
Genetic Algorithms

M:anuel Alfonseca
I13M SofTec Lab

Paseol de la Castellana, 4

28046 Madrid
Spain

Abstract

Genetic algorithms, invented by J. II. I Iolkmd,
emulate biological evolution in the computer and try
to build programs that can adapt by themselves to
perform a given function. In some sense, they are ana-
logous to neural networks, but there are important
dflerences between them. This paper shows that
genetic algorithms are easy to program, test and
analyze by means of APL2 functions.

Introduction

The idea of emulating biological evolution to generate
a working computer program is not new in computer
science. There are references (see reference 1) as c}ld
as 1966 or more. The question is to make use of the
following mechanisms, already classic for biologists:

● Random change (variability)

Q Natural selection

In other words: given a population of similar but
slightly different entities, subject the whole population
to a “test of fitness” that will decide which elements
of the current population are better adapted to the
performance of a given piece of work (a computation
or whatever). Increase the probability y that these el[e-
ments will survive and reduce the probability for the
less adapted elements. Then ‘(reproduce” the mc~st
adapted elements, that is, obtain slightly moditkd
copies of them and have these copies replace an equal
number of the less adapted elements.

Genetic algorithms arc one of the main current
approaches to automatic computer learning. Theref-
ore, their range of applications overlaps that of other

Permhsion to copy without fee all or part of this material is grant(sd
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.
01991 ACM @89791.441.4/91/~8/~1 ,,,$1,50

learning systems, such as neural networks. Genetic
algorithms have been applied to game learning, senso-

ry-mo~or coordination of vid~o-cameras, simulation of
gas plpehne systems, Iearnmg multiplexer systems,
parallel semantic networks, calculation of primitive
recursive functions, and many others.

The current approach to genetic algorithms comes
from the work of .1.1-1, I Iolland and his team (see ref-
erences 2 to 8). In principle, their procedure can bc
expressed as a three layered system:

● A classifier system

● An award-punishment system

● A genetic algorithm

Classifier Systems

A classifier systcm is a rule-based production system.
It can be considered as a set of many interconnected
units called CLASS IFI13RS. F,ach classifier is a rule
and its only goal is to send a message (fire). Afl the
classifiers may fwe at given instants of time (synchro-
nous fwe).

The following figure represents the structure of a clas-
sifier system.

T
Input

7
output

APL Quote Quad 1 Manuel Alfonseca

http://crossmark.crossref.org/dialog/?doi=10.1145%2F114055.114056&domain=pdf&date_stamp=1991-07-01

The units at the top are the classifiers in the system.
Every classWler incorporates a rule of the form:

condition : message

where condition and message are two character strings
usually of the same length.

Classifiers are connectedto oneanother byrnean sofa
“message list” (the central rod in the figure). At a
given instant in time, a classifier compares the condi-
tion of its rule with the messages in the list. If one or
more messages fit the rule condition, the classifier is
ready to fire. Firing a classifier successful] y means
inserting the message part of its rule into the message
list.

Normal classi!3ers have an input and an output, both
of thetn connected to the message list. But a few
special units (indicated in the lower section of the
figure) have only their output m- their input connected
there, while the other comes from the environment.
They are called “input” and “output” units.

Binary logic is enough to represent messages.
However, in the case of conditions, ternary logic is
usually used, including a “don’t care” character. For
example, the following rule:

O1**11O : 1110001

can be fired by the following set of messages:

010011001011100110110 0111110

Multiple conditions may be accepted. In this case, the
joint condition is assumed to be the logical AND of
all of them. That is, there must be messages in the list
that fit with every sub-condition. Of course, different
sub-conditions may be satisfied by different messages,
An example is the following:

which means that this class~ler will be ready to f~e if
there are two messages in the list, one of which satis-
fies the condition 01 * * 110, and the other satisfies

*0000 10. Of course, depending on the sub-conditions,
the same message could satisfy more than one.

Messages stay in the list chming a single step in time.

It is possible to prove that classflcr systems are com-

putationally complete, the same as:

“ Turing machines

“ Digital computers

● Analog computers

“ Neural networks

This means that any algorithm whatever, that can be
solved by a computer, can also be solved by some
classifier system. Nothing is said, however, about per-
formance.

Award-Punishment System

A classifier system is a simple computational facility.
TO convert it into a learning system, some award-pun-
ishment system must bc added. The award-punishm-
ent system most commonly used in genetic
algorithms is the “bucket brigade” algorithm. Its aim
is to make sure that awards are given, not only to the
actual classifier who made the final desired output
available, but to all others that made it possible.

For instance: let us assume that the input unit put the
following message into the message list:

01010101

and that the following result message is desired:

00001111

Then, the following set of classifiers will generate the
desired result in four steps:

0“10101 : 11111000
**111~~* : 10101010
101O**** : 00000000
~~~~~*~~ : 00001111

The objective of the ‘(bucket brigade” algorithm is to
make sure that the efforts of all four classiilers are
recognized. It modifies the classifier system on which
it acts, in the following way:

●

✎

✎

●

The message list is assumed to have a limited
capacity, much smaller than the number of classi-
fiers in the systcm. If more classifiers are ready to
fire, not all of them witl be able to do it.

Each classifier is assigned a “strength”, usually an
integer.

A classifier may be ready to fire, because its con-
dition matches one of the messages in the list.
IIowever, this does not mean that firing will be
successful, for the capacity of the list may have
been exceeded. (There may be more classifiers
ready to fwe than the list capacity allows). In this
case, all classifiers ready to fire must “bid”. Only
those with the highest bid, will be able to put
their messages in the list. The final decision can
be deterministic, or probabilktic.

The bid II of a given classifier C is computed with
the following formula:

B(C)= a.s(C). Sp(C)

where

— a is a small constant

– s(C) is the current strength of the classifier C

– Sp(C) is a measure of the specitlcity of its
role, for example, the ratio of the number of
don’t care characters to the total number of
characters in the rule condition.

Genetic Algorithms 2 APL 91



In this way, the classifiers with maximum strength
and those with maximum specificity have a better
possibility of tiring than those with smaller
strength and those whose rule conditions are able
to fire almost always.

● When a classifier fires successfully, it pays the
amount of its bid to those classifiers that made it
possible, Its strength is reduced by the bid, and
the bid is distributed between all those classifiers
that in the preceding instant of time put a
message in the list that fitted with the rule condi-
tion of this classfler.

Genetic Algorithm

A genetic algorithm is a procedure that “reproduces”
the most adapted classifiers (those with the largest
strength) and generates new (slightly dflerent) chil-
dren that replace some of the less adapted classifiers in
the population and are tested for fitness in the same
way as their parents,

The genetic algorithm consists of the following steps:

●

●

●

●

●

Select pairs of classifiers from those with the
maximum strength. This selection is usually pro-
babilistic.

Reproduce these pairs, generating copies of them.

Modify the copies slightly by applying a ‘(genetic
operator”.

Select the classifiers to be replaced from those
with the minimum strength. This selection can
also be probabilistic.

Replace the selected classifiers by the new ones.

Different genetic operators can be used, alone, or in
combination. The most typical ones are:

● Mutation, that replaces one character in the rule
of the classifier by another character chosen in the
following way:

– If the mutation affects the rule condition, the
new character is selected randomly frotn the
Set ’01 +’.

– If the mutation affects the rule message, the
ncw character is selected randomly from the
set ‘01’.

● Crossover, that takes the two parents and recom-
bines their rules exchanging a randomly selected
set of characters between them. For instance: if
the parents are

~(j*~l* : 110110

1*0*11 : 001001

and the crossover occurs at the fourth character in
the rule, the resulting “offspring” will have the
rules:

00**11 : 001001

1*001* : 110110

“rhe application of genetic algorithms emulate the
action of evolution and make it possible the gener-
ation of new and possibly better classifiers. In thk
way, a classifier system that had gone into a dead end
by climbing a path to a sub-optitnal goal will some-
times be able to jump to a better solution by using
the newly generated classifiers.

APL2 Implementation

In the following examples, for simplicity, we will
include the restriction that the condition of every clas-
sifier is unique. Extension to multiple conditions
would be straightforward, anyway.

Classifier systems are easily represented in APL2.
Each classfler can be represented as a two element
vector, the first element of which is the condition,
while the second is the response. Each of these ele-
ments will be a vector of characters, selected from the
set ‘O1*’ in the first case, and frotn the set ‘O1‘ in the
second.

The whole c]assitier system will be a vector of classi-
fiers, defined as above.

The strength of the classifiers, needed to apply a
bucket brigade algorithm, can either be included as a
thmd element of each classifier, or be maintained in a
separate variable. We will choose the second alterna-
tive in these examples.

The APL2 function GENETIC generates a classifier
system of N elements, where M is the length of both
condition and output for each classtiler. The global
variable CLASS will contain the classifiers, while the

global variable ST will contain the corresponding
initial strengths. The rules are random, and the
strengths are initialed to 100.

The APL2 function ACTION embodies the three
layered algorithm. It has two arguments: the input to
be applied to the classifier system and the goal to be
generated.

The f~st section (resolution of the classifier system)
comprises lines 2 to 8. They work in the following
way:

● Lhe 3 generates an empty message list. The list is
a matrix of two rows. The first row contains the

APL Quote Quad Manuel Alfonseca



message and the second identifies its sender. ‘l’his
information will be used by the bucket brigade
algorithm, to provide payment to the classifiers

that have produced a successful message (a
message that is the goal or allowed another classi-
fier to fire).

. Line 5 inserts the input in the message list. Since
thk function works in 1-origin, O can be used to
identify the input element of the class~ler system.

o Line 6 displays the current state of the message
list.

● Line 7 identfies those classifiers whose conditions
are satisfied by the messages in the message list.
Variable A is a Iloolcan vector where the ‘ones’
correspond to them.

● Line 8 displays the numbers of the classifiers that
are ready to fue.

r -1
[01 N GENETIC M
[11 CLASS+ (C.” C[21’01* ’[?(N, M)P3] ),”” C””c[21’ OI’[?(N, ~)P21

[01 GOAL ACTION IN PUT; A ;LIST; B ;1
[11 &(l=~GOAL )/’ GOAL+ CGOAL’
[21 LO:I+O
[31 LIST+2 Op o

[41 L:+(l’@N<I+I+l)/L3

[51 LIST+ LIST, { cINPUT ) , 0
[63 ‘LIST’ LIST
[71 +-(()=+/A+vfLIsl’~~; JCOMPARE+””CL/4/5’S)/L3

[81 ‘WOULD FIRE: ‘( A/~p CLASS)
L91 Q BUCKET ALGORITHM
[101 B+o.125x4xST Q Get bids
[111 AIMAXL~~Bl+O Q Select maximum bidders
[121 ‘FIRE: ‘ (A/ IPcLAss)

[133 L03:STLA/lPSTl+~TLAllpSTl -AIB R Decrease strength of winners
[141 (A/B)ADJSE~DER cLllLISTLl;3COMPARE(A/1’””CLASS )
[151 LIST+AI(23 cLAss), lo.511pcLAss
[161 +(Nv/A+GOAL COMPARE LISTll;])/L
[171 ‘Goal found in listt
[18] ST[A/LIST[2;]]+l.25XST[A/LIST[ 2;11
[191 +L
L201 n GENETIC ALGORITHM
[211 L3:B~(?,5T)[4?4r L0.lxpCLASSl
[221 A+(iST)[4?4r L0.lxPCLASS]
[231 ‘Crossover applied to classifiers ‘ ,(T2~B)
[24] ‘ (’, (TCL”4SS[2+BI ),’)’
[25] ‘ substituting classifiers ‘ ,(32+A)
[26] ‘ to become ‘ ,TCLASSL 2+A3+CROSSOVER CLASSL24B]
[271 ‘Mutation applied to classifiers ‘ ,(~2~B)
[281 ‘ substituting classifiers ‘ ,(~2YA)
[29] ‘ (’, (3CLASS[2+BI ),’)’
[301 ‘ to become ‘ ,VCLASSE 2+AI+MUTATION cLAss12+Bl
[311 STIAl~100
[32] +LO

/

Genetic Algorithms 4 APL 91



LOI B ADJSENDER X;N
[13 li?+x/LIsT~2;]

[21 +(06fl)/o

[31 STINl+-S’T[lVl+B+t/X
[51 ‘Classifier(s) ‘ ,(TN),’ strength increased by ‘,FB$+/X

[01 Z+x CO~PARE Y

[11 n X is a list, Y is a seteaof conditions
[21 z-+A/”” ~* ~=(xo.#Y)COMPRESS ((pX],pY)PY

L J

[01 Z~X COMPRESS Y
[11 z+-x/y

[01 Z~CROSSOVER X;N;R;A;B

[11 R~p++X
[21 A~E+X

[31 B~E2>X

[&l N~?pA

[51 z+(c[2-J( 2,R)p(N+A),N+B )( c[21(2,R )p(N+B),iv+A)

[01 Z-eMUTATION X;N;A
[11 A+-?2p2
[21 N4?2pp4+X
[31 2+X
[4] (N[l]=JA[ l]~+Z)~’01*’[?A[ 11=’3 21
[51 (N[2]3A[21323Z )~’01*’[?A[ 2]~3 21

‘Ihe second section (award-punishment system) is
made oflines9to 19.

●

✎

✎

●

●

I.ine 1() computes the bids of the ready-to-fire
classifiers as one eighth of their respective
strengths. In this example, specificity of the rules
has not been considered, but the line could be
easily modifiedto account for it.

Line 11 selects the maximum bidders. The global
variable MAXLis supposedto define the capacity
of the message list (the maximum number of
simultaneous messages it may contain, apart from
the input). This nutnber should be much smaller
than the total number of classifiers in the system.

Lme 12 lists the actual classifiers that were able to
fire inthls stepof the computation.

Line 13 decreases the strength of the winners by
their respective bids.

Line 14 identifies the senders of the messages that
made it possible for the winners to fire and
adjusts their strengths accordingly.

.

.

●

✎

●

Line 15 puts the messages of the winners in the
message list.

Line 16 finds out whether thegoal isin the list. If
not, controlis given to line 4forancw time step.

Line 17 indicates that thegoal was found.

L,ine 18 awards the classifier that has generated
the goal, by increasing its strength.

Line 19returns toline4for anew time step.

The third section (the genetic algorithm) is made of
lines 20 to 32. The genetic algorithm receives control
once in a while. ‘Ihc global variable 1TGF3N defines

the number of time steps to simulate before the exe-
cution of the classifier system is interrupted to
perform a genetic operation onthc classifiers. I.ines 2
and 4 control this interruption procedure.

The genetic algorithm also receives control if the
message list becomes crnpty at anytime.

● Line 21 selects randomly four classifiers from
those in the upper 10 percent of the population

APL Quote Quad 5 Manuel Alfonseca



●

●

●

✎

✎

(accordingt ot heirs trengths). These will be the
ones chosen for reproduction. The first pair is
selected for crossover, the second, for mutation.

Lh]e 22 selects randomly four classifiers from
those in the lower 10 percent of the population
(according to their strengths). Thesewillbethe
ones chosen fbr elitnination.

Of course, other selection strategies may be used
here. It would be enoughto rcplacelincs21 and
22 accordingly.

Lines 23 to 26 perform crossover on the first pair
of chosen classifiers, substitute the first pair of
eliminated classi!lers and inform the user.

I.ines 27 to 30 perform mutation on the second

pair of chosen classifiers, substitute the seconcl
pair of eliminated classifiers and inform the user.

Line 31 initializes the strength of the new classi-
fiers to 100 (the initiaJ value),

Finally, line 32 returns control to the first section
of the” algorithm.

Auxiliary functions used by the preceding program are
listed above.

Conclusion

The paper demonstrates successfully the ease with
which genetic algorithms can be simulated in APL2.
It will be observed that the number of loops is
reduced to the minimum (one): the inescapable time
step loop. Different genetic algorithm procedures may
be tested easily by changing a single line of code.

This paper does not contain original work, except in
the language chosen for the implementation of
Holland’s algorithms, as they are described in refer-
ence 7.

1.

2.

3.

4.

5.

6.

7.

8.

References

L.J.J70gel, A.J.Owens, M..1.Walsh, Artijcial lnfeL
Iigence dwough Simulated Evolution. .John Wiley
and Sons, Inc., New York (1966).

.J.11.l Iolland, Adaptation in Natural d Artificial
Systems IJniversity of Michigan Press ( 1975).

J,l 1.1Iolland, Escaping hrit tleness: The possibilities
of General-Purpose I.earning Algorithms Applied
to Parallel Rule- llased Systems. In Machine
Learning: An AI Approach, Vol. 2. Bd:
R. S. Michalski, .J.G.CarboneLJ, T.M.Mitchell.

Morgan Kaufman Inc (1986).

J..J.Grefenstette (cd), Proceedings of the First
[ntnal. Conference on Genetic A [gorithms and
Their Applications, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1985.

J,.J.(lrefenstette (cd), Proceedings of the Second
Inlnal. Conference on Genetic A Igorithms and
7tleir Applicationsj 1,awrence 13rlbaum Associates,
Hillsdale, N.J, 1987.

J..Davis (cd), Genetic A lgorilhms and Simulated
A nnwding Morgan Kaufmann Publishers, 1os
Altos, Ca., 1987.

L.11. Jkmkcr, D.l?.(;oldbcrg, J. H.Holland, Cla~si-
fier Systems and Genetic A /gorithms. The tJniver-
sity of Michigan, Cognitive Science and Machine

Intelligence Laboratory, Technical Repo~ 8,
1987,

D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison
Wesley Publishing CO., Inc., Reading, Mass.,
1989.

Genetic Algorithms 6 APL 91


