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Abstract
Currently, program slicing and algorithmic debugging are two of
the most relevant debugging techniques for declarative languages.
They help programmers to find bugs in a semiautomatic manner.
On the one hand, program slicing is a technique to extract those
program fragments that (potentially) affect the values computed at
some point of interest. On the other hand, algorithmic debugging is
able to locate a bug by automatically generating a series of ques-
tions and processing the programmer’s answers. In this work, we
show for functional languages how the combination of both tech-
niques produces a more powerful debugging schema that reduces
the number of questions that programmers must answer to locate a
bug.

Categories and Subject Descriptors F.3.1 [Theory of Computa-
tion]: Logics and meaning of programs—specifying and verifying
and reasoning about programs; D.3.1 [Software]: Programming
Languages—formal definitions and theory

General Terms Languages, Theory, Algorithms

Keywords Program Slicing, Algorithmic Debugging

1. Introduction
Algorithmic debugging [20] is a debugging technique which relies
on the programmer having an intended interpretation of the pro-
gram. That is, some computations of the program are correct and
others are wrong with respect to the programmer’s intended seman-
tics. Algorithmic debugging was originally developed for logical
languages and later transferred to other language paradigms, in-
cluding (lazy) functional languages [14].

Essentially, algorithmic debugging is a two phase process: An
execution tree (see, e.g., [12]) is built during the first phase where
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each node in the execution tree is labeled with an equation which
consists of a function call whose arguments and result are in their fi-
nal state of evaluation. In the second phase, the debugger traverses
the execution tree asking the programmer whether equations are
correct or wrong w.r.t. the intended semantics. When all the chil-
dren of a wrong equation (if any) are correct, the debugger locates
the bug in the function definition of this node [14]. Let us illustrate
this process with an example.

EXAMPLE 1.1. Consider the buggy program in Figure 1 (a),
adapted from [7]. This program sums a list of integers ([1,2]) and
computes the square of the result with three different methods. If
the three methods compute the same result, the program returns
True, if not, it returns False. Here, one of the three methods—the
one adding the partial sums of its input number—contains a bug.
From this program, an algorithmic debugger can automatically
generate the execution tree of Figure 1 (c) (built-in functions such
as + and == are assumed to be correct and hence their reductions
are omitted from the tree; for the time being, the reader can ig-
nore the distinction between white and dark nodes). This tree, in
turn, can be used to produce a debugging session as depicted in
Figure 1 (b). During the debugging session, the system asks the
programmer about the correctness of some execution tree nodes
w.r.t. the intended semantics. At the end of the debugging session,
the algorithmic debugger determines that the bug of the program is
located in function sum2. The definition of function sum2 should
be: sum2 x = div (x ∗ (decr x)) 2.

Unfortunately, in practice—for real programs—algorithmic de-
bugging can produce long series of questions which are semanti-
cally loosely connected (i.e. consecutive questions refers to inde-
pendent parts of the computation) making the process very compli-
cated indeed for the programmers of the program being debugged.
In addition, questions can also be very complex. For instance, dur-
ing a debugging session of a compiler, the algorithmic debugger for
the logic-functional language Mercury [11]—currently, one of the
most advanced algorithmic debuggers—asked a question of more
than 1400 lines.

Hence new techniques and strategies to reduce the number of
questions, to simplify them and to improve the order in which they
are asked are a necessity to make algorithmic debuggers usable in
practice.

To overcome such problems, in this paper we combine algorith-
mic debugging with program slicing [23]. Program slicing is a tech-
nique for decomposing programs based on data and control flow
information. In particular, given an arbitrary expression in a pro-
gram, program slicing can determine which slices, that is, program
fragments, can (potentially) affect this expression. By combining
algorithmic debugging and program slicing the debugging process



main = sqrtest [1,2]

sqrtest x = test (computs (listsum x))

test (x,y,z) = (x==y) && (y==z)

listsum [] = 0
listsum (x:xs) = x + (listsum xs)

computs x = ((comput1 x),(comput2 x),(comput3 x))

comput1 x = square x
Starting Debugging Session...

square x = x*x
(1) main = False? NO

comput2 x = listsum (list x x) (2) sqrtest [1,2] = False? NO
(3) test [9,9,8] = False? YES

list x y | y==0 = [] (4) computs 3 = [9,9,8]? NO
| otherwise = x:list x (y-1) (5) comput1 3 = 9? YES

(6) comput2 3 = 9? YES
comput3 x = listsum (partialsums x) (7) comput3 3 = 8? NO

(8) listsum [6,2] = 8? YES
partialsums x = [(sum1 x),(sum2 x)] (9) partialsums 3 = [6,2]? NO

(10) sum1 3 = 6? YES
sum1 x = div (x * (incr x)) 2 (11) sum2 3 = 2? NO
sum2 x = div (x + (decr x)) 2 (12) decr 3 = 2? YES

incr x = x + 1 Bug found in rule:
decr x = x - 1 sum2 x = div (x + (decr x)) 2

(a) Example program (b) Debugging session for program (a)

m ain -> False

sqrtest [1,2] -> False

test (9,9,8) -> False com puts 3 -> (9,9,8) listsum  [1,2] -> 3

com put1 3 -> 9 com put2 3 -> 9 com put3 3 -> 8

square 3 -> 9 listsum  [3,3,3] -> 9 list 3 3 -> [3,3,3]

listsum  [3,3] -> 6

listsum  [3] -> 3

listsum  [] -> 0

list 3 2 -> [3,3]

list 3 1 -> [3]

list 3 0 -> []

listsum  [6,2] -> 8 partialsum s 3 -> [6,2]

listsum  [2] -> 2

listsum  [] -> 0

sum 1 3 -> 6 sum 2 3 -> 2

incr 3 -> 4 decr 3 -> 2

listsum  [2] -> 2

listsum  [] -> 0

(c) Execution tree of program (a)

Figure 1. Example program (a) and its associated debugging session (b) and execution tree (c)



becomes more interactive, allowing the user to provide more in-
formation to the debugger. This information reduces the number
of questions and guides the process, thus making the sequence of
questions semantically related.

The main contributions of this paper can be summarised as
follows:

1. We combine both program slicing and algorithmic debugging
in a single, more powerful framework in the context of func-
tional programming.

2. We adapt the well-known program slicing concepts of slice,
slicing criterion, complete slice, and so on to the Augmented
Redex Trail, a trace structure that can be the basis for both
algorithmic debugging and program slicing, and we define and
prove properties for this formalism.

3. We introduce an algorithm for slicing execution trees which is
proven complete, in the sense that every slice produced contains
all the nodes of the tree that are needed to locate a bug.

The rest of the paper is organised as follows. In the next section
we outline how algorithmic debugging can be improved by letting
the user provide more information. In Section 3 we define the
Augmented Redex Trail and in Section 4 we define which kind of
slices of an Augmented Redex Trail we are interested in. In Section
5 we combine these slicing concepts with algorithmic debugging
and introduce an algorithm to compute the slices we need. Next,
we give an example of a debugging session that uses our technique
in Section 6. In Section 7 we discuss related debugging techniques.
Finally, Section 8 concludes.

2. The Idea: Improved Algorithmic debugging
As shown in Example 1.1, a conventional algorithmic debugger will
ask the programmer whether an equation

foo a1 . . . an = e

is correct or wrong; the programmer will answer “yes”, “no” or
“maybe” depending on whether they think that it is respectively
correct, wrong or they just don’t know.

Our main objective in this work is to be able to get more
information from the programmer and consequently reduce the
number of questions needed to locate a bug. For this purpose, we
consider the following cases:

1. The programmer answers “maybe”. This is the case when the
programmer cannot provide any information about the correct-
ness of the equation.

2. The programmer answers “no”. The programmer can dis-
agree with an equation and provide the system with additional
information related to the wrong result.

When the result is wrong, the programmer could say just “no”,
but they could also be more specific. They could exactly point
to the parts of the result which are wrong. For instance, in the
equation above, they could specify that only a subexpression of
e is wrong, and the rest of the result is correct. This information
is useful because it could help the system to avoid questions
about correct parts of the computation.

3. The programmer answers “yes”. This is the case when the
programmer agrees with both the complete result and all the
expressions in the left hand side of the equation; or when some
precondition of the equation has been violated (i.e. some parts
of the left hand side were not expected).

• The programmer could detect that some expression inside
the arguments of the left hand side of the equation should
not have been computed. For instance, consider the equation

insert ′b′ “cc” = “bcc”, where function insert inserts
the first argument in a list of mutually different characters
(the second argument). Clearly the result of the equation is
correct; but the programmer could detect here that the sec-
ond argument should not have been computed. This means
that even for a correct equation the programmer could pro-
vide the system with information about bugs. In this case,
the programmer could mark the second argument (“cc”) as
wrong (i.e. inadmissible [13] for this function because it vi-
olates a precondition).

• Finally, both, the result and the arguments, could be correct,
but the function name could be wrong1, in the sense that it
should have never been called. In this case, the programmer
could mark the function name as wrong.

The information provided by the programmer allows the system
to slice the execution tree, thus reducing the number of questions.
The more information they provide, the smaller the execution tree
becomes. For instance, the slice computed if the programmer an-
swers “no”, is usually larger than the one computed if they answer
“no, and this function should not have been computed”. Of course,
as is the case in conventional algorithmic debugging, the program-
mer may only give information about the wrong expressions they
are able to detect. In the worst case, they can always answer “yes”,
“no” or “maybe”.

In summary, in order to provide information about errors, the
programmer can specify that some part of the result or the argu-
ments, or the function name is wrong. The slicing process needed
for each case is different.

3. The Augmented Redex Trail
In the first phase of algorithmic debugging the program is executed
and the execution tree is built. However, the execution tree is not
actually built directly as described. Direct construction of the exe-
cution tree during the computation would not be very efficient; in
particular, the nodes of the execution tree are labelled with equa-
tions that contain many repeated subexpressions and, for a lazy
functional language, the tree nodes are constructed in a rather com-
plex order. So instead of the final execution tree a more elaborated
trace structure is constructed that avoids duplication of expressions
through sharing.

The Augmented Redex Trail (ART) [21, 22] is such a trace struc-
ture. The ART is used in the Haskell tracer Hat [21, 22] and has
similarities with the trace structure constructed by the earlier algo-
rithmic debugger Freja [15]. The ART has been designed so that
it can be constructed efficiently and after its complete construction
the execution tree needed for algorithmic debugging can be con-
structed from it easily. In addition, an ART contains more informa-
tion than an execution tree. An execution tree can be constructed
from an ART but not vice versa. The ART supports several other
views of a computation besides the execution tree. Nonetheless an
ART is not larger than an execution tree with sharing. An ART is
a complex graph of expression components that can represent both
eager or lazy computations.

DEFINITION 3.1 (Augmented Redex Trail). A node n is a se-
quence of the letters l, r and t. There is also a special node ⊥.

A node expression T is a function symbol, a data constructor,
a node or an application of two nodes.

A trace graph is a partial function G : n �→ T such that its
domain is prefix-closed (i.e., if ni ∈ dom(G), then n ∈ dom(G)),

1 As we consider a higher order language, this is a special case of a wrong
argument, the function name being the first (wrong) part of the function
application.
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Figure 2. Example of ART

but ⊥ /∈ Dom(G). We often regard a trace graph as a set of tuples
{(n, G(n)) | n ∈ dom(G)}

A node can represent several terms, because any nodes n and
nt are considered equal. A node approximates a term if it repre-
sents this term, except that some subterms may be replaced by ⊥.

A node n plus a node nt represent a reduction step of the
program, if node n represents the redex and node nt approximates
the reduct, and for each variable of the corresponding program rule
there is one shared node.

A trace graph G where node ε (empty sequence) approximates
the start term M and every pair of nodes n and nt represents a
reduction step with respect to the program P , is an Augmented
Redex Trail (ART) for start term M and program P .

More detailed definitions are given in [4, 3].
For example, consider the graph depicted in Figure 2. This

graph is a part of the ART generated from the program in Figure
1 (a). In particular, it corresponds to the function call “sum2 3”
producing the result “2”. As specified in Definition 3.1, each node
is identified by a sequence of letters ‘t’, ‘l’ and ‘r’2. Every node
contains the expression it represents, except for a node which rep-
resents an application of two expressions connected to it by simple
lines. A double line represents a single reduction step. For instance,
node ttlrrt represents the function call “3 − 1” that has been re-
duced to “2”.

In the following a (atom) denotes a function symbol or con-
structor, and n, m and o denote nodes. We usually write n ∈ G
instead of n ∈ Dom(G) when it is clear from the context. We also
say that a node n ∈ G is reduced iff nt ∈ G. Given a node n ∈ G
where G(n) is an application of nodes m · o, we respectively refer
to m and o as left(n) and right(n).

The parent of a node is the node which created it. Formally:

parent(nl) = parent(n)
parent(nr) = parent(n)
parent(nt) = n

The recursive application of function parent produces the an-
cestors of a node:

2 For easier reading we here call the first node t; within the ART of the
complete computation the node is actually trtrtrtrlr.

ancestors(n) =

�
{m} ∪ ancestors(m) if m defined
∅ otherwise

where m = parent(n)

Finally, to extract the most evaluated form represented by a
node, function mef is defined by:

mef (G, n) =���
��

a if G(n) = a
mef (G, m) if G(n) = m
mef (G, m) · mef (G, o) if G(n) = m · o and nt 	∈ G
mef (G, nt) if nt ∈ G

Intuitively, function mef traverses the graph G following reduction
edges (n to nt) as far as possible.

Now we see how easily the execution tree is obtained from the
ART: The reduced nodes of the ART become the nodes of the ex-
ecution tree. The function parent expresses the child–parent rela-
tionship between these nodes in the execution tree. The equation
of a node n can be reconstructed by applying the function mef to
left(n) and right(n) to form the left-hand-side, and to nt to form
the right-hand-side. For instance, for the ART in Figure 2 the al-
gorithmic debugger produces an execution tree with five questions,
one for each reduction step (reduced nodes have been shaded). For
example, the question asked for node ttlr is “3 + 2 = 5?”.

The actual implementation of ARTs includes more detailed
information than described here. In particular, the execution tree
in Figure 1 (c) was generated from the graph shown in Figure 5.

4. Slicing the ART
Program slicing techniques have been based on tree-like data struc-
tures such as the Program Dependence Graphs [6]. In the context
of execution trees we want to define the slicing mechanism over
their underlying ART. This provides us with two advantages:

1. At this level we have much more information about the com-
putation which allows production of more precise slices. It is
straightforward to extract an execution tree from the sliced ART
[2].



2. When we define the slicing technique at the ART level, it
can be used for any other purpose (e.g. for proper program
slicing which has not been defined for these graphs, for program
specialisation, etc.).

Now, we define the notion of slice and some properties in the
context of ARTs.

DEFINITION 4.1 (slice). Let G be an ART. A slice of G is a set of
nodes {n1, . . . , nk} ⊆ Dom(G).

To compute slices w.r.t. a particular node of interest we need to
identify which nodes in the computation have influenced this node
of interest. We introduce the following definition:

DEFINITION 4.2 (Influence between Nodes). Given an ART G for
start term M and program P . Node n1 influences node n2, written
n1 �� n2 iff for all ARTs G′ for start term M and program P with
n2 ∈ G′ we have n1 ∈ G′.

Note that we have not fixed any evaluation order for construct-
ing ARTs, but functional programs are deterministic. Hence differ-
ent ARTs differ in which parts of the computation are how much
evaluated.

Influence is transitive and reflexive.

LEMMA 4.3 (Transitivity and Reflexivity��). Let G be an ART
for start term M and program P . For nodes n1, n2 and n3 in G:

• n1 �� n2 and n2 �� n3 implies n1 �� n3

• n1 �� n1

PROOF 4.4. We consider influence for a graph G with start term
M and program P . Let G′ be any ART for the same start term and
program such that n3 ∈ G′. With n2 �� n3 follows that node n2

is in G′. Then with n1 �� n2 follows that node n1 is in G′. So
according to Definition 4.2, n1 �� n3. Reflexivity trivially holds by
definition of influence.

We perform program slicing on the ART G without knowing the
program P whose computation is described by G. So we cannot
compute other ARTs G′ for start term M and program P ; further-
more, there is a large, possibly infinite number of such G′s. Our aim
is to find an algorithm that obtains a slice from the one given ART
G ensuring completeness (i.e., all nodes that influence the node of
interest belong to the slice). Therefore we have to approximate the
slice that influences a given node:

DEFINITION 4.5 (Weak Influence between Nodes). Given an ART
G. Reduction n1 weakly influences node n2, written n1 � n2 iff

1. n2 = n1o for some o ∈ {l, r, t}∗, or
2. there exist m, o ∈ {l, r, t}∗ such that m ∈ ancestors(n2),

n1 = mo and o does not start with t.

The idea is to include all prefixes of the given node and all nodes
that may be needed for the reduction step of an ancestor.

LEMMA 4.6 (Transitivity and Reflexivity of�). Let G be an ART
for start term M and program P . For nodes n1, n2 and n3 in G:

• n1 � n2 and n2 � n3 implies n1 � n3

• n1 � n1

PROOF 4.7. Reflexivity is trivial. For transitivity let n1 � n2

and n2 � n3. We perform case analysis according to the two
conditions of Definition 4.5:

• n2 = n1o1 and n3 = n2o2. Then n3 = n1o1o2, so n1 � n3.
• n2 = n1o1 and n2 = mo2 with m ∈ ancestors(n3). Either

m = n1p, then n1pp′ = n3 and thus n1 � n3. Or n1 = mp.

Then n2 = mpo1. Because o2 does not start with t, p cannot
start with t. So n1 � n3.

• n1 = mo1 where m ∈ ancestors(n2) and n3 = n2o2.
Because ancestors(n2) ⊆ ancestors(n3), we have m ∈
ancestors(n3). So n1 � n3.

• n1 = m1o1 where m1 ∈ ancestors(n2) and n2 = m2o2

where m2 ∈ ancestors(n3). So m1o
′ = n2 = m2o2. Either

m2 = m1o, then m1 ∈ ancestors(n3), so n1 � n3. Or m1 =
m2o. Because o2 does not start with t, also o does not start with
t. Furthermore, n1 = m2oo1 and m2 ∈ ancestors(n3). So
n1 � n3.

DEFINITION 4.8 (Slice of Influence). Given an ART G and a node
n ∈ G the slice of G w.r.t. node n is slice(G, n) = {m ∈ G | m�
n}.

PROPOSITION 4.9 (Slice of Influence).
{(m,G(m)) | m ∈ slice(G, n)} is an ART for the same start term
and program as G.

PROOF 4.10. According to the subsequent lemmas slice(G, n) is
prefix-closed and for every node nt ∈ Dom({(m,G(m)) | m ∈
slice(G, n)}), the node n represents the redex and node nt approx-
imates the reduct of the reduction step n to nt.

LEMMA 4.11 (Prefix-closed). Let G be an ART with n ∈ G. Then
slice(G, n) is prefix-closed.

PROOF 4.12. Let us assume that mo ∈ slice(G, n), i.e., mo� n.
Because m is a prefix of mo, it follows with the first condition in
Definition 4.5 that m � mo. Then, by Lemma 4.6, m � n. So
m ∈ slice(G, n).

LEMMA 4.13 (Reductions in Slice). Let G be an ART with n ∈
G. For any reduction step m to mt in {(m,G(m)) | m ∈
slice(G, n)}, node m represents the same redex and node mt ap-
proximates the same reduct as in G.

PROOF 4.14. We show that all relevant nodes exist unchanged
in {(m,G(m)) | m ∈ slice(G, n)}: From the second part of
Definition 4.5 follows that all nodes reachable from m in G are
also in slice(G, n). The fact that mt ∈ slice(G, n) suffices already
for mt to approximate the reduct; because {(m,G(m)) | m ∈
slice(G, n)} is a subset of G it must be the same reduct.

Weak influence approximates influence:

PROPOSITION 4.15 (Influence between Nodes).
Let G be an ART with n ∈ G. Then slice(G, n) ⊇ {m ∈ G | m��
n}.

PROOF 4.16. We prove that m 	� n implies m 	�� n. According
to Proposition 4.9 slice(G, n) is an ART for the same start term
and program as G. From m 	� n follows that m /∈ slice(G, n).
However, n ∈ slice(G, n). Hence according to the definition of
influence m 	�� n.

So we will compute slices of an ART G that weakly influence a
node n.

5. Combining algorithmic debugging and
program slicing

The combination of algorithmic debugging and program slicing can
lead to a much more accurate debugging session. An algorithmic
debugger can interpret information from the programmer about
the correctness of different parts of equations, and, by means of
a program slicer, use this information to slice execution trees,
thus reducing the number of questions needed to find a bug. In



this section, we show how program slicing can be combined with
algorithmic debugging.

5.1 The Slicing Criterion

To define the slicing technique we need to define first a slicing
criterion in this context which specifies the information provided by
the programmer. During algorithmic debugging, the programmer
is prompted and asked about the correctness of some series of
equations such as the following:

f1 v1
1 . . . v1

i = val1
f2 v2

1 . . . v2
j = val2

. . .
fn vn

1 . . . vn
k = valn

Then, the programmer determines for each equation whether it
is correct or wrong. In particular, when the programmer identifies
a wrong (sub)expression inside an equation they may produce a
slice of the execution tree w.r.t. this wrong expression. Therefore,
from the point of view of the programmer, a slicing criterion is a
wrong (sub)expression: they should be able to specify (i.e. mark)
which parts of the equations shown during algorithmic debugging
are wrong. However, from the point of view of the debugger, the
internal representation of the execution tree is an ART and thus
a slicing criterion should be a pair of nodes 〈m, n〉 in the ART
denoting where the slice starts (m) and where it ends (n).

To automatically produce a slicing criterion from the expression
marked by the programmer, we use slicing patterns. The domain
Pat of slicing patterns is defined as follows:

π ∈ Pat ::= ⊥ | � | π1π2

where ⊥ denotes a subexpression that is irrelevant and � a relevant
subexpression.

Note that a (partially or completely evaluated) most evaluated
form is an instance of a slicing pattern where atoms have been
replaced by ⊥ and �. Patterns are used to distinguish between
correct and wrong parts of equations, and hence finding the nodes
of the ART which could be the cause of the bug. For instance,
once the programmer has selected some (wrong) subexpression, the
system automatically produces a pattern from the whole expression
where the subexpression marked by the programmer have been
replaced by �, and the rest of subexpressions have been replaced
by ⊥. Because algorithmic debugging finds a single bug at a time,
we only consider a single expression marked in π; different wrong
expressions could be produced by different bugs.

EXAMPLE 5.1. Consider the following equation from the execu-
tion tree of Figure 1 (c): computs 3 = (9,9,8)

If the user marks 8 as wrong, the pattern generated for the ex-
pression (9,9,8), internally represented as (((T·9)·9)·8), would
be (⊥·�), where T is the tuple constructor.

As shown in the previous example, the pattern allows to discard
those subexpressions which are correct. With the information pro-
vided by the pattern it is easy to find the nodes in the ART which are
associated with wrong expressions. The following function iden-
tifies the node in the ART associated with the wrong expression
marked by the programmer:

patNodes(G, π, n) =�������
������

{} if π = ⊥
patNodes(G, π, nt) if nt ∈ G and π 	= ⊥
patNodes(G, π, m) if nt 	∈ G, G(n) = m
{n} if nt 	∈ G, G(n) 	= m and π = �
patNodes(G, π1, n1)∪ if nt 	∈ G, G(n) = n1 · n2

patNodes(G, π2, n2) and π = π1 · π2

Given an ART G, a pattern π for an expression M and a node
n such that mef (G, n) = M , patNodes(G, π, n) finds in the ART
the node associated with the wrong expression specified in π. Then,
the slicer produces a slice for this node which contains all those
nodes in G that could influence the wrong expression.

For instance, given the equation foo M = N , the programmer
should be able to specify that they want to produce a slice from
either foo, some subexpression of M or some subexpression of
N . In consequence, we distinguish between three possible ways of
defining a slicing criterion:

• The programmer marks a subexpression of N and the asso-
ciated pattern π is generated; then, the system computes the
tuple 〈m, n〉 where {n} = patNodes(G, π,m) such that
mef (G, left(m))mef (G, right(m)) = foo M and, in con-
sequence, m must be a reduced node.

• The programmer marks a subexpression of M and the as-
sociated pattern π is generated; then, the system computes
the tuple 〈ε, n〉 where {n} = patNodes(G, π, m) such that
mef (G, m) = M is the second argument of the application
foo M .

• The programmer marks the function name foo, and the system
produces a tuple 〈ε, n〉 where mef (G, n) = foo is the first
argument of the application foo M .

We need to distinguish between errors in the right hand side
of an equation and errors in the left hand side because the slices
for them are essentially different. In the former case, we only care
about new nodes, because we trust the arguments of the function
call in the left hand side of the equation and, in consequence, all
the nodes which were computed before this function call could
not cause the bug; but, in the later case, the error could be in
any previous node that could have influenced (rather than had
influenced) the value of the incorrect argument or function name.

DEFINITION 5.2 (slicing criterion).
Let G be an ART. A slicing criterion for G is a tuple 〈m,n〉; such
that m, n ∈ G and n = mo, where o ∈ {l, r, t}∗.

A slicing criterion points out two nodes in the graph. These nodes
delimit the area of the graph where the bug must be. The objective
of the slicer is to find these nodes and collect all the nodes which
are weakly influenced by the first node and that weakly influence
the second node. This kind of slice is known in the literature as a
chop [8]:

DEFINITION 5.3 (Chop of Influence).
Let G be an ART and 〈m,n〉 a slicing criterion for G. The slice (or
chop) S of G w.r.t. 〈m, n〉 is slice(G, m, n) = {n′ ∈ G | m � n′

and n′
� n}.

Obviously slice(G, n) = slice(G, ε, n).

5.2 The Slicing Algorithm

Figure 3 shows the formal definition of the slicing algorithm for
ARTs. For the sake of convenience, we give in this figure two
versions of the algorithm. On the one hand, this algorithm is able
to compute a slice from an ART. On the other hand, we present
a conveniently modified version which only computes those nodes
that are useful during algorithmic debugging. We first describe the
algorithm to slice ARTs (for the time being the reader can ignore
the underlining):

The function collect computes the slice slice(G, m, n) back-
wards from n to m. It collects all the nodes for which m is a prefix,
and that belong to one of the following sets:

• The nodes which are in the path from m to n



collect(G, m, n) =

����
���

path(G, m, n) if parent(m) = parent(n)
or if parent(m) and parent(n) are undefined

{p} ∪ collect(G, m, p) ∪ subnodes(G, p) otherwise, where parent(n) = p
∪ path(G, pt, n)

subnodes(G, n) =

�����
����

subn(G, m) ∪ subn(G, o) if G(n) = m · o, m = nl and o = nr

subn(G, m) if G(n) = m · o, m = nl and o 	= nr

subn(G, o) if G(n) = m · o, m 	= nl and o = nr

{} otherwise

subn(G, n) =

�
{n} ∪ subnodes(G, n) ∪ subn(G, nt) if nt ∈ G
{n} ∪ subnodes(G, n) if nt 	∈ G

path(G, n, n′) =

�
{n} if n = n′

{n′} ∪ path(G, n, m) if n′ = mi, m is a sequence of letters and i is a letter

Figure 3. Function collect to slice ARTs

• The ancestors of n

• All the nodes which completely evaluated the arguments of the
ancestors of n (we call such set of nodes the subnodes).

The function collect proceeds by identifying the parent of the
incorrect node (i.e., the function that introduced it) and its subn-
odes; then, it recursively collects all the nodes which could influ-
ence the parent (all its ancestors). Functions subnodes and subn
are used to compute all those nodes which completely evaluated
the arguments of a given application node n. Finally, function path
computes the path between two given nodes.

To the best of our knowledge, the algorithm presented in Figure
3 is the first program slicing technique for ARTs. However, the
slices it produces contain nodes which are useless for algorithmic
debugging. In algorithmic debugging we are only interested in
reductions, i.e., reduced nodes, because they are the only ones
which yield questions during the algorithmic debugging process
[2]. For this reason we also introduce a slightly modified version
which only computes those nodes from the ART which are needed
to produce the execution trees used during algorithmic debugging.

Firstly, only reduced nodes must be computed, thus the under-
lined expressions in Figure 3 should be omitted from the algorithm.
And secondly, we must ensure that the produced slice is not empty.
This is ensured by the fact that the slicing criterion defined for al-
gorithmic debugging always takes a reduced node as the starting
point. Therefore, the slice is never empty, because at least the (re-
duced) node associated with the left hand side of the wrong equa-
tion is included in the slice.

5.3 Completeness of the Slicing Algorithm

The following result states the completeness of the slicing algo-
rithm:

THEOREM 5.4 (completeness). Given an ART G and a slicing
criterion 〈m, n〉 for G, collect(G, m, n) = slice(G, m, n).

PROOF 5.5. We prove the theorem by showing that:

1. slice(G, m, n) ⊆ collect(G, m, n) and
2. collect(G, m, n) ⊆ slice(G, m, n)

We consider two possible cases according to collect ’s defi-
nition. Let us assume first that either parent(m) = parent(n) or

parent(m) and parent(n) are undefined. In this case, collect(G, m, n) =
path(G, m, n), thus it only collects (first rule) the nodes which are
in the path from m to n.

Now, we prove that slice(G, m, n) = path(G, m,n). Because
m and n have the same parent, and m is a prefix of n (by Definition
5.2), we know that n = mo where o ∈ {l, r}∗. Then, by Definitions
4.5 and 5.3 only the prefixes of n with m as prefix belong to
slice(G, m,n). These nodes form the path between m and n. Then,
slice(G, m,n) = path(G, m,n) = collect(G, m,n). Therefore,
in this case both claims hold.

If, on the contrary, parent(m) 	= parent(n) = p or parent(m)
is undefined and parent(n) = p, rule 2 from collect is ap-
plied. In this case, all the nodes that belong to the set S =
{p} ∪ collect(G, m, p) ∪ subnodes(G, p) ∪ path(G, pt, n) are
collected.

We prove the first claim by contradiction assuming that ∃n′ ∈
slice(G, m,n) and n′ 	∈ S . Because n′ 	∈ S , we know that n′ is
not an ancestor of n nor a subnode of an ancestor of n. Thus, by
Definition 4.5, n′ must be a prefix of n. Moreover, we know that n′

is not in the path between m and n, thus it must be a prefix of both
n and m. But this is a contradiction w.r.t. the definition of chop
(Definition 5.3), because m� n′ and thus n′ cannot be a prefix of
m. Then, slice(G, m, n) ⊆ collect(G, m,n)

In order to prove the second claim, we assume that ∃n′ ∈ S and
n′ 	∈ slice(G, m, n). Then, either p or a node in collect(G, m, p),
subnodes(G, p) or path(G, pt, n) does not belong to slice(G, m,n).
First, we know that m is a prefix of n in the initial call (by Definition
5.2) and in all the recursive calls by rule 2 of collect(G, m,n));
and parent(m) 	= parent(n) = p thus n = mo being o a se-
quence of letters containing at least one t. Then, we know that
m = p or m is a prefix of p. Therefore p ∈ slice(G, m, n) and
n′ 	= p. In addition, by rule 2 of Definition 4.5, we know that
the subnodes of p weakly influence n, and they are weakly influ-
enced by m because m is their prefix. Hence subnodes(G, p) ⊆
slice(G, m,n) and thus n′ 	∈ subnodes(G, p). Moreover, be-
cause m is a prefix of n and by rule 1 of Definition 4.5 we have
that ∀m′ ∈ path(G, m, n), m � m′

� n and consequently
path(G, m, n) ⊆ slice(G, m,n), thus n′ 	= m′. Then, n′ does
not belong to collect(G, m, p), but this is a contradiction by the
inductive hypothesis on the length of p.



Starting Debugging Session...

(1) main = False? NO
(2) sqrtest [1,2] = False? NO
(3) test (9,9,8) = False? YES (The user selects "8")
(4) computs 3 = (9,9,8)? NO
(5) comput3 3 = 8? NO
(6) listsum [6,2] = 8? YES
(7) partialsums 3 = [6,2]? NO (The user selects "2")
(8) sum2 3 = 2? NO
(9) decr 3 = 2? YES

Bug found in rule:
sum2 x = div (x + (decr x)) 2

Figure 4. Debugging session

As discussed before, we cannot guarantee minimality (i.e., en-
sure that only nodes that influence the slicing criterion are col-
lected) w.r.t. Definition 4.2, but completeness. This loss of preci-
sion is unavoidable because during algorithmic debugging we have
available only one ART (the wrong computation). However, the al-
gorithm in Figure 3 is minimal w.r.t. Definition 4.5 (i.e., ensure that
only nodes that weakly influence the slicing criterion are collected).
However, even if the underlying ART corresponds to a lazy eval-
uation language (this is the case, for instance, of a debugging ses-
sion in Haskell) the slice produced is not minimal w.r.t. Definition
4.2. This phenomenon is due to sharing: A previously computed
reduced node can appear as argument in a non-strict position of a
function call. In consequence, only when the slicing criterion starts
at the beginning of the computation (classical backward slicing)
the slice produced is minimal, and thus it contains all and only the
nodes that could influence the slicing criterion.

COROLLARY 5.6 (completeness of execution trees).
Given an execution tree E , an equation l = r ∈ E and an expres-
sion e that is a subexpression of l or r, marked as wrong during
an algorithmic debugging session, then, a slice of E produced by
function slice w.r.t. e contains the (buggy) nodes which caused e.

PROOF 5.7. Let G be the ART associated with E , and let 〈m,n〉
be the slicing criterion produced for the expression e. Let E ′ be
the slice of E which contains the (buggy) nodes which caused e
and let S be the ART associated to E ′. Then, the node associated
with e is n′ ∈ G | mef (G, n′) = e, and the node associated
with l is n′′ ∈ G | mef (G, n′′) = l. First, by Theorem 5.4, S is
a chop of G w.r.t. 〈n′′, n′〉, and we know that only the nodes that
influenced n′ could produce the bug in e; then, we want to prove
that ∀v ∈ G | v �� n′, v ∈ S .

If e ⊆ l then m = t. If e ⊆ r then m = n′′ and by Proposition
1 in [12] the bug must be in the execution subtree that has l = r as
root. Therefore, the buggy node which caused e must be v = n′′o
for any sequence o. Because S is a chop of G w.r.t. 〈n′′, n′〉, in both
cases, we have that ∀v′ ∈ G | v′ = n′′o and v′

� n′, v′ ∈ S; and
hence, by Proposition 4.15 if v �� n′ then v ∈ S .

6. The technique in practice
In this section we show an example of how to integrate our tech-
nique with an algorithmic debugger. Consider again the example
program in Figure 1 (a) and its associated execution tree in Figure
1 (c). The debugging session when using our technique is depicted
in Figure 4.

This debugging session is very similar to the one in Figure 1
(b). There are only two differences: The programmer is allowed
to provide the system with more information and they do that in
questions ‘3’ and ‘7’; and there are less questions to answer, the
latter being the consequence of the former.

Internally, when the programmer selects an expression, they are
indirectly defining a slicing criterion. Then, the system uses this
slicing criterion to slice the execution tree, thus reducing the num-
ber of questions. In the example, when the programmer selected the
expression “8”3, the system automatically removed from the exe-
cution tree eleven possible questions, all the subtrees of the equa-
tions “comput1 3 = 9” and “comput2 3 = 9” (see dark nodes
on the left of Figure 1 (c)). Similarly, when the programmer se-
lected the expression “2”, the system automatically removed from
the execution tree two possible questions, the subtree of the equa-
tion “sum1 3 = 6” (see dark nodes on the right of Figure 1 (c)).
Note that the slicing technique is completely transparent for the
user.

In general, the amount of information deleted from the tree is
directly related to the size of the data structures in the equations,
because when the programmer selects one subexpression, the com-
putation of the other subexpressions can be avoided. Another im-
portant advantage of combining program slicing and algorithmic
debugging is that it allows the programmer to guide the questions of
the algorithmic debugger. Traditionally, the programmer had to an-
swer the questions without taking part in the process. Thanks to the
slicing mechanism, the user can select which (sub)expressions they
want to inspect (i.e., because they are wrong or just suspicious),
thus guiding the algorithmic debugger and producing a sequence
of questions semantically related for the programmer.

For large computations a trace is huge. Hat stores it’s ART
on disk, so that the size of the ART is not limited by the size of
the main memory. The Mercury debugger materialises parts of the
execution tree at a time, by rerunning the computation. Because a
slice can be a large part of the ART, collecting all its nodes could
be very expensive for both implementation choices. However, for
directing the algorithmic debugging process we do not need all
nodes at once. We only have to determine them one at a time to
determine the next question. We are in a different situation when
we want to highlight in the program source the program slice
associated with the trace slice. Such an operation can take time
linear in the size of the trace and is thus unsuitable for an interactive
tool, as the source-based algorithmic debugger of Hat demonstrates
(see related work).

7. Related Work
The idea of improving algorithmic debugging by allowing the user
to provide specific information about the location of errors is not
new. In fact, it was introduced by Pereira almost two decades
ago [18]. The original work of Pereira defined—in the context of
Prolog—how an algorithmic debugger could take advantage of ad-
ditional information from the user in order to reduce the number
of questions. Surprisingly, posterior research in this subject practi-
cally ignored this work (6 cites in the CiteSeer [1] portal and only 4
cites in the ACM [5] portal). The first attempt to adapt the ideas of
Pereira to the imperative programming paradigm was [7] by Fritz-
son et al. In this work, the authors propose the use of program slic-
ing in order to reduce execution trees, thus reducing the number
of questions in algorithmic debugging. Dynamic program slicing
was just the technique that Pereira needed in his development, but
his work was done in 1986. Even though program slicing was pub-
lished in 1984 [23], dynamic program slicing was introduced only
in 1988 [10].

Although the use of program slicing in algorithmic debugging
was shown to be very useful, the technique by Fritzson et al. is
still limited, because the user is only allowed to specify which vari-

3 Note that, even when the equation is correct, the user can mark an expres-
sion as inadmissible, providing the system with useful information about
the bug.



ables have a wrong value, but they are not allowed to specify which
part of the value is wrong. This information would notably im-
prove the effectiveness of the technique. In addition, the authors
do not give details about the dynamic slicing algorithm used, so
it is not clear whether the variables selected by the user must be
output variables, because they only considered the use of program
slicing in wrong equations (the concept of inadmissibility was lost
[18]). Later the ideas introduced by Fritzson et al. have been applied
to the logic language paradigm [17]. In particular, Kókai et al. [9]
have defined the IDTS system which integrates algorithmic debug-
ging, testing and program slicing techniques in a single framework.
Our work can be seen as an adaptation of these ideas to the func-
tional paradigm. Functional programs impose different technical
challenges (i.e., generalised use of higher order functions, absence
of nondeterminism and unification) which implies the use of dif-
ferent formalisms compared to logic programs. For instance, while
ARTs directly represent the sequence of function unfoldings, which
allows to trace data flows, the slicing of Prolog proof trees requires
explicit annotation of the tree with information about the relations
between terms. These differences produce an essentially different
slicing process.

Recently, MacLarty et al. [11] have implemented an algorithmic
debugger for the functional logic language Mercury which allows
the user to specify which parts of an equation are wrong (including
subterms). In particular, they have defined a strategy called “Sub-
term Dependency Tracking” which, given a wrong term, finds the
‘origin’ of this subterm in the execution tree. This information is
used by the tool for determining which questions are more likely to
be wrong, thus improving the algorithmic debugging process. Al-
though this process can be considered as a kind of program slicing,
they haven’t defined it formally, and, for the case of wrong input ar-
guments, the method has only been proposed but not implemented
nor proved correct.

The source-based trace explorer of Hat [2] implements algo-
rithmic debugging and can display a simple program slice that con-
tains the bug location and that shrinks when more questions are an-
swered. However, the user cannot indicate wrong subexpressions
and the slice does not direct the algorithmic debugging process.

To the best of our knowledge, our technique is the first formal
approach that 1) is able to slice execution trees for either input
or output expressions, 2) copes with complete expressions and
subexpressions and 3) is proven complete. We consider functional
programs, a paradigm that completely lacked debugging techniques
combining algorithmic debugging and program slicing.

8. Conclusions
We have presented a technique to improve algorithmic debugging
by combining it with program slicing. Firstly, we have adapted
some program slicing concepts (and proven some of their proper-
ties) to the context of Augmented Redex Trails. Based on this adap-
tation we have introduced an algorithm to slice ARTs and proven its
completeness. The algorithm is generic enough to be used in differ-
ent program slicing based applications. We have slightly modified
the slicing algorithm for the case of algorithmic debugging in order
to optimise the number of nodes in slices so that only profitable
nodes to build execution trees are included in the slice. With the in-
formation provided by the user the introduced algorithm produces
a slice which only contains the relevant parts of the execution tree,
thus reducing the number of questions. However, this technique
could be further improved by providing not only the relevant nodes
from the execution tree, but also considering how relevant they are.
As future work, we plan to extend our technique in this direction.
We want to investigate the possibility of automatically generating
heuristics from a given slicing criterion based on the probability
of equations being wrong. These heuristics could help the algorith-

mic debugger to select the order of questions depending on which
of them are more likely to be wrong. We are currently working on
a prototype in Haskell [19], based on the Haskell tracer Hat [22]
(http://www.haskell.org/hat/).
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A. Augmented Redex Trail
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Figure 5. ART of the program in Figure 1 (a)
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