
Designing a Kanban
Using the Server Network

A. Bouchentouf-ldriss
Reuters Information Services – Boston

Wentworth institute of Technology — Boston

USA
Telephone: 6173674147
Facsimile: 6173674108
E-mail: abdou@ipsaint

Abstract

The absence of CASE tools for software-

development of distributed cooperative systems is

the major roadblock to effective use of

concurrent processing. This paper presents a

manufacturing engineering application, a

concurrent cooperative processing model of this

application, and the Server Network Generator

(SNG) CASE tool that was used to design and

implement it as a distributed software system in

APL2, using inter-user shared variables. The

application is a Japanese manufacturing control

strategy called the “Kanban System.”

Introduction

The recent availability of powerful distributed

cooperative-processing hardware platforms

presents an opportunity ~ if their power can

be harnessed by the creation of suitable CASE

tools. The development of distributed concurrent
software systems requires a different sort of

CASE tool than those designed for standard

sequential von Neumann software development.

Issues of resource distribution, asynchronous

events, concurrency, data flow, bottlenecks, load

leveling, and distributed versioning must be

addressed. APL2’s inter-user shared variables

have prove- to be an effective inter-

communication platform upon which to develop

non-distributed versions of these CASE tools [1].

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.
~ 199 t ACM 0-89791-441 -4/91 /0008/0062 ...$1 .50

Manufacturing System
Generator (SNG) CASE TOOI

L. Zeidner
Manufacturing Engineering Department

E-mail:

Boston University

USA
Telephone: 6173533291
Facsimile: 6173536322

zeidnerOAbumfga@ buacca,bu,edu

Recent efforts have created a distributed APL2

shared-variable platform, described in a

companion paper in these proceedings [2]. The

result is an effective intercommunication

platform upon which to develop distributed

versions of these CASE tools.

This paper addresses a specific manufacturing

engineering application, and then uses it to

illustrate the software-development requirements

of distributed cooperative-processing systems.

The application is a manufacturing production

strategy called the Kanban system, developed by

Toyota Motor Company [3,4]. In a Just-In-Time

(JIT) environment, parts are produced at the

necessary time, quantity and quality to satisfy

market demand, while stock inventory is kept to

a minimum. The Kanban system has been a

major vehicle for Toyota’s drive toward Total-

Quality-Control (TQC). A server network

implementation of the Kanban system is

presented. This illustrates the functional

decomposition process that is performed
graphically, in the application context, using the

SNG.

The Kanban System

In the Kanban system, production is performed

at work centers. Standardized carts transport
all work-in-progress (WIP) between work centers.

Within the factory, the raw materials, semi-
finished goods, and finished products, are each

considered as separate part types. A “kanban” is

a card that is attached to a cart which contains

a fixed number of parts, all of one particular

part type. There are two types of kanbans,

“conveyance” and “production.”

Designing a Kanban 62 APL 91

http://crossmark.crossref.org/dialog/?doi=10.1145%2F114055.114062&domain=pdf&date_stamp=1991-07-01

Figure 1: Manufacturing System Layout

Type of part in cart

I_.2_-lL c+-—Typeofkanaban
—1

F]gure 2: Schematic representation of a cart with a kanban

A factory that uses the Kanban system is

depicted in figure 1. This factory is composed
Ofi

machining center 1, which manufactures semi-

finished parts,

- assembly center 2 which assembles these semif-
inished parts into finished products, and

- a material handler which maneuvers between

these two centers.

Figure 2 shows the schematic representation of a

cart. The cart holds a fixed quantity of a

particular part type (eg. semi-finished parts), and

either a conveyance or production kanban.

Figures 3a-f illustrate the kanban system in

operation. Initially (fig. 3a), machining center 1

contains one cart of raw materials, and two

carts of semi-finished parts. Assembly center 2
contains two carts of semi-finished parts. There

is one production kanban in assembly center 2’s

kanban storage area. This production kanban

triggers assembly center 2 to begin production.

STEP 1: Assembly center 2 uses one cart of

semi-finished parts for production. It uses the
process information listed on the production

kanban, in its kanban area, to assemble the
parts. Before processing the first semi-finished

part, the operator detaches the conveyance
kanban from the cart containing the semi-
finished parts, and stores it in the kanban
storage area (fig. 3b).

STEP 2: The material handler visits center 2, and
finds a conveyance kanban in the kanban storage
area. The material handler picks up that kanban
which contains all the information describing
which part type to convey, where it is located,
and to which work center it will go. The

material handler heads back to center 1 which

produces semi-finished parts (fig. 3c).

STEP 3: At center 1, the material handler takes

one cart full of semi-finished parts. This cart
has a production kanban attached to it. The

material handler removes the production kanban

from the cart and places it in center 1‘s kanban

storage area. The material handler then puts

the conveyance kanban in the cart, and heads

back to center 2 (fig 3d).

APL Quote Quad 63 Bouchentouf-ldriss, Zeidner

wc

wD

w

P

I-21!I
P

w c

Figure 3X The initial state of the manufacturing system

+-PP

w

c
w

P

Ewc

i
I

i

w c~

Figure 3b: The

Sp—
IEPP

I
manufacturing system after STEP 1

cd-- ‘n
.-
P“

E-.H2-, ,

Figure 3c: The manufacturing system after STEP 2

wP

P

Figure 3d: The manufacturing system after STEP 3

I

i

l“,
1- —
$

7
1 1’ II-PPv,..0
;---

Designing a Kanban APL 91

--

Figure 3e: The manufacturing system during STEP 4

I

“Ella-’c

wc H’P

Figure 3fi The manufacturing system after STEP 4

STEP 4: Center 1 checks its kanban storage

area, and finds one production kanban. The
operator uses the process information listed on
this kanban, and starts production using a cart
of raw materials. The operator places the
conveyance kanban, which is attached to the raw
materials cart, in the kanban storage area. The
operator starts production, and when a full cart
of semi-finished parts has been processed, he
attaches the production kanban to it, and moves
it to the stock area (fig. 3e-f).

The Kanban system links the throughput of

center 1 to the production needs of center 2.

This process, when duplicated across a number of

machining center, effectively creates a
production chaining mechanism; the Kanban

system provides a very powerful tool for
controlling the maximum amount of WIP on the

manufacturing floor, No production occurs
without a production kanban, and no stock

quantity leaves the stock area without a
conveyance kanban. Further, the existence of 2

conveyance kanbans and 3 production kanbans of

some part-type means that a maximum of 5 carts

of such part-type may exist in inventory. The

APL Quote Quad 65

number of kanbans of each type is varied to

control the inventory level.

The Server Network Generator (SNG) CASE Tool
Highlights:

The SNG is a CASE tool for graphically
decomposing a large problem into a network of
inter-communicating functional components that
can operate concurrently. These components are
implemented as software processes [1,2]. The
cooperative network of these inter-
communicating software processes is distributed
across a computing network.

This approach to CASE separates the overall

software-development problem into its two
elements of complexity the top-down
decomposition into functional components and the

bottom-up software development of each

component. The decomposition is expressed

graphically using the SNG, while the bottom-up

development of each component’s software is a

more traditional application for CASE, and is

performed in APL2.

Bouchentouf-ldriss, Zeidner

Each functional component is called a “server”

and occupies a virtual machine, containing its

own application software and application-

independent communication software. Functional

decomposition of the application system is not

constrained by the SNG; the software designer is

free to graphically specify virtually any

decomposition, simply by sketching its block

diagram in the SNG. The bottom-up design of

each functional component constitutes a modular

ap,proach to system design. The modularity of

virtual machines assures information- and

assumption-hiding. Only information that is

explicitly shared via APL2 inter-user shared

variables is known outside of each server.

The communication requirements between two or

more servers are defined simply by graphically

linking the servers in the SNG block diagram,

and choosing protocols. The designer uses the

SNG to choose the communication protocols, and

consequently is freed from the responsibility of

managing them at the implementation level. The

SNG offers a productivity tool with which to

specify these communication requirements.

Communication paths can be grouped, in the

application context, into “communication macros.”

Each path within the macro has its own protocol

specification. A macro can be used between any

two servers, simply by graphically assigning the

macro to the link connecting the servers on the

SNG block diagram. Communication macros are

link attributes, and each link can have any

number of attributes.

This macro structure makes design change

extremely productive. To change a

communication relationship between two types of

servers, the macro definition is altered; every

instance of this macro will adjust to the change

automatically. When adding another copy of a

server to an existing network, the designer can

simply point to any server in the network and

duplicate all or some of that server’s

communication connections for the new server.

Communication macros greatly improve the

productivity of the software designer by enabling

him to attend to modeling the information

requirements of his application, without the

burden of considering the implementation of

these requirements.

The SNG can be used to design and implement

an application system that controls real hardware

devices, such as those which comprise a

manufacturing system. First, the SNG is used to
model the system, develop and validate the
design. Then, the individual servers that model

components are selectively replaced by the real
devices. A liaison server, which is able to
interface with both the model server ~ with
the physical device, is interposed between the
model server and the rest of the network.
During development, the liaison server interfaces
only with the model server. During operation of
the system, the liaison server interfaces only
with the physical device. The rest of the
network observes the liaison server’s outward
behavior, which is not dependent upon whether
it is interfacing with the model server or with
the real device.

Server Network Implementation
of the Kanban System

The Kanban system was used to model a Flexible
Manufacturing System (FMS). The system is
illustrated in figure 4. It is composed of two
assembly lines, an FMS machining cell, a fleet of
automated guided vehicles (AGV’S), and a raw-
materials receiving area. The SNG was used as
a CASE tool to identify the information flow and
communication protocols necessary to implement
this real-world manufacturing system. This
section presents the Kanban model of the FMS,

The Kanban system is classified as a “pull”
system because market demand triggers
production and literally pulls materials through
the factory as if they were tied together with
strings [5]. It is thus reasonable to begin a
discussion of this model from the output end.

The market demand emulator (in this section,
server names are indicated in bold print) signals
the assembly lines to start producing finished
products. The assembly lines assemble semi-
finished parts that are produced by the FMS
machining centers. The assembly lines begin
their assembly, and thus generate conveyance
kanbans in the process. The AGV’S go to the
assembly lines, pick up these conveyance
kanbans, and then travel to the FMS machining

centers to get new carts of semi-finished
products.

This process generates production kanbans in the
FMS machining centers, which, in turn, trigger
the FMS machining centers to begin production

Designing a Kanban 66 APL 91

PPRT TYP[X

FIJLL CARTS OF ASSEMBLED O FULL cARTS OF ASSEMLILEO E

~P+4,

ASSEMBLY OR/A MARKET DR/B ASSEMBLY

POINT A OEMANO POINT B “
PART

TYPE u

~~L ~.m,c ..”. .

,-, ,nn, ?I-m

L/lK, > ,,YL *

.L—
EMPTY CARTS A

ltK
C. KAN9ANS B

C. KANBAN STOCK TRANSPORT

FULL CARTS TYPE B

A2, B

Figure 4: The Kanban System server network structure, as graphically programmed in the SNG

of more semi-finished parts. This production of
semi-finished parts can be thought of as
replenishing those removed by the AGV, or a~

replenishing those used in assembly, c)r
ultimately, as replenishing those demanded c}r

“pulled” by the market.

As the FMS machining centers produce semi-
finished parts, they consume raw material stock,
and generate conveyance kanbans. The AGV”S
pick up these kanbans which cause them to visit
the raw material receiving area to get more
stock. This process generates production

kanbans which are transmitted to the vendor as
a signal to supply more stock.

The market demand emulator generates requests
to both assembly lines for finished products.
The order quantities for each part represent
product-specific demand rates. These are treated
as exogenous decision variables, and are
conveyed to the system as a function of time.
The market demand emulator is in constant
communication with both assembly lines and has
a significant impact on the total production.
The market demand emulator is equipped with an

APL Quote Quad 67 Bouchentouf-ldriss, Zeidner

algorithm that controls manufacturing production,
a cost function to penalize the system for
generating production surplus. It also computes
backlog demand, policy cost, and production cost.
The policy cost is computed by taking into
consideration the number of kanbans used.

The assembly lines are composed of one stock

area, one machine, and one operator. The

incoming semi-finished parts arrive in carts.

The operator, before processing a cart, detaches

its conveyance kanban and stores it in the

kanban area. The operator starts production,

and continues until exactly one full cart of

finished product has been assembled. The same

procedure is repeated as long as there are

production kanbans, and full carts of semi-

finished parts to be processed. If these carts

are not available, the assembly line stops until

more stock is available. Assembly will also stop

if the market demand emulator orders it to stop.

The AGV’S service both assembly lines, the FMS
machining centers and the raw materials
receiving area. The Kanban system informs each
AGV of the number of full carts to bring in
during its next trip. Further, beside carrying
semi-finished products, raw materials, and
kanbans, the AGV’S are also equipped with
algorithms to handle the part-routing sequences
among the FMS machining centers. To make
semi-finished parts, raw materials stock must go
through a number of machining sequences at
different centers, and consequently must be
transported to these centers in the proper
sequences.

The FMS machining centers produce semi-
finished parts for both assembly lines. The FMS
machining centers include milling and drilling
centers, and a load/unload area where raw
material stock is mounted on pallets or fixtures
for processing, or semi-finished parts are
unloaded at the end of their routing cycle. The
FMS machining centers produce a mixture of
part types according to the needs of the
assembly lines. This need is specified by the

production kanbans; whenever the FMS machining
centers’ stock of semi-finished parts is depleted
(or “pulled” by the AGV), the machining center
is prompted to produce more semi-finished parts.
Raw materials are fed into the FMS machining
centers by the AGV system. The quantity of
raw materials required is identified by the
Kanban system. This demand is conveyed to the

vendor by conveyance kanbans which are
generated at the FMS machining centers as they
deplete their stock of raw materials.

Because of the scarcity of manufacturing
resources such as raw materials, pallets and
fixtures, machines, and AGV’S, decision-making
control mechanisms are provided to allocate
these resources according to algorithms selected
by the user. Each machining center is provided
with its own scheduling scheme, as well,
Machines select which part to process next
according to current needs, and consequently
may have variations in their set-up times. It is
important to note that, for parts moving through
the FMS machining centers, the AGV’S must keep
track of all the part routing sequences. Some
parts are routed to the drilling center, others to
the milling center, semi-finished parts to the
unload area, and raw material stock to the load
area.

Implementation

A Flexible Manufacturing System (FMS) with
kanbans was modeled using the SNG CASE tool.
The implementation server network consists of a
set of 19 concurrent cooperative processes,
intercommunicating along 255 APL2 inter-user
shared variables. Each server, an APL2
workspace within a VM/370 virtual machine,
contains a) application-independent server
communication software, b) application-dependent
automatically code-generated server network
communication drive data, and c) application-
dependent response functions. APL2 inter-user
shared variables are currently constrained to
connect only virtual machines within a single
host. All of the virtual machines for this server
network were operating within an IBM 4341/12.
A related paper within these proceedings [2],
describes a recent successful effort that has
extended inter-user shared variables to connect
virtual machines on any number of VM/370 hosts
via a new APL2 auxiliary processor that employs
the PCCF feature of PVM [6] as an underlying
intercommunication vehicle. This platform
enables this interconnectivity to be extended
between VM/370 virtual machines and processes
operating within personal computers too.

Each FMS component was modeled as a server,
thus making it possible to build the entire
software system as an integrated composite of

Designing a Kanban 68 APL 91

modular components. The functional
decomposition into servers is a powerful vehicle
for identifying system requirements, amd
component interaction of a real-world system.

The designer only concentrates on his
application, i.e. the identification of information
needs of a manufacturing system under real
conditions. The software designer does not hawe
to manage the communication protocols, because
the SNG handles this task automatically for him.

Note that server networks are an approach to
software-development for distributed cooperative
processing systems, and not merely a simulation
tool. There are many simulation tools that
enable an engineer to model the behavior of an
application and simulate it under various
conditions. Server networks enable an engineer
to model, simulate, develop, validate, and operate
the application system. This is particularly
significant in the manufacturing engineering
domain, because the constraints are so volatiile
that it is necessary to return to modeling and
simulation many times, long after the system is
first used to control production. Server
networks allow for incremental modification to
the system, without any need to start from
initial conditions. Simulations can be used to
examine alternative opportunities, using data
gathered from production operation. For
example, an opportunity to take on additional
work can be simulated using last month’s
production data, to determine how good a choice
that would have been if made last month. Or an
opportunity to purchase an additional machine
can be simulated to determine how it would have
helped or hurt last year’s production.

The Kanban system required initialization, and
testing under a variety of circumstances. Server
networks include “utility servers” which are
application-independent and provide control of
the server network, and a means of evaluating
its behavior. Examples of utility servers are the
console, logger, status display, and clock servers.

Conclusions

Current CASE technology has not been focused
on the design of concurrent cooperative
processes. Server networks provide an attractive
approach to developing such systems. They
benefit from the following advantages of APL2

inter-user shared variables:
- symmetry as opposed to an asymmetric

client/server relationship,
- robustness: the designer can focus on his

design problem, rather than on checking to
guarantee that each message sent actually
arrived correctly,

- dynamic creation: no declarations or
groundwork are necessary ahead of time, so
that as the need arises for a shared variable
it can be created spontaneously, or destroyed
later if necessary,

communication speed: efforts have been made
to assure the fastest possible speed of
communication between virtual machines,
through the use of a discontinuous shared
segment (DCSS); however, this is also the
factor that limits the APL2 inter-user shared
variable implementation to one host,

access control and status information: these
tools enable the software developer to build
his own communication constructs upon the
shared-variable platform, and

- data-driven creation: because their creation is
based upon a function call (quadsvo) using
the shared variable name and partner
identifier as data arguments, it was possible
to build application-independent software to
establish and manage these shared variable
connections.

The SNG has been ported to a distributed
cooperative processing hardware platform
consisting of a set of IBM 7437 VM/SP Technical
Workstation processors interconnected via token-
ring LAN [7]. This presents dramatic
possibilities for creating concurrent applications
that can benefit from the substantial computing
power that has recently become available in
distributed cooperative processing hardware. Its
success depends upon the continued development
of new high-productivity CASE tools to harness
this computing power. The SNG currently
addresses the top-down software-development
task with powerful graphical programming and
automatic code generation techniques. The
bottom-up software-development task currently
relies upon the power and productivity of APL2
to address the complexity of each server’s
functionality. Current research efforts aimed at
enhancing the SNG CASE tool are focused on
providing better CASE tool support of this
bottom-up task. The integration of our Expert-
System Generator (ESG) into the SNG will
address this need in a variety of ways.

APL Quote Quad 69 Bouchentouf-ldriss, Zeidner

References

1. L.E. Zeidner, “Server Networks: Software
Integrated Tools for CIM,” Proceeding of
the International Conference on Comtmter
Integrated Manufacturing, RPI, NY (1988).

2. L.E. Zeidner, “The Server Network Generator
(SNG): A CASE Tool for Distributed
Cooperative Processing,” Proceeding of
APL’91 (these proceedings), ACM (1991).

3. Y. Sugimori, K. Kusunoki, F. Cho, and S.
Uchikawa, “Toyota Production System and
Kanban System Materialization of Just-in-
Time and Respect-For-Human System,”
International Journal of Production Research,
15(6), pp 553-564, (1977).

4. Y. Monden, Tovota Production System, HE
(1983).

5. Y. Seo and P.J. Egbelu, “Configuration and
Operation of a Pull-Type Flexible
Manufacturing System,” Manufacturing
Review, 4(l), pp 44-50, ASME (1991).

6. IBM, Virtual Machine/Pass-Through Facilitv,
Managing and Using, Release 4, SC24-5474-
00 (1988).

7. IBM, 7437 VM/SP Technical Workstation.

User’s Guide and Reference, SA23-0351 -00

(1988).

Designing a Kanban 70 APL 91

