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ABSTRACT 
In this paper, we present an efficient failure recovery scheme for 
mobile applications based on movement-based checkpointing and 
logging. Current approaches take checkpoints periodically 
without regard to the mobility rate of the user. Our movement-
based checkpointing scheme takes a checkpoint only after a 
threshold of mobility handoffs has been exceeded. The optimal 
threshold is governed by the failure rate, log arrival rate, and the 
mobility rate of the application and the mobile host. This allows 
the tuning of the checkpointing rate on a per application and per 
mobile host basis. We identify the optimal movement threshold 
which will minimize the recovery cost per failure as a function of 
the mobile node’s mobility rate, failure rate and log arrival rate. 
We also calculate the recoverability, i.e., the probability that the 
recovery can be done by a specified recovery time, and discuss 
the applicability of the approach.  

Categories and Subject Descriptors 
D.4.5 [Operating Systems]: Reliability –Checkpoint/restart; 
fault-tolerance; C.2.4 [Computer-Communication Networks]: 
Distributed Systems; D.2.8 [Software]: Metrics—Performance 
measures; 

General Terms 
Performance, Design, Reliability. 

Keywords 
Mobile data management, failure recovery, checkpoint, logging, 
recoverability, mobility handoff. 

1. INTRODUCTION 
Advancement in wireless networking and portable devices is 
revolutionizing the way individuals and businesses view 
computing. Many industries are now trying to provide services to 

this market and mobile applications are expected to become the 
norm in the near future. However, certain inherent properties of 
mobile computing – a type of distributed computing involving 
hosts that may be mobile while retaining network connectivity 
through wireless communications - such as host mobility, 
disconnections, wireless bandwidth limitations, makes these 
applications susceptible to failures typically not encountered in 
the traditional computing environments. This paper concerns 
failure recovery of mobile applications. 

Application recovery is different from database transaction 
recovery since an application may involve multiple database 
transactions, multiple states and it lacks a formal definition of 
application state similar to the mathematical foundations of 
database transactions [4]. Typically, distributed systems achieve 
fault-tolerance through schemes such as checkpointing, logging 
and rollback recovery [2]. During failure-free operation, processes 
save their state to a stable storage periodically, called 
checkpoints. Upon failure, a failed process recovers by rolling 
back to the latest checkpoint and restarting computation from this 
intermediate state. However, inter-process dependencies may 
result in cascading rollbacks, which in the extreme case may take 
the system all the way back to its initial state, often termed 
domino effect. Asynchronous recovery of a failed process is 
achieved by combining checkpointing with logging, where all the 
non-deterministic events that a process executes as well as the 
information necessary to replay these events are logged to the 
stable storage in addition to the checkpoints. During recovery, the 
failed process rolls back to the latest checkpoint and replays all 
the logged events in their original order, there by recreating its 
pre-failure state independently. 

Many approaches have been proposed that refines these basic 
mechanisms for improvements in performance and cost during 
failure-free operations and recovery [7]. In spite of that, mobile 
computing introduces new challenges that preclude the direct 
application of these mechanisms to mobile distributed systems. 
The properties of the mobile computing environment that drives 
the rethinking of failure recovery mechanisms are mobility of 
hosts, low bandwidth and unreliable network connectivity, limited 
battery life of host devices, lack of stable storage on host devices, 
and different types of failures - voluntary disconnection, long 
term hardware failures, and short-term software failures. 

Due to these characteristics, traditional recovery schemes suffer 
from many shortcomings when applied to the mobile computing 
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environment. At the same time, the failure-prone nature of the 
environment makes it essential to provide some form of explicit 
recovery mechanism. In light of the above discussion, this paper 
presents a novel movement-based checkpointing strategy 
combined with logging for recovery of individual hosts in mobile 
computing environments. The approach takes checkpoints after a 
certain number of host migrations across cells rather than 
periodically. This movement threshold is a function of failure 
rate, log arrival rate, and the mobility rate of the application and 
MH, which allows adaptation to user and application behavior. To 
the best of our knowledge, none of the existing algorithms 
consider the effects of mobility on checkpoint intervals, but rather 
assume periodic checkpointing. Mobility is factored only into the 
management of recovery information such as when to consolidate 
logs dispersed across many MSSs [8]. The performance of the 
proposed scheme is evaluated through analytic methods and 
results are presented later in the paper. In addition, this paper 
demonstrates that there exist optimal movement thresholds 
depending on operating conditions and recovery deadline. 

The proposed movement-based checkpointing and recovery 
algorithm is suitable to a wide range of applications and mobile 
environments since it considers application/user behavior as 
defined by its recovery deadline and log arrival rate, nature of the 
mobile environment defined by failure rate and MH behavior 
defined by its mobility rate, in determining the optimum 
movement threshold to trigger checkpointing. As an example, 
consider a mission critical application providing communications 
and shared situational awareness to an active military unit. The 
failure rate in such a mobile environment is likely to be very high; 
mobility rate of users is also likely to be high. At the same time, 
fast recovery from failures is more important than minimizing 
cost of failure-free operations. Note that recovery time is 
governed by how far away the last checkpoint is located from the 
MSS in which a host recovers, how many log entries must be 
transferred to the recovery MSS, how dispersed these logs are, 
and the time it takes to load and execute them at the MH. The 
proposed scheme allows the dynamic determination of an 
optimum movement threshold, and hence checkpointing rate, that 
will minimize recovery time while balancing cost of recovery. 
This optimum threshold will ensure that the checkpoints stay 
close to the recovery MSS and that the logs are not too widely 
dispersed. In contrast, schemes that employ constant periodic 
checkpointing do not consider the effect of user mobility on 
checkpointing. If the chosen checkpoint rate is too low, the last 
checkpoint may be located very far from the recovery MSS and 
there may be a large number of logs dispersed across many MSS 
resulting in a large recovery time. If the rate is too high, precious 
wireless resources may be unnecessary consumed in taking and 
managing checkpoints. 

The rest of this paper is organized as follows. Section 2 
surveys related work and highlights differences from our 
approach.  Section 3 describes the mobile computing system 
assumed in this paper. Section 4 elaborates the proposed 
movement-based checkpointing, logging and recovery 
mechanism. Section 5 shows the modeling and performance 
analysis of the proposed scheme along with mathematical 
formulations of relevant performance parameters such as time 
required for failure recovery and total recovery cost. Finally, 
Section 6 summarizes the paper, discusses the applicability, and 
outlines future research areas.  

2. RELATED WORK 
Application failure recovery in the mobile computing 
environment has received considerable attention in the recent 
years. The schemes that have been proposed employ 
checkpointing, logging or a combination of both, recognizing the 
inherent limitations of the mobile computing environment.  

Acharya et al. in [1] describes a distributed uncoordinated 
checkpointing scheme, where multiple MHs can arrive at a global 
consistent checkpoint without coordination messages. However, 
this paper does not describe how failure recovery is achieved nor 
does it address the issue of recovery information management in 
the face of MH movement. Neves and Fuchs [6] also proposed a 
checkpointing only scheme that achieves global consistent 
checkpoint without additional messaging but is unique in that it 
uses time to synchronize checkpoint creation. Pradhan, Krishna, 
and Vaidya [10] proposed a recovery scheme that combines 
various checkpointing and logging schemes for different mobile 
environments. They describe two uncoordinated checkpoint 
protocols, no-logging and logging and three strategies for 
recovery information management due to MH mobility, 
pessimistic, lazy and trickle strategies.  

T. Park et al. in [8] proposed a recovery mechanism that enables 
independent recovery by MHs by employing periodic 
checkpointing and a combination of pessimistic and optimistic 
logging. The main feature of this paper that we have adapted in 
our scheme is the notion of movement-based management of 
recovery information. In their approach, checkpoints are triggered 
periodically and when a MH moves outside of a certain range, the 
recovery information is transferred reactively to the local MSS. In 
contrast to [8] and [10], our approach considers a MH’s 
movement pattern in the checkpointing strategy in order to avoid 
costly transfers of all recovery information. In [9] T. Park et al. 
proposed an asynchronous recovery scheme using checkpointing 
and logging. However, in this paper, they also consider the case 
of unreliable MSSs where the recovery information of a MH may 
be lost due to failure of a MSS. In this case, in order to enable 
consistent recovery, every other dependent MHs must be traced 
and rolled back.  

Yao, Ssu and Fuchs [12] proposed an algorithm that combines 
checkpointing and message logging in the Mobile IP 
environment. Its components execute on the MSS, the Home 
Agent (HA) and the MH. All messages are logged and the MH 
takes checkpoints periodically and stored at the MSS that is 
serving as the current Foreign Agent. When a MH leaves a cell, 
the old MSS informs the HA of the ids of the checkpoint and logs 
stored at the MSS. Thus, the HS maintains the latest itinerary of 
the MH and can be queried upon recovery to collect the 
distributed recovery information. Higake and Takizawa [5] 
proposed a hybrid checkpoint recovery scheme. A mobile host 
leaves an agent on every MSS in its itinerary. During recovery 
processes MHs roll back to a consistent state with the help of 
these agent processes. Chen et al. considered [13] recoverability 
issue of mobile applications with periodic checkpointing. Our 
paper extends the analysis to mobility-based checkpointing.  

3. MOBILE COMPUTING SYSTEM  
The mobile computing system assumed in this paper follows the 
model presented in [1]Error! Reference source not found.. The 
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system consists of a set of mobile hosts (MHs) that are free to 
move around. At any time, they maintain network connectivity 
through a wireless link to a static mobile support station (MSS). 
The MSSs are interconnected through high speed static wired 
networks. A MSS handles all communications to and from MHs 
within its area of influence known as a cell usually determined by 
the range of wireless transmission. Assuming a hexagonal shape 
for each cell, a hexagonal network coverage model will be formed 
by a community of cells. Thus, sending a message to another MH 
consists of two one-hop wireless transmissions between the 
sender and receiver MHs and their respective local MSSs in 
addition to an arbitrary number of hops across the wired 
infrastructure between the sender’s MSS and receiver’s MSS. The 
wired and wireless network protocols are assumed to provide 
reliable FIFO delivery of messages with arbitrary delay to the 
application. 

Considering that the MH’s disk cannot be assumed to be stable, 
each MSS is equipped with enough volume of stable storage to 
store the state and log information for all the MHs currently in its 
cell as well as those that were recently in its cell. However, due to 
the fact that MSSs must support multiple concurrent MHs, this 
storage must be efficiently managed. 

The interactions between the MH and the network infrastructure 
most relevant to failure recovery are handoff, disconnect and 
reconnect. When a MH crosses a cell boundary due to mobility, it 
first establishes connection with the new MSS in the new cell 
giving the MSS its ID and the ID of the previous MSS. It then 
disconnects from the previous MSS. This process usually occurs 
instantaneously and is called a handoff. A MH may also 
disconnect voluntarily from the network to conserve power and 
reconnect at a later time. Due to mobility of hosts, it is common 
for a MH to disconnect in one MSS and reconnect in another. In 
this case, the MH sends the ID of the previous MSS to the new 
MSS, which in turn initiates proper handoff procedures. 

In this paper a distributed computation is assumed to consist of a 
number of processes executing concurrently on multiple hosts. A 
single process may be in either one of three states at any point of 
time: normal, save or recovery. In the normal state, it may be 
executing application related computations, receiving user inputs 
or sending and receiving messages. Occasionally, each process 
saves its state as a checkpoint to the stable storage (save state). 
During this operation, the MH stops execution and compiles the 
current values of all non-transient state variables into a message, 
assigns it a unique id and sends it to the MSS for storage. 
Between checkpoints the application performs logging activities 
to record incremental state changes. The application’s logging 
behavior assumed in this paper follows the model described in 
[1]. Application state may change due to receipt of messages or 
due to user inputs. These are commonly referred to as ‘write 
events’. If the write event is a message received from another MH 
or a server, the MSS first receives it, logs it to stable storage and 
then forwards it to the MH. Thus no overhead is incurred during 
this process. On the other hand, if the write event is a user input 
or a local computation, the MH first forwards a copy to the MSS 
to be logged and does not apply it locally until an 
acknowledgement is received from the MSS. Thus, logging is also 
an activity that the MH and MSS execute during normal 
operations. Every fresh checkpoint purges old checkpoints and 

logs, possibly distributed over many MSS. More details of 
recovery information management in provided in Section 4.3. 

4. MOVEMENT-BASED 
CHECKPOINTING AND LOGGING 
The recovery scheme presented here combines independent 
checkpointing and optimistic message logging enabling 
asynchronous recovery of a MH upon failure. In general 
application recovery mechanisms try to optimize recovery cost 
(failure-free operational cost), recovery time and storage 
requirements for recovery related information. The general 
approach taken by current schemes is to create checkpoints 
periodically (possibly based on an application parameter setting 
such as maximum time to recover or failure rate) and 
subsequently control the proliferation of recovery information 
using techniques that merge logs and move the information closer 
to the MH. One such scheme uses distance or number of handoffs 
as the parameter that triggers information consolidation [8]. In 
this approach, when the MH crosses a distance threshold from the 
location of the latest checkpoint, the recovery information is 
collected and transferred to the MH’s local MSS. 

In contrast, the recovery protocol described here proactively 
controls the number of checkpoints and logs by using a 
movement-based checkpointing strategy. This means that the 
additional overhead of unnecessary checkpoints and log 
consolidation during failure-free operation is avoided. 

4.1 Checkpointing and Message Logging 
Each mobile host independently takes checkpoints of the 
application state and between checkpoints all write events are 
logged at the current MSSs’ stable storage. The interval between 
checkpoints is governed by the number of handoffs experienced 
by the MH and is not fixed. Each MH maintains a 
handoff_counter which is incremented by 1 every time a handoff 
occurs. When the value of the counter becomes greater than a 
threshold M, a checkpoint is taken. The process is illustrated in 
Figure 1. 

 
Figure 1: Movement-based Checkpointing. 

The value of M is a function of the user’s mobility rate, the failure 
rate and log arrival rate (as shown in Section 5.1). The host 
assigns a unique sequence number to the checkpoint and sends it 
to the MSS which saves it to stable storage. The MH maintains 
two variables locally related to checkpoints: cp_seq which stores 
the sequence number of the latest checkpoint and cp_loc which 
stores the ID of the MSS that has recorded the latest checkpoint. 
Let this MSS be called MSScp. After taking the checkpoint, the 
MH resets the handoff_counter to 0. Thus, depending on the 
variability in the MH’s mobility, the time interval between 
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successive checkpoints differs. In between checkpoints, all write 
events related to a MH is also logged to the local MSS. Each log 
entry is time stamped so that they can be replayed in the correct 
order during recovery. The MH locally maintains a list log_set 
containing the IDs of MSSs that stores its logs. Let this set of 
MSSs be called MSSlogs. 

At every checkpoint, cp_loc is updated with the current MSS, 
cp_seq is updated with the sequence number of the latest 
checkpoint and log_set is cleared. At every logging activity, the 
ID of the current MSS is added to log_set if it is not present 
already. The performance of this scheme depends on identifying 
the optimal movement threshold M per user and application. This 
value ensures that the checkpoints and logs remain within 
acceptable range of the MH’s current location thereby eliminating 
the need for information consolidation. In addition, it also ensures 
acceptable recovery time since M bounds the number of MSSs’ 
from which logs must be retrieved. 

4.2 Independent Recovery 
The checkpoints and the logs enable a MH to recover 
independently without requiring coordination with other hosts. 
This paper makes no assumption that the MH must recover in the 
same MSS in which it failed. In order to perform rollback 
recovery, after the MH reconnects to a MSS after failure, it sends 
to the current MSS the sequence number of the latest checkpoint 
and the ID of the MSS storing it. Recall that these values are 
stored locally at the MH in the variables cp_seq and cp_loc. The 
MSS initiates the process of collecting the checkpoint and the 
logs. For the former, it sends a request with the checkpoint 
sequence number to the MSS holding the checkpoint, i.e. MSScp. 
MSScp responds with the checkpoint. 

In order to retrieve the logs the current MSS sends requests to all 
the MSSs in the list log_set. Each MSS, upon receipt of the 
request responds with the log entries for the MH if it has any. The 
current MSS compiles the logs into a list ordered by time and 
sends it to the MH along with the checkpoint. In order to recover 
from the failure, the MH rolls back to this checkpoint and replays 
the logs in order. Once recovery is completed successfully, a 
checkpoint of the current state is taken and sent to the MSS and 
the local variables are reset. 

4.3 Storage Management at the Mobile 
Support Stations 
Even though movement based checkpointing helps to control the 
number of checkpoints depending on mobility and failure rates, 
the combination of checkpoints and logs for every MH can 
amount to a significant amount of information to be persisted at 
the MSSs. In [12], the authors explain that if storage at MSSs is 
depleted, they will either have to temporarily halt normal 
operation and perform garbage collection or find costly 
alternative storage for new checkpoints and logs. Since halting a 
MSS makes its local MHs inaccessible, it must be prevented. 

Storage can be recovered by deleting outdated recovery 
information. Recovery information becomes outdated every time 
a new checkpoint is taken successfully which occurs during 
normal operation after every M handoffs and when a recovery 
operation executes successfully. Thus, when a MH takes a new 

checkpoint, and logs to delete all recovery information related to 
the MH. 

5. PERFORMANCE ANALYSIS 
The performance of the proposed scheme is evaluated using 
analytical methods by means of Stochastic Petri Net (SPN) 
modeling. A Petri net is a popular graphical and mathematical 
modeling tool used to describe and study concurrent, 
asynchronous, distributed, parallel, nondeterministic, and/or 
stochastic systems.  

5.1 Model 
The SPN model of a mobile computing system employing the 
movement-based recovery scheme is shown in Figure 2.  

 
Figure 2: SPN Model. 

The parameters controlling the model and their descriptions are 
given in Table 1. 

Table 1: SPN Model Parameters 

Paramete
r 

Description 

σ MH mobility rate, i.e. the rate at which the MH 
crosses cell boundaries.  

μ Log arrival rate i.e. the rate at which logs are 
created 

λf MH failure rate i.e. the rate at which the MH 
fails 

M Movement threshold i.e. the number of handoffs 
after which the MH takes a checkpoint 

r Ratio of bandwidth of wireless network to wired 
network 

Tckp_w Time required to transmit a checkpoint through 
the wireless link 

Tlog_w Time required to load a log entry through the 
wireless link 

Telog Time required to execute a log entry at the MH 
Fr Probability of recovery 
Tr Recovery time 
θk Checkpoint rate, i.e. 1/θk is the time required to 

take a checkpoint 
θi Recovery rate, i.e. 1/ θi = Tr. i is the number of 

movements since the last checkpoint. 
Nmss_logs Number of MSSs storing logs 

Dmss Average hop count between the MSS storing the 
checkpoint and the MSS in which the MH 
recovers 
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Current literature [11] states that assuming an exponential 
distribution for the system parameters such as log arrival rate, 
failure rate and mobility rate, is a reasonable approach. Others 
have used models such as gamma, hyperexponential, lognormal, 
or hyper-Erlang distributions [3]. In this paper we take the former 
approach and use exponential distribution for these parameters 
which makes the underlying Markov model of the SPN tractable. 
As part of future work, we intend to analyze the system behavior 
for other distributions and compare the results. The main 
characteristics of the SPN model are: 

1. The model consists of 2 places and 4 transitions. Place 
“Move” represents the state in which the number of 
movements of the MH since the last checkpoint is not more 
than the threshold M and there has been no failure. Place 
“Fail” stands for the state in which a MH failure has 
occurred. Initially the MH is in a consistent state with a 
checkpoint in the current MSS and a zero value for the count 
of movement, as represented by the place “Move” without 
tokens.  

2. The MH moves from one cell to another with a mobility rate 
σ. Whenever the MH encounters a handoff, the number of 
tokens in the place “Move” is increased by 1. This behavior 
is described by the transition on the left upper part of the 
SPN model. The MH stays in the state represented by place 
“Move” except in the event of a failure. When a failure 
occurs, this transition will not be enabled until failure 
recovery has completed.  The only inhibitor arc ensures that 
the number of movements between two consecutive 
checkpoints is less than the threshold M. When the number 
of tokens in the place “Move” becomes equal to M, the upper 
right transition is fired. This transition requires time kθ1  
which is used to create a checkpoint of the current state and 
save it to the current base station. This transition also resets 
the handoff counter to 0 as represented by the M tokens on 
the output arc of the place “Move”. 

3. When a MH failure occurs, the system status migrates from 
the state “Move” to the state “Fail”. All the tokens in the 
place “Move” move to the place “Fail”. The recovery time 

iθ1 depends on the number of movements since the last 
checkpoint which is denoted by i = #(Fail), the number of 
tokens in the place “Fail”. 

The transition firing rates kθ and iθ require some elaboration: 

1. Parameter kθ : kθ represents the checkpoint rate of the MH. 
During checkpointing, the MH takes a snapshot of its current 
state and sends it to its current MSS through the wireless 
channel. The MSS then stores it in its stable storage. Since 
the time taken for wireless transmission, wckpT _  is 

significantly longer than the others, the time spent on a 
checkpoint operation is approximated to this value. 
Accordingly wckpk T _1=θ . 

2. Parameter iθ : iθ represents the recovery rate of the MH and 
is the inverse of the recovery time, where i is the number of 

handoffs experienced by the MH since the last checkpoint 
and before failure. The recovery time includes (a) the time 
needed to send recovery information requests to the MSSs 
storing the latest checkpoint and all logs since the latest 
checkpoint, (b) the time required to transmit the latest 
checkpoint from the MSS where it is stored (MSScp) to the 
MSS in which the MH has recovered (MSSrec) through the 
wired network and through the wireless channel to the MH, 
(c) the time required to transmit all the logs from the 
respective MSSs where they are located (MSSlogs) to the 
MSSrec through the wired network and through the wireless 
channel to the MH and (d) the time required to rollback to 
the last checkpoint and apply all the logs at the MH. 

Before describing the equation for computing the average 
recovery time, some variables are defined. 

• smssN log_  - This represents the number of MSSs storing 

logs. The exact value of this variable is the size of the list 
log_set. At most its value is the number of handoffs before 
failure, i.e. i, where every MSS through which the MH 
passed is unique and logs are created in every one of them. 
For simplicity, we assume that iN smss =log_ .  

• mssD - This is the average hop count between MSScp and 
MSSrec. Based on the hexagonal network model, we 
calculate it as:  

 [ ]1*630*621*61)1(1 ++−−+= iDmss  

This equation shows that on the first move, the count 
increases by 1, but on each subsequent move the MH moves 
backward with probability 1/6 (hop count decreased by 1), 
sideways with probability 2/6 (hop count remained the same) 
and moves forward with probability 3/6 (hop count increased 
by 1). The equation above can then be reduced 
to ( ) 32+= iDmss . 

Thus, the total time to recover after i movements is the sum of the 
following components: 

• Time spent on recovery information requests as given by:   

wmsssmssreqrec TrDNT log_log__ ***)1( +=  

Here we assume that the size of a request packet is not more 
than the size of a log entry packet. Hence for simplicity, we 
use the time to transmit a log entry wTlog_ as the time to 

transmit a request packet. The first part of this equation 
)1( log_ +smssN represents the number of MSSs to which 

the request packet must be sent and its value is the sum of 
the count of MSSs in the list log_set and one MSS storing 
the checkpoint. Hence, 

wmssreqrec TrDiT log__ ***)1( +=  

• Time spent on transmitting the latest checkpoint to the MH 
as given by: 
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wckpwckpmsstxckp TTrDT ___ ** +=  

The first part of this equation represents the time required to 
transmit the last checkpoint from MSScp to MSSrec, 
assuming the distance between the two is mssD . 

• Time spent on transmitting the logs to the MH as given by: 

)**(* log_log_log_ wwmsstx TTrDnT +=  

Where n is the number of log entries accumulated since the 
last checkpoint and is given by σμ )*( in = . The rest of 
the equation represents the time required to transmit each log 
entry through the wired and wireless channels. 

• Time spent to rollback to the last checkpoint and apply the 
logs as given by: log* erec TnT =  

Hence, the total time to recover after i movements is given by: 

rectxtxckpreqrec
i

r TTTTT +++= log___   (1) 

And the transition firing rate i
ri T1=θ  

The SPN model’s underlying Markov model has 12 +M  states. 

If jP denotes the probability of state j, the average recovery time 

per failure is given by: i
r

M

j
jr TPT *

12

0
∑

+

=

=   (2) 

The recovery probability rF is defined as the probability that 
recovery time is less than or equal to T and is given by: 

{ } { }T
M

k
k

i
rr

kePTTobF θ−
+

=

−=≤= ∑ 1Pr
12

1

  (3) 

In addition, we define cT  as the total time spent on 
checkpointing and logging before a failure. It represents the total 
cost of recovery and is given as: 

( )( ) ( ) wfwckpfc TTMT log__ *** λμλσ +=  (4) 

Where ( )fM λσ *  denotes the total number of checkpoints 

before a failure, and ( )fλμ  represents the total number of log 

entries before a failure. Thus, cT represents the total failure-free 
operations cost and the second part of Equation (4) depicts the 
total delay incurred by logging during failure free operations. 

Equations (2) and (4) enable us to define the total cost of recovery 
per failure as the weighted sum of the average recovery time and 
the total time spent on the checkpointing and logging per failure. 
It is given by: 

rct TwTwT 21cos +=     (5) 

0,0,1 2121 >>=+ wwww  

Where w1 and w2 are the weights associated with recovery time 
and failure-free operation cost. Different applications have 
differing failure recovery performance requirements with respect 
to the time taken for recovery and checkpointing. The weighting 
of the components of the total cost of recovery allows the 
configuration of such performance requirements per application 
and user. We use w1 = w2 = 0.5 in the analysis below to account 
for the situation where Tcost is equally proportional to Tc and Tr. 

5.2 Results and Analysis 
The SPN model was implemented and analyzed using the SPNP 
software. The following parameter values were kept constant 
across all the runs. Specifically, the size of a log entry is 50B, size 
of a checkpoint is 2000B, bandwidth of the wired network is 
2Mbps, ratio of bandwidth of wireless to wired network (r) is 0.1, 
time required to apply a log entry (Telog) is 0.0001s. Thus the time 
required to transmit a log entry through the wireless channel 
(Tlog_w) is 0.002s and the time required to transmit a checkpoint 
through the wireless channel (Tckp_w) is 0.08s. Model parameters 
such as mobility rate, log arrival rate, failure rate, and movement 
threshold were varied across runs. These values were chosen for 
analysis purposes only and do not assume a specific application or 
environment. The results presented here show system behavior for 
a wide range of parametric values which depicts the broad 
applicability of the scheme.  

 
Figure 3: Recovery Probability vs. Recovery Time. 

 
Figure 3 shows the probability of recovery against recovery time 
for varying values for mobility rate. Recovery probability 
increases with recovery time. For a constant value of recovery 
time, the probability increases with increase in mobility rate. This 
is because with higher mobility rate, the checkpoint interval 
reduces and the number of logs accumulated between checkpoints 
decreases. This enables faster recovery. From the curve for 
mobility rate 0.1, it can be seen that 90% of failures can be 
recovered in 0.3 seconds, and at most 0.5 seconds to achieve 
100% recovery probability.  
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Figure 4: Recovery Probability vs. Log Arrival Rate. 

 
Figure 4 shows the effect of varying log arrival rate on the 
probability of recovery, assuming recovery time=0.3sec. When 
the log arrival rate is low, under constant failure rate, the number 
of logs accumulated between the last checkpoint and failure is 
small and hence there is a high probability of recovery within 
0.3secs. However, as log arrival rate increases, the percentage of 
failures that can be recovered within a fixed time decreases. 
Therefore, when employing the movement-based checkpoint 
strategy, it is necessary to estimate the rate of write events of the 
application in order to maximize efficiency of failure recovery. 

 
Figure 5: Recovery Probability vs. Failure Rate. 

 
Figure 5 shows the recovery probability for varying failure rates 
given recovery time=0.3 seconds. Failure rate affects the number 
of log entries accumulated between the last checkpoint and the 
current MH failure. The higher the failure rate, the fewer the log 
entries, and lesser the time required to recover. Therefore the 
recovery probability increases as the failure rate increases. 

 
Figure 6: Recovery Probability vs. Movement Threshold. 

 

 
Figure 7: Recovery Time vs. Movement Threshold. 

 
Figure 6 shows the effect of varying the movement threshold (the 
number of handoffs between two consecutive checkpoints) on the 
probability of recovery. Figure 7 shows the effect of varying the 
movement threshold on recovery time for the same parameters as 
above. The reason for the downward trend of the recovery 
probability curve is that for constant mobility and log arrival 
rates, when the movement threshold increases, the time interval 
between two checkpoints increases and more log entries would be 
created. Hence, the time spent on recovery increases and the 
probability of recovery in a given time decreases. However, it 
cannot be concluded that setting the movement threshold to 1 will 
produce the best results. Although doing so will decrease the 
recovery time greatly, the total number of checkpoints increases, 
resulting in significant additional overhead during failure-free 
operations for the creation and maintenance of checkpoints. Thus, 
there exists a tradeoff between recovery time and the total time 
spent on the checkpoints and logging for a fixed cost. 

Finally, we analyze the tradeoff between the recovery time (Tr) 
and the total time spent on the checkpointing and logging per 
failure (Tc) to identify the optimal movement threshold to 
minimize the total cost of recovery (Tcost as given by Equation 
(5)). Figure 8 shows the relationship between the total recovery 
cost and the movement threshold M for varying values of 
mobility rate. The curves indicate that there exists an optimal 
movement threshold under a given operating condition. When 
λf=0.0001, and σ=0.01 the optimal value of M is 25 and when 
σ=0.001 the optimal value of M is 3 (as shown in Figure 8). This 
optimal M value that minimizes Tcost is dictated by the 
operational conditions characterized by the MH’s mobility rate 
and failure rate, as well as the mobile application’s log rate. The 

57



SPN model developed in the paper can easily identify the optimal 
M value to minimize the total recovery cost per failure with these 
parameter values given as input to the model. 

 
Figure 8: Determining Optimal Movement Threshold that 

Minimizes Recovery Cost Per Failure. 
 

6. SUMMARY AND APPLICABILITY 
In this paper we have presented an efficient failure recovery 
scheme for mobile computing systems based on movement-based 
checkpointing and logging. Current approaches take checkpoints 
periodically without regard to the mobility rate of the user and 
unnecessarily incur additional overhead in maintaining recovery 
data. Our movement-based checkpointing and logging scheme 
takes a checkpoint only after the mobile node has made M 
movements (mobility handoffs). The value of M is governed by 
the failure rate, log arrival rate, and the mobility rate of the 
application and MH. A performance model has been developed 
based on stochastic Petri nets to identify the optimal movement 
threshold M, when given the failure, mobility and log arrival 
rates, to minimize the cost of recovery per failure, as well as to 
calculate the failure recoverability, when given an application 
specified recovery time. The results of performance analysis show 
the sensitivity of recoverability to the various parameters.  

To apply the results obtained in the paper, one can build a table at 
static time covering possible parameter values of the mobility rate 
and failure rate of the MH and log arrival rate of the mobile 
applications, and listing the optimal M value that would minimize 
the recovery cost per failure. Then at runtime based on the 
measured rates, the optimal M may be selected dynamically to 
minimize the recovery cost per failure. The optimal M selected 
must also satisfy the specified recovery probability when given an 
application deadline to recover from a failure. 

As the next step, we plan to analyze and compare the proposed 
algorithm to existing approaches, especially the gain achieved 
over the use of constant periodic checkpointing. This paper 
assumed exponential distribution for the system parameters. A 
natural extension of this work is to study the nature of these 
parameters and their effect on system behavior. This work is 
based on mobile applications running in wireless cellular 
networks. With the proliferation of Mobile IPv6 in future all-IP 
systems, we plan to extend the work to MIPv6 environments. We 
also plan to look at the implementation issue for realizing the 
movement-based checkpointing and logging scheme in mobile 
computing systems. 
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