the new
MSS, which in turn initiates proper handoff procedures.

In this paper a distributed computation is assumed to consist of a
number of processes executing concurrently on multiple hosts. A
single process may be in either one of three states at any point of
time: normal, save or recovery. In the normal state, it may be
executing application related computations, receiving user inputs
or sending and receiving messages. Occasionally, each process
saves its state as a checkpoint to the stable storage (save state).
During this operation, the MH stops execution and compiles the
current values of all non-transient state variables into a message,
assigns it a unique id and sends it to the MSS for storage.
Between checkpoints the application performs logging activities
to record incremental state changes. The application’s logging
behavior assumed in this paper follows the model described in
[1]. Application state may change due to receipt of messages or
due to user inputs. These are commonly referred to as ‘write
events’. If the write event is a message received from another MH
or a server, the MSS first receives it, logs it to stable storage and
then forwards it to the MH. Thus no overhead is incurred during
this process. On the other hand, if the write event is a user input
or a local computation, the MH first forwards a copy to the MSS
to be logged and does not apply it locally until an
acknowledgement is received from the MSS. Thus, logging is also
an activity that the MH and MSS execute during normal
operations. Every fresh checkpoint purges old checkpoints and

logs, possibly distributed over many MSS. More details of
recovery information management in provided in Section 4.3.

4. MOVEMENT-BASED
CHECKPOINTING AND LOGGING
The recovery scheme presented here combines independent
checkpointing and optimistic message logging enabling
asynchronous recovery of a MH upon failure. In general
application recovery mechanisms try to optimize recovery cost
(failure-free operational cost), recovery time and storage
requirements for recovery related information. The general
approach taken by current schemes is to create checkpoints
periodically (possibly based on an application parameter setting
such as maximum time to recover or failure rate) and
subsequently control the proliferation of recovery information
using techniques that merge logs and move the information closer
to the MH. One such scheme uses distance or number of handoffs
as the parameter that triggers information consolidation [8]. In
this approach, when the MH crosses a distance threshold from the
location of the latest checkpoint, the recovery information is
collected and transferred to the MH’s local MSS.

In contrast, the recovery protocol described here proactively
controls the number of checkpoints and logs by using a
movement-based checkpointing strategy. This means that the
additional overhead of unnecessary checkpoints and log
consolidation during failure-free operation is avoided.

4.1 Checkpointing and Message Logging
Each mobile host independently takes checkpoints of the
application state and between checkpoints all write events are
logged at the current MSSs’ stable storage. The interval between
checkpoints is governed by the number of handoffs experienced
by the MH and is not fixed. Each MH maintains a
handoff_counter which is incremented by 1 every time a handoff
occurs. When the value of the counter becomes greater than a
threshold M, a checkpoint is taken. The process is illustrated in
Figure 1.

Figure 1: Movement-based Checkpointing.

The value of M is a function of the user’s mobility rate, the failure
rate and log arrival rate (as shown in Section 5.1). The host
assigns a unique sequence number to the checkpoint and sends it
to the MSS which saves it to stable storage. The MH maintains
two variables locally related to checkpoints: cp_seq which stores
the sequence number of the latest checkpoint and cp_loc which
stores the ID of the MSS that has recorded the latest checkpoint.
Let this MSS be called MSScp. After taking the checkpoint, the
MH resets the handoff_counter to 0. Thus, depending on the
variability in the MH’s mobility, the time interval between

53

successive checkpoints differs. In between checkpoints, all write
events related to a MH is also logged to the local MSS. Each log
entry is time stamped so that they can be replayed in the correct
order during recovery. The MH locally maintains a list log_set
containing the IDs of MSSs that stores its logs. Let this set of
MSSs be called MSSlogs.

At every checkpoint, cp_loc is updated with the current MSS,
cp_seq is updated with the sequence number of the latest
checkpoint and log_set is cleared. At every logging activity, the
ID of the current MSS is added to log_set if it is not present
already. The performance of this scheme depends on identifying
the optimal movement threshold M per user and application. This
value ensures that the checkpoints and logs remain within
acceptable range of the MH’s current location thereby eliminating
the need for information consolidation. In addition, it also ensures
acceptable recovery time since M bounds the number of MSSs’
from which logs must be retrieved.

4.2 Independent Recovery
The checkpoints and the logs enable a MH to recover
independently without requiring coordination with other hosts.
This paper makes no assumption that the MH must recover in the
same MSS in which it failed. In order to perform rollback
recovery, after the MH reconnects to a MSS after failure, it sends
to the current MSS the sequence number of the latest checkpoint
and the ID of the MSS storing it. Recall that these values are
stored locally at the MH in the variables cp_seq and cp_loc. The
MSS initiates the process of collecting the checkpoint and the
logs. For the former, it sends a request with the checkpoint
sequence number to the MSS holding the checkpoint, i.e. MSScp.
MSScp responds with the checkpoint.

In order to retrieve the logs the current MSS sends requests to all
the MSSs in the list log_set. Each MSS, upon receipt of the
request responds with the log entries for the MH if it has any. The
current MSS compiles the logs into a list ordered by time and
sends it to the MH along with the checkpoint. In order to recover
from the failure, the MH rolls back to this checkpoint and replays
the logs in order. Once recovery is completed successfully, a
checkpoint of the current state is taken and sent to the MSS and
the local variables are reset.

4.3 Storage Management at the Mobile
Support Stations
Even though movement based checkpointing helps to control the
number of checkpoints depending on mobility and failure rates,
the combination of checkpoints and logs for every MH can
amount to a significant amount of information to be persisted at
the MSSs. In [12], the authors explain that if storage at MSSs is
depleted, they will either have to temporarily halt normal
operation and perform garbage collection or find costly
alternative storage for new checkpoints and logs. Since halting a
MSS makes its local MHs inaccessible, it must be prevented.

Storage can be recovered by deleting outdated recovery
information. Recovery information becomes outdated every time
a new checkpoint is taken successfully which occurs during
normal operation after every M handoffs and when a recovery
operation executes successfully. Thus, when a MH takes a new

checkpoint, and logs to delete all recovery information related to
the MH.

5. PERFORMANCE ANALYSIS
The performance of the proposed scheme is evaluated using
analytical methods by means of Stochastic Petri Net (SPN)
modeling. A Petri net is a popular graphical and mathematical
modeling tool used to describe and study concurrent,
asynchronous, distributed, parallel, nondeterministic, and/or
stochastic systems.

5.1 Model
The SPN model of a mobile computing system employing the
movement-based recovery scheme is shown in Figure 2.

Figure 2: SPN Model.

The parameters controlling the model and their descriptions are
given in Table 1.

Table 1: SPN Model Parameters

Paramete
r

Description

σ MH mobility rate, i.e. the rate at which the MH
crosses cell boundaries.

μ Log arrival rate i.e. the rate at which logs are
created

λf MH failure rate i.e. the rate at which the MH
fails

M Movement threshold i.e. the number of handoffs
after which the MH takes a checkpoint

r Ratio of bandwidth of wireless network to wired
network

Tckp_w Time required to transmit a checkpoint through
the wireless link

Tlog_w Time required to load a log entry through the
wireless link

Telog Time required to execute a log entry at the MH
Fr Probability of recovery
Tr Recovery time
θk Checkpoint rate, i.e. 1/θk is the time required to

take a checkpoint
θi Recovery rate, i.e. 1/ θi = Tr. i is the number of

movements since the last checkpoint.
Nmss_logs Number of MSSs storing logs

Dmss Average hop count between the MSS storing the
checkpoint and the MSS in which the MH
recovers

54

Current literature [11] states that assuming an exponential
distribution for the system parameters such as log arrival rate,
failure rate and mobility rate, is a reasonable approach. Others
have used models such as gamma, hyperexponential, lognormal,
or hyper-Erlang distributions [3]. In this paper we take the former
approach and use exponential distribution for these parameters
which makes the underlying Markov model of the SPN tractable.
As part of future work, we intend to analyze the system behavior
for other distributions and compare the results. The main
characteristics of the SPN model are:

1. The model consists of 2 places and 4 transitions. Place
“Move” represents the state in which the number of
movements of the MH since the last checkpoint is not more
than the threshold M and there has been no failure. Place
“Fail” stands for the state in which a MH failure has
occurred. Initially the MH is in a consistent state with a
checkpoint in the current MSS and a zero value for the count
of movement, as represented by the place “Move” without
tokens.

2. The MH moves from one cell to another with a mobility rate
σ. Whenever the MH encounters a handoff, the number of
tokens in the place “Move” is increased by 1. This behavior
is described by the transition on the left upper part of the
SPN model. The MH stays in the state represented by place
“Move” except in the event of a failure. When a failure
occurs, this transition will not be enabled until failure
recovery has completed. The only inhibitor arc ensures that
the number of movements between two consecutive
checkpoints is less than the threshold M. When the number
of tokens in the place “Move” becomes equal to M, the upper
right transition is fired. This transition requires time kθ1
which is used to create a checkpoint of the current state and
save it to the current base station. This transition also resets
the handoff counter to 0 as represented by the M tokens on
the output arc of the place “Move”.

3. When a MH failure occurs, the system status migrates from
the state “Move” to the state “Fail”. All the tokens in the
place “Move” move to the place “Fail”. The recovery time

iθ1 depends on the number of movements since the last
checkpoint which is denoted by i = #(Fail), the number of
tokens in the place “Fail”.

The transition firing rates kθ and iθ require some elaboration:

1. Parameter kθ : kθ represents the checkpoint rate of the MH.
During checkpointing, the MH takes a snapshot of its current
state and sends it to its current MSS through the wireless
channel. The MSS then stores it in its stable storage. Since
the time taken for wireless transmission, wckpT _ is

significantly longer than the others, the time spent on a
checkpoint operation is approximated to this value.
Accordingly wckpk T _1=θ .

2. Parameter iθ : iθ represents the recovery rate of the MH and
is the inverse of the recovery time, where i is the number of

handoffs experienced by the MH since the last checkpoint
and before failure. The recovery time includes (a) the time
needed to send recovery information requests to the MSSs
storing the latest checkpoint and all logs since the latest
checkpoint, (b) the time required to transmit the latest
checkpoint from the MSS where it is stored (MSScp) to the
MSS in which the MH has recovered (MSSrec) through the
wired network and through the wireless channel to the MH,
(c) the time required to transmit all the logs from the
respective MSSs where they are located (MSSlogs) to the
MSSrec through the wired network and through the wireless
channel to the MH and (d) the time required to rollback to
the last checkpoint and apply all the logs at the MH.

Before describing the equation for computing the average
recovery time, some variables are defined.

• smssN log_ - This represents the number of MSSs storing

logs. The exact value of this variable is the size of the list
log_set. At most its value is the number of handoffs before
failure, i.e. i, where every MSS through which the MH
passed is unique and logs are created in every one of them.
For simplicity, we assume that iN smss =log_ .

• mssD - This is the average hop count between MSScp and
MSSrec. Based on the hexagonal network model, we
calculate it as:

 []1*630*621*61)1(1 ++−−+= iDmss

This equation shows that on the first move, the count
increases by 1, but on each subsequent move the MH moves
backward with probability 1/6 (hop count decreased by 1),
sideways with probability 2/6 (hop count remained the same)
and moves forward with probability 3/6 (hop count increased
by 1). The equation above can then be reduced
to () 32+= iDmss .

Thus, the total time to recover after i movements is the sum of the
following components:

• Time spent on recovery information requests as given by:

wmsssmssreqrec TrDNT log_log__ ***)1(+=

Here we assume that the size of a request packet is not more
than the size of a log entry packet. Hence for simplicity, we
use the time to transmit a log entry wTlog_ as the time to

transmit a request packet. The first part of this equation
)1(log_ +smssN represents the number of MSSs to which

the request packet must be sent and its value is the sum of
the count of MSSs in the list log_set and one MSS storing
the checkpoint. Hence,

wmssreqrec TrDiT log__ ***)1(+=

• Time spent on transmitting the latest checkpoint to the MH
as given by:

55

wckpwckpmsstxckp TTrDT ___ ** +=

The first part of this equation represents the time required to
transmit the last checkpoint from MSScp to MSSrec,
assuming the distance between the two is mssD .

• Time spent on transmitting the logs to the MH as given by:

)**(* log_log_log_ wwmsstx TTrDnT +=

Where n is the number of log entries accumulated since the
last checkpoint and is given by σμ)*(in = . The rest of
the equation represents the time required to transmit each log
entry through the wired and wireless channels.

• Time spent to rollback to the last checkpoint and apply the
logs as given by: log* erec TnT =

Hence, the total time to recover after i movements is given by:

rectxtxckpreqrec
i

r TTTTT +++= log___ (1)

And the transition firing rate i
ri T1=θ

The SPN model’s underlying Markov model has 12 +M states.

If jP denotes the probability of state j, the average recovery time

per failure is given by: i
r

M

j
jr TPT *

12

0
∑

+

=

= (2)

The recovery probability rF is defined as the probability that
recovery time is less than or equal to T and is given by:

{ } { }T
M

k
k

i
rr

kePTTobF θ−
+

=

−=≤= ∑ 1Pr
12

1

 (3)

In addition, we define cT as the total time spent on
checkpointing and logging before a failure. It represents the total
cost of recovery and is given as:

()() () wfwckpfc TTMT log__ *** λμλσ += (4)

Where ()fM λσ * denotes the total number of checkpoints

before a failure, and ()fλμ represents the total number of log

entries before a failure. Thus, cT represents the total failure-free
operations cost and the second part of Equation (4) depicts the
total delay incurred by logging during failure free operations.

Equations (2) and (4) enable us to define the total cost of recovery
per failure as the weighted sum of the average recovery time and
the total time spent on the checkpointing and logging per failure.
It is given by:

rct TwTwT 21cos += (5)

0,0,1 2121 >>=+ wwww

Where w1 and w2 are the weights associated with recovery time
and failure-free operation cost. Different applications have
differing failure recovery performance requirements with respect
to the time taken for recovery and checkpointing. The weighting
of the components of the total cost of recovery allows the
configuration of such performance requirements per application
and user. We use w1 = w2 = 0.5 in the analysis below to account
for the situation where Tcost is equally proportional to Tc and Tr.

5.2 Results and Analysis
The SPN model was implemented and analyzed using the SPNP
software. The following parameter values were kept constant
across all the runs. Specifically, the size of a log entry is 50B, size
of a checkpoint is 2000B, bandwidth of the wired network is
2Mbps, ratio of bandwidth of wireless to wired network (r) is 0.1,
time required to apply a log entry (Telog) is 0.0001s. Thus the time
required to transmit a log entry through the wireless channel
(Tlog_w) is 0.002s and the time required to transmit a checkpoint
through the wireless channel (Tckp_w) is 0.08s. Model parameters
such as mobility rate, log arrival rate, failure rate, and movement
threshold were varied across runs. These values were chosen for
analysis purposes only and do not assume a specific application or
environment. The results presented here show system behavior for
a wide range of parametric values which depicts the broad
applicability of the scheme.

Figure 3: Recovery Probability vs. Recovery Time.

Figure 3 shows the probability of recovery against recovery time
for varying values for mobility rate. Recovery probability
increases with recovery time. For a constant value of recovery
time, the probability increases with increase in mobility rate. This
is because with higher mobility rate, the checkpoint interval
reduces and the number of logs accumulated between checkpoints
decreases. This enables faster recovery. From the curve for
mobility rate 0.1, it can be seen that 90% of failures can be
recovered in 0.3 seconds, and at most 0.5 seconds to achieve
100% recovery probability.

56

Figure 4: Recovery Probability vs. Log Arrival Rate.

Figure 4 shows the effect of varying log arrival rate on the
probability of recovery, assuming recovery time=0.3sec. When
the log arrival rate is low, under constant failure rate, the number
of logs accumulated between the last checkpoint and failure is
small and hence there is a high probability of recovery within
0.3secs. However, as log arrival rate increases, the percentage of
failures that can be recovered within a fixed time decreases.
Therefore, when employing the movement-based checkpoint
strategy, it is necessary to estimate the rate of write events of the
application in order to maximize efficiency of failure recovery.

Figure 5: Recovery Probability vs. Failure Rate.

Figure 5 shows the recovery probability for varying failure rates
given recovery time=0.3 seconds. Failure rate affects the number
of log entries accumulated between the last checkpoint and the
current MH failure. The higher the failure rate, the fewer the log
entries, and lesser the time required to recover. Therefore the
recovery probability increases as the failure rate increases.

Figure 6: Recovery Probability vs. Movement Threshold.

Figure 7: Recovery Time vs. Movement Threshold.

Figure 6 shows the effect of varying the movement threshold (the
number of handoffs between two consecutive checkpoints) on the
probability of recovery. Figure 7 shows the effect of varying the
movement threshold on recovery time for the same parameters as
above. The reason for the downward trend of the recovery
probability curve is that for constant mobility and log arrival
rates, when the movement threshold increases, the time interval
between two checkpoints increases and more log entries would be
created. Hence, the time spent on recovery increases and the
probability of recovery in a given time decreases. However, it
cannot be concluded that setting the movement threshold to 1 will
produce the best results. Although doing so will decrease the
recovery time greatly, the total number of checkpoints increases,
resulting in significant additional overhead during failure-free
operations for the creation and maintenance of checkpoints. Thus,
there exists a tradeoff between recovery time and the total time
spent on the checkpoints and logging for a fixed cost.

Finally, we analyze the tradeoff between the recovery time (Tr)
and the total time spent on the checkpointing and logging per
failure (Tc) to identify the optimal movement threshold to
minimize the total cost of recovery (Tcost as given by Equation
(5)). Figure 8 shows the relationship between the total recovery
cost and the movement threshold M for varying values of
mobility rate. The curves indicate that there exists an optimal
movement threshold under a given operating condition. When
λf=0.0001, and σ=0.01 the optimal value of M is 25 and when
σ=0.001 the optimal value of M is 3 (as shown in Figure 8). This
optimal M value that minimizes Tcost is dictated by the
operational conditions characterized by the MH’s mobility rate
and failure rate, as well as the mobile application’s log rate. The

57

SPN model developed in the paper can easily identify the optimal
M value to minimize the total recovery cost per failure with these
parameter values given as input to the model.

Figure 8: Determining Optimal Movement Threshold that

Minimizes Recovery Cost Per Failure.

6. SUMMARY AND APPLICABILITY
In this paper we have presented an efficient failure recovery
scheme for mobile computing systems based on movement-based
checkpointing and logging. Current approaches take checkpoints
periodically without regard to the mobility rate of the user and
unnecessarily incur additional overhead in maintaining recovery
data. Our movement-based checkpointing and logging scheme
takes a checkpoint only after the mobile node has made M
movements (mobility handoffs). The value of M is governed by
the failure rate, log arrival rate, and the mobility rate of the
application and MH. A performance model has been developed
based on stochastic Petri nets to identify the optimal movement
threshold M, when given the failure, mobility and log arrival
rates, to minimize the cost of recovery per failure, as well as to
calculate the failure recoverability, when given an application
specified recovery time. The results of performance analysis show
the sensitivity of recoverability to the various parameters.

To apply the results obtained in the paper, one can build a table at
static time covering possible parameter values of the mobility rate
and failure rate of the MH and log arrival rate of the mobile
applications, and listing the optimal M value that would minimize
the recovery cost per failure. Then at runtime based on the
measured rates, the optimal M may be selected dynamically to
minimize the recovery cost per failure. The optimal M selected
must also satisfy the specified recovery probability when given an
application deadline to recover from a failure.

As the next step, we plan to analyze and compare the proposed
algorithm to existing approaches, especially the gain achieved
over the use of constant periodic checkpointing. This paper
assumed exponential distribution for the system parameters. A
natural extension of this work is to study the nature of these
parameters and their effect on system behavior. This work is
based on mobile applications running in wireless cellular
networks. With the proliferation of Mobile IPv6 in future all-IP
systems, we plan to extend the work to MIPv6 environments. We
also plan to look at the implementation issue for realizing the
movement-based checkpointing and logging scheme in mobile
computing systems.

REFERENCE
[1] A. Acharya and B.R. Badrinath, “Checkpointing Distributed

Applications on Mobile Computers,” 3rd Int’l Con. on
Parallel and Distributed Information Systems, Oct. 1994, pp.
73-80.

[2] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson, “A
Survey of Rollback-recovery Protocols in Message Passing
Systems,” Technical Report, School of Computer Science,
Carnegie Mellon University, 1996. CMU-CS-96-181.

[3] Y. Fang, I. Chlamtac, and Y.-B. Lin, “Modeling PCS
Networks under General Call Holding Time and Cell
Residence Time Distributions,” IEEE/ACM Trans.
Networking, Vol. 5, No. 6, pp. 893-906, 1998.

[4] S. Gadiraju, and V. Kumar. “Recovery in the Mobile
Wireless Environment Using Mobile Agents,” IEEE
Transactions on Mobile Computing, Vol. 3, No. 2, April
2004, pp. 180-191.

[5] H. Higaki and M. Takizawa, “Checkpoint-Recovery Protocol
for Reliable Mobile Systems,” 17th IEEE Symposium on
Reliable Distributed Systems, October 1998, pp. 93–99.

[6] N. Neves , and W. K. Fuchs, “Adaptive recovery for mobile
environments,” Communications of the ACM, Vol.40, No.1,
Jan. 1997, pp.68-74.

[7] T. Park, and H. Y. Yeom, “Communication Pattern Based
Checkpointing Coordination for Fault-Tolerant Distributed
Computing Systems,” In Proceedings of the International
Conference on Information Networking, January, 1998
(Tokyo), pp. 559 – 562.

[8] T. Park, N. Woo, and H.Y. Yeom, “An Efficient Recovery
Scheme for Mobile Computing Environments,” 2001 Int’l
Conf. on Parallel and Distributed Systems (ICPADS 2001),
Jun 2001, pp. 53-60.

[9] T. Park, and H.Y.Yeom, “An asynchronous recovery scheme
based on optimistic message logging for mobile computing
systems,” 20th International Conference on Distributed
Computing Systems (ICDCS 2000), Apr 2000, pp. 436–443.

[10] D.K. Pradhan, P. Krishna, and N.H. Vaidya, “Recoverable
mobile environment: design and trade-off analysis,” Annual
Symposium on Fault Tolerant Computing, 1996, pp. 16-25.

[11] J. Wang, Q.A. Zeng and D.P. Agrawal, “Performance
analysis of a preemptive and priority reservation handoff
scheme for integrated service-based wireless mobile
networks,” IEEE Transactions on Mobile Computing, Vol. 2,
No. 1, 2003, pp. 65-75.

[12] B. Yao, K.F. Ssu and W. K. Fuchs, “Message Logging in
Mobile Computing,” 29th Annual International Symposium
on Fault-Tolerant Computing (FTCS-29), 1999, pp. 294-301.

[13] I.R. Chen, B. Gu, S. George, and S.T. Cheng, “On failure
recoverability of client-server applications in mobile wireless
environments,” IEEE Transactions on Reliability, Vol. 54,
No. 1, 2005, pp. 115–122.

58

