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Abstract

The synchronous language Esterel is well-suited for programming control-dominated reac-
tive systems at the system level. It provides non-traditional control structures, in particular
concurrency and various forms of preemption, which allow to concisely express reactive behav-
ior. As these control structures cannot be mapped easily onto traditional, sequential processors,
an alternative approach that has emerged recently makes use of special-purpose reactive pro-
cessors. However, the designs proposed so far have limitations regarding completeness of the
language support, and did not really take advantage of compile-time knowledge to optimize
resource usage.

This paper presents a reactive processor, the Kiel Esterel Processor 3a (KEP3a), and its
compiler. The KEP3a improves on earlier designs in several areas; most notable are the support
for exception handling and the provision of context-dependent preemption handling instruc-
tions. The KEP3a compiler presented here is to our knowledge the first for multi-threaded
reactive processors. The translation of Esterel’s preemption constructs onto KEP3a assembler
is straightforward; however, a challenge is the correct and efficient representation of Esterel’s
concurrency. The compiler generates code that respects data and control dependencies using
the KEP3a priority-based scheduling mechanism. We present a priority assignment approach
that makes use of a novel concurrent control flow graph and has a complexity that in practice
tends to be linear in the size of the program. Unlike earlier Esterel compilation schemes, this
approach avoids unnecessary context switches by considering each thread’s actual execution
state at run time. Furthermore, it avoids code replication present in other approaches.
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1 Introduction

The programming language Esterel [7] has been designed for developing control-dominated reac-
tive software or hardware systems. It belongs to the family of synchronous languages, which have
a formal semantics that abstracts away run-time uncertainties, and allow abstract, well-defined
and executable descriptions of the application at the system level. Hence these languages are par-
ticularly suited to the design of safety-critical real-time systems; see Benveniste et al. for a nice
overview of synchronous languages [4]. To express reactive behavior, Esterel offers numerous power-
ful control flow primitives, in particular concurrency and various preemption operators. Concurrent
threads can communicate back and forth instantaneously, with a tight semantics that guarantees
deterministic behavior. This is valuable for the designer, but also poses implementation challenges.

In general, an Esterel program is validated via a simulation-based tool set, and then synthesized
to an intermediate language, e. g., C or VHDL. To build the real system, one typically uses a
commercial off-the-shelf (COTS) processor for a software implementation, or a circuit is generated
for a hardware implementation. HW/SW co-design strategies have also been investigated, for
example in POLIS [3, 21].

During the past years, many techniques have been proposed to synthesize efficient software
implementations from Esterel programs, typically concentrating on the generation of optimized
intermediate language code (see also Section 2). However, there remain some fundamental diffi-
culties in compiling Esterel’s reactive control flow constructs to sequential, traditional processors.
Reactive programs are often characterized by very frequent context switches; as our experiments
indicate, a context switch after every three or four instructions is not uncommon. This adds sig-
nificant overhead to the traditional compilation approaches, as the restriction to a single program
counter requires the program to manually keep track of thread control counters using state vari-
ables; traditional OS context switching mechanisms would be even more expensive. Furthermore,
the handling of preemptions requires a rather clumsy sequential checking of conditionals whenever
control flow may be affected by a preemption. Hence, an alternative approach that has emerged
recently makes use of special-purpose reactive processors, which strive for a direct implementation
of Esterel’s control flow and signal handling constructs.

In this paper, we present a reactive architecture, the Kiel Esterel Processor 3a (KEP3a), and
a compiler that translates Esterel into KEP3a assembler. The development of the KEP3a was
driven by the desire to achieve competitive execution speeds at minimal resource usage, considering
processor size and power usage as well as instruction and data memory. A key to achieve this goal is
the instruction set architecture (ISA) of the KEP3a, which allows the mapping of Esterel programs
into compact machine code while still keeping the processor light-weight. Notable features of the
KEP3a that go beyond earlier approaches, including the KEP3 design [18], include the following:

• Unlike earlier reactive processing approaches, the KEP3a ISA is complete in that it allows a
direct mapping of all Esterel statements onto KEP3a assembler.

• A characteristic of the Esterel language is that its control flow operators can be combined
with each other in an arbitrary fashion. This makes the language concise and facilitates
formal analysis; however, it can also make unrefined processing approaches fairly costly. The
KEP3a ISA therefore not only supports common Esterel statements directly, but also takes
into consideration the statement context. Providing such a refined ISA further minimizes
hardware usage while preserving the generality of the language.

The KEP3a code is typically an order of magnitude smaller than that of the MicroBlaze, a
COTS RISC processor core. The worst case reaction time is typically improved by 4x, and energy
consumption is also typically reduced to a quarter. Furthermore, the KEP3a is scalable to very
high degrees of concurrency, increasing the maximal thread count from 2 to 120 increased the gate
count by only 40%.
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The rest of this paper is organized as follows. The next section discusses related work. Sections 4
and 5 present the instruction set and the architecture of the KEP3a. Section 6 discusses the
compiler used to synthesize Esterel programs onto the KEP3a. Experimental results are presented
in Section 7. The paper concludes in Section 8.

2 Related Work

In the past, various techniques have been developed to synthesize Esterel into software; see Ed-
wards [12] for an overview, which also places Esterel code synthesis into the general context of
compiling concurrent languages. The compiler presented here belongs to the family of simulation-
based approaches, which try to emulate the control logic of the original Esterel program directly,
and generally achieve compact and yet fairly efficient code. These approaches first translate an
Esterel program into some specific graph formalism that represents computations and dependen-
cies, and then generate code that schedules computations accordingly. The EC/Synopsys compiler
first constructs a concurrent control flow graph (CCFG), which it then sequentializes [11]. Threads
are statically interleaved according to signal dependencies, with the potential drawback of super-
fluous context switches; furthermore, code sections may be duplicated if they are reachable from
different control points (“surface”/“depth” replication [5]). The SAXO-RT compiler [9] divides the
Esterel program into basic blocks, which schedule each other within the current and subsequent
logical tick. An advantage relative to the Synopsis compiler is that it does not perform unnecessary
context switches and largely avoids code duplications; however, the scheduler it employs has an
overhead proportional to the total number of basic blocks present in the program. The grc2c com-
piler [23] is based on the graph code (GRC) format, which preserves the state-structure of the given
program and uses static analysis techniques to determine redundancies in the activation patterns.
A variant of the GRC has also been used in the Columbia Esterel Compiler (CEC) [13], which again
follows SAXO-RT’s approach of dividing the Esterel program into atomically executed basic blocks.
However, their scheduler does not traverse a score board that keeps track of all basic blocks, but
instead uses a compact encoding based on linked lists, which has an overhead proportional to just
the number of blocks actually executed.

In summary, there is currently not a single Esterel compiler that produces the best code on all
benchmarks, and there is certainly still room for improvements. For example, the simulation-based
approaches presented so far restrict themselves to interleaved single-pass thread execution, which
in the case of repeated computations (“schizophrenia” [5]) requires code replications; it should be
possible to avoid this with a more flexible scheduling mechanism.

Driven by these limitations of traditional processors, the reactive processing approach tries to
achieve a more efficient execution of reactive programs by providing an ISA that is a better match
for reactive programming. The architectures proposed so far specifically support Esterel program-
ming; however, they should be an attractive alternative to traditional processor architectures for
reactive programming in general. Two strategies have been proposed to implement the reactive
processing approach, which have been classified as the patched reactive processor approach and the
custom reactive processor approach [17]. The patched reactive processor strategy combines a COTS
processor core with an external hardware block, which implements additional Esterel-style instruc-
tions. To our knowledge, the ReFLIX and RePIC processors [24] were the first processors of this
type. Based on RePIC, Dayaratne et al. proposed an extension to a multi-processor architecture,
the EMPEROR [25], which allows the distributed execution of Esterel programs and also handles
Esterel’s concurrency operator; see also Figure 5(a). The EMPEROR uses a cyclic executive to
implement concurrency, and allows the arbitrary mapping of threads onto processing nodes. This
approach has the potential for execution speed-ups relative to single-processor implementations.
However, their execution model potentially requires to replicate parts of the control logic at each
processor. The EMPEROR Esterel Compiler 2 (EEC2) [25] is based on a variant of the GRC,
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Figure 1: Two concurrent reactive processor architectures: EMPEROR, based on multi-processing
(a), and the KEP3a, based on multi-threading (b).

and appears to be competitive even for sequential executions on a traditional processor. However,
their synchronization mechanism, which is based on a three-valued signal logic, does not seem able
to take compile-time scheduling knowledge into account, and instead repeatedly cycles through all
threads until all signal values have been determined.

The custom reactive processor strategy consists of a full-custom reactive core with an instruction
set and data path tailored for processing Esterel code. The Kiel Esterel Processor (KEP) family
follows this route. The KEP2 provides preemption primitives, further Esterel constructs such as
valued signals, signal counters, and the pre operator, and a Tick Manager that allows to run the
KEP at a constant logical tick rate and detects timing overruns [17]. A compiler for the KEP2,
based on the KEP assembler graph (KAG), also performs a Worst Case Reaction Time (WCRT)
analysis, which determines the maximal number of instruction cycles executed within a logical tick.
However, neither the KEP2 nor the compiler for it support Esterel’s concurrency operator. The
compiler presented here uses a concurrent extension of the KAG, the Concurrent KEP Assembler
Graph (CKAG).

The basic design of the KEP3a processor follows that of the KEP3 [18], which employs a Thread
Block to handle concurrency via multi-threading; see also Figure 5(b). The KEP3 ISA is efficient
in that it most commonly used Esterel statements can be expressed directly with just a single
KEP3a instruction. However, the KEP3 still has several weaknesses, which have been overcome in
the KEP3a. In particular, the KEP3a is incomplete in its support of Esterel kernel statements in
that it does not support exception handling. Furthermore, the KEP3 is unrefined in its preemption
handling, as it did not consider the execution context when mapping preemption statements to
hardware units. Finally, no compilation scheme has been presented so far for the multi-threaded
execution model of the KEP3.

As mentioned in the introduction, a challenge in the development of a compiler for an architec-
ture as the KEP3a is to devise a proper thread schedule. The KEP3a assigns threads a priority
upon their creation, and allows threads to change their own priority once they are running. In
principle, this would permit a fully dynamic scheduling; however, we here restrict our attention to
static scheduling, where the priority of each thread segment is determined at compile time. Static
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scheduling as such is a well-established area in the design of real-time systems, a classic example be-
ing the rate-monotonic approach [19]. While most classical scheduling approaches are driven by the
desire to meet certain deadlines, we here face the problem of devising a schedule that fulfills certain
ordering constraints. This is similar to the problem faced by the designers of the aforementioned
POLIS system [3], who have proposed an adaptation [21] of Audsley’s algorithm [2]. However,
their computational model differs from ours in that there, each thread has a fixed priority, while
in our case, threads can change their own priority; furthermore, in the POLIS model, each thread
may execute multiple times within a logical tick (in fact, there is no global tick), and they try to
minimize the overall invocation time, while in our model, each thread is executed at most once
during each tick, and we try to minimize the number of priority changes.

3 The Esterel Language

The execution of an Esterel program is divided into logical instants, or ticks, and communication
within or across threads occurs via signals; at each tick, a signal is either present (emitted) or absent
(not emitted). Esterel statements are either transient, in which case they do not consume logical
time, or delayed, in which case execution is finished for the current tick. Per default statements are
transient, and these include for example emit, loop, present, or the preemption operators; delayed
statements include pause, (non-immediate) await, and every.

Esterel’s parallel operator, ||, groups statements in concurrently executed threads. The parallel
terminates when all its branches have terminated. When several threads are active concurrently,
they may communicate back and forth instantaneously, that is, within the same logical tick; this
bears the potential for dependency cycles, see Section 3.3.

Esterel offers two types of preemption constructs:

• An abortion kills its body when a delay elapses. We distinguish strong abortion, which kills
its body immediately (at the beginning of a tick), and weak abortion, which lets its body
receive control for a last time (abortion at the end of the tick).

• A suspension freezes the state of a body in the instant when the trigger event occurs.

Esterel also offers an exception handling mechanism via the trap/exit statements. An exception
is declared with a trap scope, and is thrown with an exit statement. An exit T statement causes
control flow to move to the end of the scope of the corresponding trap T declaration. This is similar
to a goto statement, however, there are complications when traps are nested or when the trap
scope includes concurrent threads. The following rules apply: if one thread raises an exception and
the corresponding trap scope includes concurrent threads, then the concurrent threads are weakly
aborted; if concurrent threads execute multiple exit instructions in the same tick, the outermost
trap takes priority.

3.1 An Example

As an example, consider the Esterel program Edwards02 [11, 9], shown in Figure 2(a). This program
implements the following behavior: whenever the signal S is present, (re-)start two concurrent
threads. The first thread first awaits a signal I; it then continuously emits R until A is present, in
which case it emits R one last time (weak abortion of the sustain), emits O, and terminates. The
second thread tests every other tick for the presence of R, in which case it emits A.

3.2 Statement Dismantling

At the Esterel level, one distinguishes kernel statements and derived statements; the derived state-
ments are basically syntactic sugar, built up from the kernel statements. In principle, any set of
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1 module Edwards02:
2 input S, I ;
3 output O;
4

5 signal A,R in
6 every S do
7 await I ;
8 weak abort
9 sustain R;

10 when immediate A;
11 emit O;
12 ||
13 loop
14 pause;
15 pause;
16 present R then
17 emit A;
18 end present
19 end loop
20 end every
21 end signal
22 end module

1 module Edwards02−dism:
2 input S;
3 input I ;
4 output O;
5

6 signal A, R in
7 abort
8 loop
9 pause

10 end loop
11 when S;
12 loop
13 abort
14 [
15 abort
16 loop
17 pause
18 end loop
19 when I;
20 weak abort
21 loop
22 emit R;
23 pause
24 end loop
25 when immediate A;
26 emit O
27 ||
28 loop
29 pause;
30 pause;
31 present R then
32 emit A
33 end present
34 end loop
35 ];
36 loop
37 pause
38 end loop
39 when S
40 end loop
41 end signal
42 end module

% Module Edwards02
INPUT S,I
OUTPUT O

[L00,T0]
EMIT TICKLEN,#20
[L01,T0] SIGNAL A
[L02,T0] SIGNAL R
[L03,T0] AWAIT S
[L04,T0] A2: LABORT S,A3
[L05,T0] PAR 1,A4,1
[L06,T0] PAR 1,A5,2
[L07,T0] PARE A6,1
[L08,T1] A4: TABORT I,A7
[L09,T1] A8: PRIO 3
[L10,T1] PAUSE
[L11,T1] PRIO 1
[L12,T1] GOTO A8
[L13,T1] A7: TWABORTI A,A9
[L14,T1] A10:EMIT R
[L15,T1] PRIO 1
[L16,T1] PRIO 3
[L17,T1] PAUSE
[L18,T1] GOTO A10
[L19,T1] A9: EMIT O
[L20,T2] A5:A11: PAUSE
[L21,T2] PRIO 2
[L22,T2] PAUSE
[L23,T2] PRESENT R,A12
[L24,T2] EMIT A
[L25,T2] A12:PRIO 1
[L26,T2] GOTO A11
[L27,T0] A6: JOIN
[L28,T0] A3: GOTO A2

− Tick 1 −
! reset ;
% In:
% Out:
[L01,T0]
[L02,T0]
[L03,T0]
− Tick 2 −
% In: S
% Out:
[L03,T0]
[L04,T0]
[L05,T0]
[L06,T0]
[L07,T0]
[L20,T2]
[L08,T1]
[L09,T1]
[L10,T1]
[L27,T0]
− Tick 3 −
% In: I
% Out: R
[L10,T1]
[L13,T1]
[L14,T1]
[L15,T1]
[L20,T2]
[L21,T2]
[L22,T2]
[L16,T1]
[L17,T1]
[L27,T0]
− Tick 4 −
% In:
% Out: A R O
[L17,T1]
[L18,T1]
[L14,T1]
[L15,T1]
[L22,T2]
[L23,T2]
[L24,T2]
[L25,T2]
[L26,T2]
[L20,T2]
[L16,T1]
[L17,T1]
[L19,T1]
[L27,T0]

(a) (b) (c) (d)

Figure 2: The Edwards02 example [11]: (a) Esterel; (b) Esterel after dismantling; (c) Concurrent
KEP Assembler Graph (CKAG, see Section 6.1), where rectangles are transient nodes, octagons
are delay nodes, and triangles are fork/join nodes; (d) KEP assembler, (d) trace of execution. The
KEP assembler includes labels (in brackets) that list the line number (“Lxx”) and thread id (“Tx”).

Esterel statements from which the remaining statements can be constructed can be considered a
valid set of kernel statements, and the accepted set of Esterel kernel statements has evolved over
time. For example, the halt statement used to be considered a kernel statement, but is now consid-
ered to be derived from loop and pause. We here adopt the definition of which statements are kernel
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 module: Edwards02

[L0,T0-1] EMIT _TICKLEN,#10

[L1,T0-1] SIGNAL A

[L2,T0-1] SIGNAL R

[L3,T0-1/1] AWAIT S

[L4,T0-1] A2: LABORT S,A3

[L7,T0-1] PAR*

[L8,T1-1] A4: TABORT I,A7

 1

[L20,T2-1/1] A5:A11: PAUSE

 1

[L28,T0-1] A3: GOTO A2

sf

[L9,T1] A8: PRIO 3

[L10,T1-1/3] PAUSE

[L13,T1-3] A7: TWABORTI A,A9

I
s

S

s

[L11,T1] PRIO 1

[L12,T1-1] GOTO A8[L14,T1-3] A10: EMIT R

[L23,T2-2] PRESENT R,A12

i

[L15,T1] PRIO 1

[L17,T1-1/3] PAUSE

[L18,T1-3] GOTO A10 [L19,T1-1] A9: EMIT O

A
w

S

s

[L27,T0-1] JOIN

S

s

[L21,T2] PRIO 2

[L22,T2-1/2] PAUSE

S
s

[L24,T2-2] EMIT A

t

[L25,T2] A12: PRIO 1

f
i

[L26,T2-1] GOTO A11

[L16,T1] PRIO 3

Figure 3: The Concurrent KEP Assembler Graph (CKAG, see Section 6.1) for the Edwards02 example
from Figure 2(a). Rectangles are transient nodes, octagons are delay nodes, and triangles are
fork/join nodes. The CKAG nodes includes labels (in brackets) that list the line number (“Lxx”)
and thread id (“Tx”) of the corresponding assembler, shown in Figure 2(c). The CKAG labels also
include “-prio[/prionext]” as appropriate. CKAG control successor edges are solid, other successor
edges are dashed, dependency edges are dotted; tail labels further indicate the edge type.
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Figure 4: The interface connections of the KEP3a

statements from the v5 standard [6]. The process of expanding derived statements into equivalent,
more primitive statements—which may or may not be kernel statements—is also called disman-
tling. The Esterel program Edwards02-dism [11], shown in Figure 2(b), is a dismantled version of the
program Edwards02. It is instructive to compare this program to the original, undismantled version.

3.3 Dependency Cycles

A consequence of Esterel’s synchronous model of execution is that there may be dependency cycles,
which involve concurrent threads communicating back and forth within one tick. Such dependency
cycles must be broken, for example by a delay node, because otherwise it would not be possible
for the compiler to devise a valid execution schedule that obeys all ordering constraints. In the
Edwards02 example, there is one dependency cycle, from the sustain R9 instruction1 in the first parallel
thread to the present R16 in the second parallel to the emit A17 back to the sustain R9, which is weakly
aborted whenever A is present. The dependency cycle is broken in the dismantled version, as there
the sustain R has been separated into signal emission (emit R22) and a delay (pause23, enclosed in a
loop. The broken dependency cycle can also be observed in the CKAG, shown in Figure 3. Referring
to CKAG nodes by the corresponding line numbers (the “Lxx” part of the node labels), the cycle is
L14 → L23 → L24 → L17 → L18 → L14; it is broken by the delay in L17. The CKAG is explained
in more detail in Section 6.1.

4 The KEP3a Architecture

4.1 The Signal Interfaces

The top-level I/O signals of the KEP3a are illustrated in Figure 4.

Reset: Resets the KEP3a.

OscClk: Connected to external clock, running at rate Tosc.

InstrClk: Indicates the instruction clock; each instruction cycle lasts three OscClk cycles.

ROMData: Data bus for the instruction memory.
1To aid readability, we here use the convention of subscripting instructions with the line number where they occur.

7



ROMAddr: Address bus for the instruction memory.

Tick: Indicates the logical tick of Esterel.

TickWarn: Indicates a timing violation, see also Section 5.6.

Sinout: There are ninout such pins to signal the presence of input/output signals from and to
the environment.

SDir: Lets the environment read or write signal statuses.

SDataID: Selects the valued signal to read or write. Note that in the KEP3a, every signal can
be a valued signal.

SDataWR: Reading/Writing a valued signal.

This signal interface is similar to the KEP2, see the corresponding report [16] for a more detailed
description.

4.2 The KEP3a Instruction Set Architecture

When designing an instruction set architecture to implement Esterel-like programs, it would in prin-
ciple suffice to just implement the kernel statements—plus some additions that go beyond “pure”
Esterel, such as valued signals, local registers, and support for complex signal and data expressions.
However, we decided against that, in favor of an approach that includes some redundancy among
the instructions to allow more compact and efficient object code.

The resulting KEP3a ISA is summarized in Table 1, which also illustrates the relationship
between Esterel statements and the KEP3a instructions.

The KEP3a uses a 36-bit wide instruction word and a 32-bit data bus. The KEP3a ISA has the
following characteristics:

• All the kernel Esterel statements, and some frequently used derived statements, can be mapped
to KEP3a instructions directly. For the remaining Esterel statements there exist direct ex-
pansion rules that allow the compiler to still generate KEP3a code, including general signal
expressions.

• Common Esterel expressions, in particular all of the delay expressions (i. e., standard, imme-
diate, and count delays), can be represented directly.

• The control statements are fully orthogonal, their behavior matches the Esterel semantics in
all execution contexts.

• Valued signals and other signal expressions, e. g., the previous value of a signal and the
previous status of a signal, are also directly supported.

• All instructions fit into one instruction word and can be executed in a single instruction cycle,
except for instructions that contain count delay expressions, which need an extra instruction
word and take another instruction cycle to execute.

The KEP3a also handles schizophrenic programs [5] correctly—if an Esterel statement must be
executed multiple times within a tick, the KEP3a simply does so. The SIGNAL instruction also
ensures that reincarnated signals are correctly initialized.
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Mnemonic, Operands Esterel Syntax Notes

PAR Prio, startAddr [, ID] [ Fork and join, see also Section 5.2.
An optional ID explicitly specifies the ID of
the created thread.

PARE endAddr p || q

JOIN ]

PRIO Prio Set the priority of the current thread.

[L|T][W]ABORT [n,] S, endAddr

[weak] abort
. . .

when [n] S

The prefix [L|T] denotes the type of watcher
to use, see also Section 5.3.

L : Local Watcher

T : Thread Watcher

none : general Watcher[L|T][W]ABORTI Sexp, endAddr

[weak] abort
. . .

when immediate Sexp

SUSPEND[I] Sexp, endAddr

suspend
. . .

when [immediate] Sexp

EXIT addr
trap T in

exit T
end trap

Exit from a trap, addr specifies trap scope. Un-
like GOTO, check for concurrent EXITs and ter-
minate enclosing ||.

PAUSE pause
Wait for a signal. AWAIT TICK is equivalent
to PAUSE.AWAIT [n,] Sexp await [n] Sexp

AWAIT[I] Sexp await [immediate] Sexp

CAWAITS await

Wait for several signals in parallel.
CAWAIT[I] S, addr

case [immediate]
Sexp do

CAWAITE end

SIGNAL S signal S in . . . end Initialize a local signal S.

EMIT S [, {#data|reg}] emit S [(val)] Emit (valued) signal S.

SUSTAIN S [, {#data|reg}] sustain S [(val)] Sustain (valued) signal S.

PRESENT S, elseAddr present S then . . . end Jump to elseAddr if S is absent.

NOTHING nothing Do nothing.

HALT halt Halt the program.

GOTO addr loop . . . end loop Jump to addr.

CALL addr
call P

call a procedure,
and return from the procedureRETURN

CLRC/SETC Clear/set carry bit

LOAD reg, n Load/store register

{SR[C]|SL[C]|NOTR} reg Shift (with carry)/negate

{ADD[C]|SUB[C]|MUL} reg, n Add, subtract (with carry), multiply

{ANDR|ORR|XORR} reg, n Logical operations

CMP reg, n
Compare, branch conditionally.

JW cond, addr

Table 1: Overview of the KEP3a Esterel-type instruction set architecture. Esterel kernel state-
ments are shown in bold. A signal expression Sexp can be one of the following: 1. S: signal status
(present/absent); 2. PRE(S): previous status of signal: 3. TICK: always present. A numeral n can be
one of the following: 1. #data: immediate data; 2. reg : register contents; 3. ?S: value of a signal; 4.
PRE(?S): previous value of a signal.

9



4.3 The Example

The KEP3a assembler code for the Edwards02 example is shown in Figure 2(c). At the beginning
of a module, an EMIT TICKLENL00 instruction assigns the Tick Manager a certain value to define an
upper bound on the number of instruction cycles within a logical tick [17]. The following SIGNAL

instructions initialize local signals. The LABORT S,A3L04 configures a local watcher to perform an
abort of the abort block delimited by the label A3 whenever S is present; preemptions are discussed
further in Section 5.3. The subsequent PAR/PARE instructions fork off the two parallel threads,
which are joined in L27; this is explained in Section 5.2. Overall, while some of the details are still
missing, one should already see a fairly close correspondence between the assembler code and the
dismantled Esterel version. The total number of assembler instructions is between the line count
of the original Esterel program and its dismantled counterpart, which indicates a very compact
encoding of the program.

A possible execution trace for this example is shown in Figure 2(d). In the first tick, the main
thread (T0) executes three instructions, and then pauses at the AWAIT SL03. No input signals are
present, and none are emitted. In the second tick, the input signal S is present, hence the main
thread passes the AWAIT SL03, enters the abort scope for S, and forks off the parallel threads (L05–
L07). The parallel thread T2 then executes a PAUSEL20, followed by context switch to T1, which
executes another three instructions. Finally, the main thread executes JOINL27, which tests whether
the threads can be joined already, i. e., whether they both have already terminated—which so far
is not the case. Similarly, the trace shows the interleaved execution of the parallel threads for ticks
3 and 4, which again is explained in more detail in Section 5.2.

5 The KEP3a Processor Architecture

The main challenge when designing a reactive architecture is the handling of control. In the KEP3a,
the Reactive Multi-Threading Core (RMC) is responsible for managing the control flow of all threads.
Figure 5 shows the architecture of the RMC. It contains dedicated hardware units to handle con-
currency, preemption, exceptions, and delays. In the following, we will briefly discuss each of these
in turn.

5.1 The Reactive Multi-threading Model

The reactive multi-threading model differs from that of traditional Esterel software implementations
in that it is based directly on the following control flow patterns, which are not supported by
traditional programming languages:

• Delay : e. g., await, pause, etc.
The delay statement waits for the specified delay. The delay is started when the statement
is executed and pauses until the delay elapses, and then it terminates in that instant. For
the multi-threaded processor, the control of a thread which is waiting for a delay will keep
waiting until the specified delay passes, or will respond an active abortion or exception and
give up waiting.

• Preemption: e. g., [weak] abort, suspend etc.
Regarding the preemption handling mechanism, a preemption block must respond to its trigger
signal while the program counter (PC) is within its body. This is non-trivial for example when
there are concurrent threads nexted in a preemption (or preemption nest) body.

• Concurrency : i. e., ||
In Esterel, the thread forks on a || parallel statement, and terminates when all its branches have
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Figure 5: The architecture of the KEP3a Reactive Multi-threaded Core (RMC).

terminated. Therefore, Esterel semantic threads can simulated by multi-threaded structure
in constitutionally. The fork point corresponds thread configuration instructions, and then
the thread waits terminations of branch threads at the join point. The program counter is
watched to determine the termination of branch threads.

• Exception: i. e., trap and exit

When an exception occurs, control is instantaneously terminating the trap, and all statements
in the trap body are weakly aborted. Hence, for the multi-threaded architecture, assume there
are branch threads in a trap body, the thread which generates the exception (executes the
exit statement) ought to terminate immediately, and other threads will receive the control for
a last time (act as responding for a weak abort).

These concepts are explained in more detail in the following.

5.2 Handling Concurrency

To implement concurrency, the KEP3a employs a multi-threaded architecture, where each thread
has an independent program counter (PC) and threads are scheduled according to their statuses
and dynamically changing priorities. The scheduler is very light-weight. In the KEP3a, scheduling
and context switching do not cost extra instruction cycles, only changing a thread’s priority costs
an instruction. The priority-based execution scheme allows on the one hand to enforce an ordering
among threads that obeys the constraints given by Esterel’s semantics, but on the other hand
avoids unnecessary context switches. If a thread lowers its priority during execution but still has
the highest priority, it simply keeps executing.

A concurrent Esterel statement with n concurrent threads joined by the ||-operator is translated
into KEP assembler as follows [18]. First, threads are forked by a series of instructions that consist of
n PAR instructions and one PARE instruction. Each PAR instruction creates one thread, by assigning
a non-negative priority and a start address. The end address of the thread is either given implicitly
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Figure 6: Execution status of a single thread.

Figure 7: The status of the whole program, as managed by the Thread Block.

by the start address specified in a subsequent PAR instruction, or, if there is no more thread to be
created, it is specified in a PARE instruction. The code block for the last thread is followed by a
JOIN instruction, which waits for the termination of all forked threads and concludes the concurrent
statement. The example in Figure 2(c) illustrates this; instructions L08–L19 constitute thread T1,
thread T2 spans L20–L26, and the remaining instructions belong to the main thread, T0.

The priority of a thread is assigned when the thread is created (with the aforementioned PAR

instruction), and can be changed subsequently by executing a priority setting instruction (PRIO). A
threads keeps its priority across delay instructions; that is, at the start of a tick it resumes execution
with the priority it had at the end of the previous tick.

When a concurrent statement terminates, through regular termination of all concurrent threads
or via an exception/abort, the priorities associated with the terminated threads also disappear, and
the priority of the main thread is restored to the priority upon entering the concurrent statement.

The execution status of a thread is illustrated in Figure 6, using the SyncChart formalism [1].
Two flags are needed to describe the status of a thread. One flag indicates whether the thread
is disabled or enabled. Initially, only the main thread (T0) is enabled. Other threads become
enabled whenever they are forked, and become disabled again when they are joined after finishing
all statements in their body, or when the preemption control tries to set its program counter to a
value which is out of the thread address range. The other flag indicates whether the thread should
still be scheduled within the current logical tick (the thread is active) or not (inactive).

The Thread Block is responsible for managing threads, as illustrated in Figure 7. Upon program
start, the main thread is enabled (forked), and the program is considered running. Subsequently,
for each instruction cycle, the Thread Block decides which thread ought to be scheduled for execution
in this instruction cycle. The thread which has the highest priority among all active threads will
be selected for execution and becomes executing. The main thread always has priority 1, which is
the lowest possible priority. If there are multiple threads that have highest priority, the thread with

12



the highest id is scheduled. This allows the compiler to use thread ids, in addition to priorities,
to enforce ordering constraints. This not only can save on priority switching overhead, but in
certain cases also helps to break dependency cycles. Threads that are active but not executing are
considered preempted. If there are still enabled threads, but none is active anymore, the next tick
is started. If no threads are enabled anymore, the whole program is terminated.

Consider Tick 4 of the execution trace in Figure 2(d). At the start of the tick, all threads are
active. Thread T1 has priority 3, because of the PRIO 3L16 instruction executed in the previous
tick, and similarly T2 has priority 2. Hence, thread T1 is scheduled first and keeps running until
it executes PRIO 1L15, which causes its priority to become lower than T2’s. Thus there is a context
switch to T2, which runs until it executes PAUSEL20, where it finishes its tick and becomes inactive,
and the still active T1 becomes running again. As can be seen from this trace, all scheduling
constraints present in the original Esterel program are nicely obeyed by the interleaved execution.

The control of a thread can never exceed its address range, and if a thread still tries to do so,
it will be terminated immediately. This mechanism gives a neat solution for handling arbitrary
preemption and concurrency nests. For example, assume a strong abortion, which nests several
threads, is triggered: the abortion will cause each thread to try to jump to the end of the abortion
block, which will be beyond its address range, and hence the thread will be terminated.

5.3 Handling Preemption

The RMC provides a configurable number of Watcher units, which detect whether a signal triggering
a preemption is present and whether the program counter (PC) is in the corresponding preemption
body [18]. When preemptions are nested and triggered simultaneously, the Watcher Priority Controller

decides which must take precedence. The KEP3 Watchers are designed to permit arbitrary nesting
of preemptions, and also the combination with the concurrency operator. However, in practice
this often turns out to be more general than necessary, and hence wasteful of hardware resources.
Therefore, the KEP3a also includes trimmed-down versions of the Watcher. The least powerful, but
also cheapest variant is the Thread Watcher, which belongs to a thread directly, and can neither
include concurrent threads nor other preemptions. An intermediate variant is the Local Watcher,
which may include concurrent threads and also preemptions handled by a Thread Watcher, but
cannot include another Local Watcher. In the KEP3a Edwards02 code in Figure 2(c), there are three
preemptions (lines L04, L08, L13), which could all be mapped to a full-size Watcher; however, this
is not needed in any of these preemptions. In this example, the first preemption requires a Local

Watcher, and the others can be handled with Thread Watchers.

5.4 Handling Exceptions

The KEP3a does not need an explicit equivalent to the trap statement, but it provides an EXIT

statement. If a thread executes an EXIT instruction, it tries to perform a jump to the end of the
trap scope. If that address is beyond the range of the current thread, control is not transferred
directly to the end of the trap scope, but instead to the JOIN instruction at the end of the current
thread. If other threads that merge at this JOIN are still active, they will still be allowed to execute
within the current logical tick. It may be the case that a concurrent thread executes another EXIT,
in which case the exception handler must decide which exception should take priority, based on the
corresponding trap scopes. Once all joining threads have completed within the current tick, control
is transferred to the end of the trap scope—unless there is another intermediate JOIN instruction.
This process continues until control has reached the thread that has declared the trap.
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5.5 Handling Delays

Delay expressions are used in temporal statements, e. g., await or abort. There are three forms of
delay expressions, i. e., standard delays, immediate delays, and count delays. A delay may elapse in
some later instant, or in the same instant in the case of immediate delays. In the KEP3a, the await

statement is implemented via the AWAIT component. Every thread has its own await-component to
store the parameters of the await-type statement, e. g., the value of count delays. For the preemption
statements, every Watcher (including its trimmed-down derivatives) also has an independent counter
to handle the delays. The KEP3a can handle all delay expressions directly and exactly.

5.6 The Tick Manager and Energy Saving Mechanism

The Esterel language implicitly defines the basic timing model. As described in Section 3, time is
logical and seen as generated by the sequence of reactions, also called instants or ticks. Therefore,
for the Esterel software implementation, the physical time of a tick is unexpectable and depended
on the execution time, i. e., the maximum period of a logic tick equals the Worst Case Reaction
Time (WCRT) of the program. Hence, another approach is direct specifying a time constrain, and
ensures that logical ticks are computed at a fixed frequency [17].

The KEP3a uses the Tick Manager to manage the tick time constraint. This mechanism has
already been implemented in the KEP2, this description here is quoted from an earlier report [17].
At the beginning of a module, an “EMIT TICKLEN” instruction assigns the Tick Manager a certain
value to define an upper bound on the number of instruction cycles within a logical tick.

During the run time of the processor, the Tick Manager monitors the executed instruction cycles
of current tick. When more than TICKLEN instructions have been executed, the Tick Manager

considers this a tick length timing violation and signals to the environment via the the TickWarn

pin, and current tick length will be extended automatically until the tick is finished.
The KEP3a uses the Tick Manager to manage the tick time constraint. At the beginning of

a module, the Tick Manager is assigned a certain value to define the number of instruction cycles
within a logical tick. During the run time of the processor, the Tick Manager monitors the executed
instruction cycles of current tick and makes the fixed tick length.

For controller programming, the main goal of Esterel, the control signals tend to be more often
absent than present [6]. If The condition of all signals being absent is called a blank event. Due to
the feature of the reactive processor, the required instruction cycles for executing a blank event is
very tiny. To utilize this advantage of the KEP3a, when less than TICKLEN instructions have been
executed and there are no instruction are needed for current tick, i. e., all threads are in inactive
status, a IDLE signal will be broadcasted to gate the clock of other elements for power reduction.

6 The KEP3a Compiler

We have implemented a compiler for the KEP3a based on the CEC infrastructure [10]. A central
problem for compiling Esterel onto the KEP is the need to manage thread priorities during their
creation and their further execution. In the KEP setting, this is not merely a question of efficiency,
but a question of correct execution.

The priority assigned during the creation of a thread and by a particular PRIO instruction
is fixed. Due to the non-linear control flow, it is still possible that a given statement may be
executed with varying priorities; in principle, the architecture would therefore allow a fully dynamic
scheduling. However, we here assume that the given Esterel program can be executed with a
statically determined schedule, which requires that there are no cyclic signal dependencies. This is a
common restriction, imposed for example by the Esterel v7 [14] and the CEC [10] compilers; see also
Section 6.1. Note that there are also Esterel programs that are causally correct (constructive [7]),
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yet cannot be executed with a static schedule and hence cannot be directly translated into KEP3a
assembler using the approach presented here. However, these programs can be transformed into
equivalent, acyclic Esterel programs [20], which can then be translated into KEP3a assembler.
Hence, the actual run-time schedule of a concurrent program running on KEP3a is static in the
sense that if two statements that depend on each other, such as the emission of a certain signal and
a test for the presence of that signal, are executed in the same logical tick, they are always executed
in the same order relative to each other, and the priority of each statement is known in advance.
However, the run-time schedule is dynamic in the sense that due to the non-linear control flow
and the independent advancement of each program counter, it in general cannot be determined in
advance which code fragments are executed at each tick. This means that the thread interleaving
cannot be implemented with simple jump instructions; a run-time scheduling mechanism is needed
that manages the interleaving according to the priority and actual program counter of each active
thread.

To obtain a more general understanding of how the priority mechanism influences the order of
execution, recall that at the start of each tick, all enabled threads are activated, and are subsequently
scheduled according to their priorities. Furthermore, each thread is assigned a priority upon its
creation. Once a thread is created, its priority remains the same, unless it changes its own priority
with a PRIO instruction, in which case it keeps that new priority until it executes yet another PRIO

instruction, and so on. Neither the scheduler nor other threads can change its priority. Note also
that a PRIO instruction is considered instantaneous. The only non-instantaneous instructions, which
delimit the logical ticks and are also referred to delayed instructions, are the PAUSE instruction and
derived instructions, such as AWAIT and SUSTAIN. This mechanism has a couple of implications:

• At the start of a tick, a thread is resumed with the priority corresponding to the last PRIO

instruction it executed during the preceding ticks, or with the priority it has been created
with if it has not executed any PRIO instructions. In particular, if we must set the priority
of a thread to ensure that at the beginning of a tick the thread is resumed with a certain
priority, it is not sufficient to execute a PRIO instruction at the beginning of that tick; instead,
we must already have executed that PRIO instruction in the preceding tick.

• A thread is executed only if no other active thread has a higher priority. Once a thread is
executing, it continues until a delayed statement is reached, or until its priority is lower than
that of another active thread or equal to that of another thread with higher id. While a thread
is executing, it is not possible for other inactive threads to become active; furthermore, while
a thread is executing, it is not possible for other threads to change their priority. Hence, the
only way for a thread’s priority to become lower than that of other active threads is to execute
a PRIO instruction that lowers its priority below that of other active threads.

As an intermediate representation for the compilation of Esterel to KEP3a, including the thread
priority assignment, we use a directed graph structure called Concurrent KEP Assembler Graph
(CKAG), discussed in the next section.

6.1 The Concurrent KEP Assembler Graph (CKAG)

The CKAG is generated from the Esterel program via a simple structural translation. The only
non-trivial aspect is the determination of non-instantaneous paths, which is needed for certain
edge types. Also, for convenience, we label nodes with KEP3a instructions; however, we could
alternatively have used Esterel instructions as well.

The CKAG distinguishes the following sets of nodes:

D: Delay nodes (octagons), which correspond to delayed KEP instructions (PAUSE, AWAIT, HALT,
SUSTAIN), shown as octagons.
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F : Fork nodes (triangles), corresponding to PAR/PARE, shown as triangles.

T : Transient nodes. This includes EMIT, PRESENT, etc., shown as rectangles, and JOIN nodes,
shown as inverted triangles, but excludes fork nodes.

N : Set of all nodes, N = D ∪ F ∪ T .

For each fork node n we define

n.join: the JOIN statement corresponding to n,

n.sub: the transitive closure of nodes in threads generated by n.

For abort nodes n ([L|T][W]ABORT[I], SUSPEND[I]) we define

n.end: the end of the abort scope opened by n,

n.scope: the nodes within n’s abort scope.

For all nodes n we define

n.prio: the priority that the thread executing n should be running with.

For n ∈ D ∪ F , we also define

n.prionext: the priority that the thread executing n should be resumed with in the subsequent
tick.

It turns out that analogously to the distinction between prio and prionext, we must distinguish
between dependencies that affect the current tick and the next tick:

n.depi: the dependency sinks with respect to n at the current tick (the immediate dependencies),

n.depd: the dependency sinks with respect to n at the next tick (the delayed dependencies).

In general, dependencies are immediate. An exception are dependencies between emissions of
strong abort trigger signals and corresponding delay nodes within the abort scope, because then
the signal emission affects the behavior of the delay node not at the tick when it is entered (at the
end of a tick), but at the tick when it is restarted (at the beginning of a tick).

A non-trivial task when defining the CKAG structure is to properly distinguish the different
types of possible control flow, in particular with respect to their timing properties (instantaneous
or delayed). We define the following types of successors for each n:

n.succ: the set of nodes that follow sequentially after n (the control successors).

For n ∈ F , n.succ includes the nodes corresponding to the beginnings of the forked threads. If
n is the last node of a concurrent thread, n.succ includes the node for the corresponding JOIN—
unless n’s thread is instantaneous and has a (provably) non-instantaneous sibling thread.

Furthermore, the control successors exclude those reached via a preemption (n.sucw, n.sucs)—
unless n is an immediate strong abortion node, in which case n.end ∈ n.succ.

n.sucw: if n ∈ D, this is the set of nodes to which control can be transferred immediately, that is
when entering n at the end of a tick, from n to via an abort; if n exits a trap, then n.sucw

contains the end of the trap scope; otherwise ∅ (the weak abort successors).

If n ∈ D and n ∈ m.scope for some abort node m, it is m.end ∈ n.sucw in case of a weak

immediate abort, or in case of a weak abort if there can (possibly) be a delay between m and n.
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n.sucs: if n ∈ D, this is the set of nodes to which control can be transferred after a delay, that is
when restarting n at the beginning of a tick, from n to via an abort; otherwise ∅ (the strong
abort successors).

If n ∈ D and n ∈ m.scope for some strong abort node m, it is m.end ∈ n.sucs.

Note that this is not a delayed abort in the sense that an abort signal in one tick triggers
the preemption in the next tick. Instead, this means that first a delay has to elapse, and the
abort signal must be present at the next tick (relative to the tick when n is entered) for the
preemption to take place.

n.sucf : the set n.succ ∪ n.sucw ∪ n.sucs (the flow successors).

For n ∈ F we also define the following fork abort successors, which serve to ensure a correct
priority assignment to parent threads in case there is an abort out of a concurrent statement:

n.sucwf : the union of m.sucw \ n.sub for all m ∈ n.sub where there exists an instantaneous path
from n to m (the weak fork abort successors).

n.sucsf : the set ∪{(m.sucw ∪m.sucs) \n.sub | m ∈ n.sub} \n.sucwf (the strong fork abort succes-
sors).

As already mentioned, we assume that the given program does not have cycles. However, what
exactly constitutes a cycle in an Esterel program is not obvious, and to our knowledge there is no
commonly accepted definition of cyclicity at the language level. The Esterel compilers that require
acyclic programs differ in the programs they accept as “acyclic” (for example, the CEC accepts
some programs that the v5 compiler rejects and vice versa [20]), and a full discussion of this issue
goes beyond the scope of this paper. We want to consider a program cyclic if the priority assignment
algorithm presented in the next section fails. This results in the following definition, based on the
CKAG.

Definition 1. (Program Cycle) An Esterel program is cyclic if the corresponding CKAG contains
a path from a node to itself, where for all nodes n and their successors along that path, n′ and n′′,
the following holds:

n ∈ D ∧ n′ ∈ n.sucw

∨ n ∈ F ∧ n′ ∈ n.succ ∪ n.sucwf

∨ n ∈ T ∧ n′ ∈ n.succ ∪ n.depi

∨ n ∈ T ∧ n′ ∈ n.depd ∧ n′′ ∈ n′.succ ∪ n′.sucs ∪ n′.sucsf .

6.2 Computing Thread Priorities

The task of the priority algorithm is to compute a priority assignment that respects the Esterel
semantics as well as the execution model of the KEP3a. The algorithm computes for each reachable
node n in the CKAG the priority n.prio and, for nodes in D ∪ F , n.prionext. According to the
Esterel semantics and the observations made in Section 6.1, a correct priority assignment must
fulfill the following constraints, where m,n are arbitrary nodes in the CKAG.

Constraint 1 (Dependencies). A thread executing a dependency source node must have a higher
priority than the corresponding sink. Hence, for m ∈ n.depi, it must be n.prio > m.prio, and for
m ∈ n.depd, it must be n.prio > m.prionext.

Constraint 2 (Intra-Tick Priority). Within a logical tick, a thread’s priority cannot increase.
Hence, for n ∈ D and m ∈ n.sucw, or n ∈ F and m ∈ n.succ ∪ n.sucwf , or n ∈ T and m ∈ n.succ,
it must be n.prio ≥ m.prio.
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1 procedure main()

2 forall n ∈ N do
3 n.prio := −1

4 Vprio := ∅
5 Vprionext := ∅
6 NToDo := nroot

7 while ∃n ∈ NToDo \ Vprio do
8 getPrio(n)

9 forall n ∈ ((D ∪ F ) ∩ Vprio) \Vprionext do
10 getPrioNext(n)

11 end

1 function getPrioNext(n)

2 if n.prionext = −1 then
3 if (n ∈ Vprionext) then
4 error (“Cycle detected!”)

5 Vprionext ∪= n

6 if n ∈ D then
7 n.prionext := prioMax(n.succ ∪ n.sucs)

8 elseif n ∈ F then
9 n.prionext := max(n.join.prio, prioMax(n.sucsf ))

10 end
11 end
12 return n.prionext

13 end

1 function prio [Next]Max(M)

2 p := 0

3 forall n ∈ M do
4 p := max(p, getPrio[Next](n))

5 return p

6 end

1 function getPrio(n)

2 if n.prio = −1 then
3 if (n ∈ Vprio) then
4 error (“Cycle detected!”)

5 Vprio ∪= n

6 if n ∈ D then
7 n.prio := prioMax(n.sucw)

8 NToDo ∪= n.succ ∪ n.sucs

9 elseif n ∈ F then
10 n.prio := prioMax(n.succ ∪ n.sucwf )

11 NToDo ∪= n.sucsf∪ n.join.prio

12 elseif n ∈ T then
13 n.prio := max(prioMax(n.succ),

14 prioMax(n.depi) + 1,

15 prioNextMax(n.depd) + 1)

16 end
17 end
18 return n.prio

19 end

Figure 8: Algorithm to compute priorities.

Constraint 3 (Inter-Tick Priority for Delay Nodes). To ensure that a thread resumes computation
from some delay node n with the correct priority, n.prionext ≥ m.prio must hold for all m ∈
n.succ ∪ n.sucs.

Constraint 4 (Inter-Tick Priority for Fork Nodes). To ensure that a main thread that has executed a
fork node n resumes computation—after termination of the forked threads—with the correct priority,
n.prionext ≥ n.join.prio must hold. Furthermore, n.prionext ≥ m.prio must hold for all m ∈
n.sucsf .

The algorithm to assign priorities is shown in Figure 8. The algorithm starts in main(), which,
after some initializations, in line 8 calls getPrio() for all nodes that must yet be processed. This set
of nodes, given by NToDo \Vprio (for “Visited”), initially just contains the root of the CKAG. After
prio has been computed for all reachable nodes in the CKAG, a forall loop computes prionext for
reachable delay/fork nodes that have not been computed yet.

getPrio() first checks whether it has already computed n.prio. If not, it then checks for a recursive
call to itself (lines 3/4, see also Lemma 1). The remainder of getPrio() computes n.prio and, in case
of delay and fork nodes, adds nodes to the NToDo list. Similarly getPrioNext() computes n.prionext.

Lemma 1 (Termination). For a valid, acyclic Esterel program, getPrio() and getPrioNext() terminate.
Furthermore, they do not generate a “Cycle detected!” error message.

Proof. (Sketch) getPrio() produces an error (line 4) if it has not computed n.prio yet (checked in
line 2) but has already been called (line 3) earlier in the call chain. This means that it has called
itself via one of the calls to prioMax() or prioNextMax() (via getPrioNext()). An inspection of the
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1 procedure genPrioCode()

2 forall n ∈ F do // Step 1

3 forall m ∈ n.succ do
4 annotate corresponding PAR statement with m.prio

5

6 forall n ∈ N do // Step 2

7 // Case p. prio < n.prio impossible !

8 P := {p | n ∈ p.sucf , p.id = n.id} // id is the thread id

9 prio := max({p.prio | p ∈ P} ∪ {p.prionext | p ∈ P ∩ D})
10 if prio > n.prio then
11 insert ”PRIO n.prio” at n

12 // If n ∈ D: insert before n (eg, PAUSE)

13 // If n ∈ T : insert after n (eg, a label)

14

15 forall n ∈ D ∪ F do // Step 3

16 // Case n.prio > n.prionext is already covered in Step 2

17 if n.prio < n.prionext then
18 insert ”PRIO n.prionext” before n

19 end

Figure 9: Algorithm to annotate code with priority settings according to CKAG node priorities.

calling pattern yields that an acyclic program in the sense of Definition 1 cannot yield a cycle in
the recursive call chain.

Lemma 2 (Fulfillment of Constraints). For a valid, acyclic Esterel program, the priority assignment
algorithm computes an assignment that fulfills Constraints 1–4.

Proof. (Sketch) First observe that—apart from the initialization in main()—each n.prio is assigned
only once. Hence, when prioMax() returns the maximum of priorities for a given set of nodes, these
priorities do not change any more. Therefore, the fulfillment of Constraint 1 can be deduced directly
from getPrio. Similarly for Constraint 2. Analogously getPrioNext() ensures that Constraints 3 and
4 are met.

Lemma 3 (Linearity). For a CKAG with N nodes and E edges, the computational complexity of
the priority assignment algorithm is O(N + E).

Proof. (Sketch) Apart from the initialization phase, which has cost O(N), the cost of the algorithm
is dominated by the recursive calls to getPrio(). The total number of calls is bounded by E. With
an amortization argument, where the costs of each call are attributed to the callee, it is easy to see
that the overall cost of the calls is O(E).

Note also that while the size of the CKAG may be quadratic in the size of the corresponding
Esterel program in the worst case, it is in practice (for a bounded abort nesting depth) linear in
the size of the program, resulting in an algorithm complexity linear in the program size as well.

After priorities have been computed for each reachable node in the CKAG, we must generate
code that ensures that each thread is executed with the computed priority. This task is relatively
straightforward, Figure 9 shows the algorithm.

Another issue is the computation of thread ids, as these are also considered in scheduling de-
cisions in case there are multiple threads of highest priority. This property is exploited by the
scheduling scheme presented here, to avoid needless cycles. The compiler assigns increasing ids to
threads during a depth-first traversal of the thread hierarchy; this is required in certain cases to
ensure proper termination of concurrent threads.
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Figure 10: The structure of the KEP evaluation platform

6.3 Optimizations

The KEP3a compiler performs a dismantling, as a preprocessing step, to eliminate dependency
cycles (see Section 3.3). After assigning priorities, the compiler tries again to “undismantle” com-
pound statements whenever this is possible. This becomes apparent in the CKAG in Figure 3 for
example in node L3; this AWAIT S is the undismantled equivalent of the lines 7–11 in Edwards02-dism.

The compiler suppresses PRIO statements for the main thread, because the main thread never
runs concurrently to other threads. In the example, this avoids a PRIO 1 statement at label A3.

Furthermore, the compiler performs dead code elimination, also using the traversal results of
the priority assignment algorithm. In the Edwards02 example, it determines that execution never
reaches the infinite loop in lines 36–38 of Edwards02-dism, because the second parallel thread never
terminates normally, and therefore does not generate code for it.

However, there is still the potential for further optimizations, in particular regarding the priority
assignment. In the Edwards02 program, one could for example hoist the PRIO 221 out of the enclosing
loop, and avoid this PRIO statement altogether by just starting thread T2 with priority 2 and never
changing it again. Even more effective would be to start T3 with priority 3, which would allow to
undismantle L08–L12 into a single AWAIT.

7 Experimental Results

To validate the correctness of the KEP3a and its compiler and to evaluate its performance, we
employed an evaluation platform whose structure is shown in Figure 10. The user interacts via
a host work station with an FPGA Board, which contains the KEP3a as well as some testing
infrastructure. First, an Esterel program is compiled into an KEP object file (.ko) which is uploaded
to the FPGA board. Then, the host provides Input events to the KEP3a and reads out the generated
Output events. This also yields the number of instructions per tick, from which we can deduce the
worst case reaction time for the given trace. The input events can be either provided by the user
interactively, or they can be supplied via a .esi file. The host can also compare the Output results to
an execution trace (.eso). We use EsterelStudio V5.0 to compute trace files with state and transition
coverage, except for the eight but benchmark, for which the generation of the transition coverage
trace took unacceptably long and we restricted ourselves to state coverage. This comparison to
a reference implementation proved a very valuable aid in validating the correctness of both the
KEP3a and its compiler.

For a comparison of the performance of the KEP3a and its compiler with another platform, we
chose the MicroBlaze 32-bit soft COTS RISC processor core as the reference point. We use the
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CEC compiler 0.3, the Esterel Compiler V5.92, and the Esterel Compiler V7 to synthesize Esterel
modules to C programs, which are then compiled onto the MicroBlaze via gcc version 2.95.3-4, using
the default level 2 optimization.

Esterel KEP3a (unoptimized|optimized) MicroBlaze
Module Threads Preemptions CKAG Preemption handled by Compile Compile
Name Cnt Max Max Cnt Max Nodes Dep. Max PRIO Local Thread time time (sec)

depth conc. depth cnt prio instr’s Watcher Watcher Watcher (sec) V5 V7 CEC
abcd 4 2 4 20 2 211 36 3 30 0 4|3 16|11 0.15 0.12 0.09 0.30

abcdef 6 2 6 30 2 313 90 3 48 0 6|5 24|17 0.21 0.71 0.46 0.96
eight but 8 2 8 40 2 415 168 3 66 0 8|7 32|23 0.26 0.99 0.54 1.25
chan prot 5 3 4 6 1 80 4 2 10 0 0 6|4 0.07 0.35 0.35 0.43
reactor ctrl 3 2 3 5 1 51 5 1 0 0 1|0 4 0.06 0.29 0.31 0.36

runner 2 2 2 9 3 61 0 1 0 3|2 1 5|3 0.05 0.30 0.34 0.40
example 2 2 2 4 2 36 2 3 6 0 1 3|2 0.05 0.28 0.31 0.31

ww button 13 3 4 27 2 194 0 1 0 0 5 22|10 0.10 0.44 0.40 0.64
greycounter 17 3 13 19 2 414 53 6 58 0 4 15 0.34 0.57 0.43 0.75

mca200 59 5 49 64 4 11219 129 11 190 2 14 48 11.25 69.81 12.99 7.37

Table 2: Experimental results of the KEP and its Esterel compiler.

Table 2 summarizes experimental results for a number of standard benchmarks [6, 3, 8]. To
characterize each benchmark with respect to its use of concurrency and preemption constructs, the
table lists the count and depth of them. For the KEP3a, the table lists the number of dependencies
found, the used number of priority levels (the KEP3a provides up to 255), and the number of used
PRIO instructions. We see that in most cases, the maximum priority used is three or less, indicating
relatively few priority changes per tick. To assess the usefulness of providing different types of
watchers, as has been described in Section 5.3, Table 2 also lists which how many watchers of each
type were required. As it turns out, most of the preemptions could be handled by the cheapest
Watcher type, the Thread Watcher. For example, in the case of the mca200 benchmark, this reduces
the hardware requirements from 4033 slices (if all preemptions were handled by general purpose
Watchers) to 3265 slices. Table 2 also compares the results for the completely dismantled (“unopti-
mized”) and the partially undismantled (“optimized”) version, as explained in Section 6.3. As the
results indicate, the optimized version often uses significantly less Watchers than the unoptimized
version. We also compare compilation times, from Esterel code to machine code, and notice that
the KEP3a compiler is quite competitive with the synthesis onto the Microblaze.

Table 3 analyzes the context switch (CS) activities in the benchmarks, for some specific test
traces. For example, of the total of 292 instructions executed for the ww button benchmark, there
was a CS at about every other instruction, whereas for the runner benchmark, there was a CS
roughly every seven instructions. This indicates that the fast, light-weight CS mechanism of the
KEP3a is a key to performance for executing these types of reactive programs. Overall, between
30 and 60% of the CSs took place at the same priority, that is, because threads became inactive
and another thread at the same priority took over. Some benchmarks did not require any PRIO

instructions, for others they constituted up to 25% of the instructions executed. Up to 37% of CSs
were due to PRIO instructions. Finally, for those benchmarks that included PRIO statements, less
than half of the PRIO instructions actually resulted in a CS, indicating that a static schedule would
have been comparatively inefficient.

Table 4 compares executable code size and RAM usage between the KEP3a and the MicroBlaze
implementations. To assess the size of the KEP3a code relative to the Esterel source, we compare
the code size in words to the Esterel Lines of Code (LOC, before dismantling, without comments),
and notice that the KEP3a code is very compact, with a word count close to the Esterel source. For
comparison with the Microblaze, we compare the size of Code + Data, in bytes, and notice that the
KEP3a code is typically an order of magnitude smaller than the MicroBlaze code. Regarding the
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Instr’s CSs CSs at same PRIOs CSs due to
Module total total priority total PRIO
Name abs. abs. ratio abs. rel. abs. rel. abs. rel. rel.

[1] [2] [1]/[2] [3] [3]/[2] [4] [4]/[1] [5] [5]/[2] [5]/[4]
abcd 16513 3787 4.36 1521 0.40 3082 0.19 1243 0.33 0.40

abcdef 29531 7246 4.08 3302 0.46 6043 0.20 2519 0.35 0.42
eight but 39048 10073 3.88 5356 0.53 8292 0.21 3698 0.37 0.45
chan prot 5119 1740 2.94 707 0.41 990 0.19 438 0.25 0.44
reactor ctrl 151 48 3.15 29 0.60 0 0 0 0 -

runner 5052 704 7.18 307 0.44 0 0 0 0 -
example 208 60 3.47 2 0.30 26 0.13 9 0.15 0.35

ww button 292 156 1.87 92 0.59 0 0 0 0 -
greycounter 160052 34560 4.63 14043 0.41 26507 0.17 12725 0.37 0.48

mca200 982417 256988 3.82 125055 0.49 242457 0.25 105258 0.41 0.43

Table 3: Analysis of context switches (CSs), in absolute numbers and relative. Minimal and maximal
relative values are shown bold.

Esterel MicroBlaze KEP3a, unoptimized KEP3a, opt.
Module LOC Code+Data (b) Code (w) Code+Data (b) Code (w)
Name V5 V7 CEC abs. rel. abs. rel. abs. rel.

[1] [2] (best) [3] [3]/[1] [4] [4]/[2] [5] [5]/[3]
abcd 160 6680 7928 7212 168 1.05 756 0.11 164 0.93

abcdef 236 9352 9624 9220 252 1.07 1134 0.12 244 0.94
eight but 312 12016 11276 11948 336 1.08 1512 0.13 324 0.94
chan prot 42 3808 6204 3364 66 1.57 297 0.09 62 0.94
reactor ctrl 27 2668 5504 2460 38 1.41 171 0.07 34 0.89

runner 31 3140 5940 2824 39 1.22 175 0.06 27 0.69
example 20 2480 5196 2344 31 1.55 139 0.06 28 0.94

ww button 76 6112 7384 5980 129 1.7 580 0.10 95 0.74
greycounter 143 7612 7936 8688 347 2.43 1567 0.21 343 1

mca200 3090 104536 77112 52998 8650 2.79 39717 0.75 8650 1

Table 4: Memory usage comparison between KEP and MicroBlaze implementations. “(b)” refers
to measurements in bytes, “(w)” to words.

effectiveness of the compiler optimization, Table 4 indicates that this on average leads to an 10%
memory reduction. Finally, the KEP3a implementation results on average in an 83% reduction
of memory usage (codes and RAM size) when compared with the best result of the MicroBlaze
implementation.

The improvement in execution time of the KEP3a implementation is shown in Table 5. Com-
paring with the best result of the MicroBlaze implementations, the KEP3a typically obtains more
than 4x speedup for the WCRT, and more than 5x for the Average Case Reation Time (ACRT).

To compare the energy consumptions, we choose the Xilinx 3S200-4ft256 as FPGA platform.
This requires an additional 37mW as quiescent power for the chip itself. Based on the findings pre-
sented in Table 5, we calculate the clock frequencies needed for the KEP3a and MicroBlaze systems
to achieve the same WCRT, and then estimate their energy consumptions by Xilinx WebPower Ver-
sion 8.1.01. Table 6 shows that the KEP3a reduces energy usage on average by 75%. The reduction
becomes even more significant if all environment inputs are absent, a rather frequent case; in this
case, the KEP3a achieves 86% power savings.

The KEP3a is highly configurable, including the possible degree of concurrency. To assess the
resource efficacy of the multi-threaded approach relative to multi-processing approach, we generated
KEP3a versions with a maximal thread number varying between 2 and 120. All versions are
configured with 2 Watchers, 8 Local Watchers, and 48 valued I/O signals. The clock rate does not
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MicroBlaze KEP3a, unoptimized KEP3a, optimized
Module WCRT ACRT WCRT ACRT WCRT ACRT
Name V5 V7 CEC V5 V7 CEC abs. rel. abs. rel. abs. rel. abs. rel.

[1] (best) [2] (best) [3] [3]/[1] [4] [4]/[2] [5] [5]/[3] [6] [6]/[4]
abcd 1559 954 1476 1464 828 1057 135 0.14 87 0.11 135 1 84 0.97

abcdef 2281 1462 1714 2155 1297 1491 201 0.14 120 0.09 201 1 117 0.98
eight but 3001 1953 2259 2833 1730 1931 267 0.14 159 0.09 267 1 153 0.96
chan prot 754 375 623 683 324 435 117 0.31 60 0.19 117 1 54 0.90
reactor ctrl 487 230 397 456 214 266 54 0.23 45 0.21 51 0.94 39 0.87

runner 566 289 657 512 277 419 36 0.12 15 0.05 30 0.83 6 0.40
example 467 169 439 404 153 228 42 0.25 24 0.16 42 1 24 1

ww button 1185 578 979 1148 570 798 72 0.12 51 0.09 48 0.67 36 0.71
greycounter 1965 1013 2376 1851 928 1736 528 0.52 375 0.40 528 1 375 1

mca200 75488 29078 12497 73824 24056 11479 2862 0.23 1107 0.10 2862 1 1107 1

Table 5: The worst-/average-case reaction times (in clock cycles) for the KEP3a and MicroBlaze
implementations, in absolute and relative values.

MicroBlaze KEP3a Ratio
Module (82mW@50MHz) (mW) (KEP to MB)
Name Blank Peak Blank Peak Blank
abcd 69 13 8 0.16 0.12

abcdef 74 13 7 0.16 0.09
eight but 74 13 7 0.16 0.09
chan prot 70 28 12 0.34 0.17
reactor ctrl 76 20 13 0.24 0.17

runner 78 14 2 0.17 0.03
example 77 25 9 0.30 0.12

ww button 81 13 4 0.16 0.05
greycounter 78 44 33 0.54 0.42

Table 6: The energy consumption comparison between KEP and MicroBlaze implementations.

vary significantly, it is around 60 MHz; one instruction takes three clock cycles. Table 7 shows
the corresponding resources usages. The hardware usage increases only 4x when the concurrency
increases 60x when measured in slices, and even just 1.4x when measured in equivalent gates. The
implementation is based on the Xilinx 3S1500-4fg676 FPGA. For the comparison, the MicroBlaze
which with the same memory size (BRAM) employs 309k gates.

8 Conclusions & Outlook

We have presented the KEP3a, a multi-threaded processor, which allows the efficient execution of
concurrent Esterel programs. It provides significant improvements over earlier reactive processing
approaches, mainly in terms of completeness of the instruction set and its efficient mapping to
hardware. The multi-threaded approach poses specific compilation challenges, in particular in terms
of scheduling, and we have presented an analysis of the task at hand as well as an implemented
solution. As the experimental comparison with a 32-bit commercial RISC processor indicates, the

Max. threads 2 10 20 40 60 80 100 120
Slices 1295 1566 1871 2369 3235 4035 4569 5233

Gates (k) 295 299 311 328 346 373 389 406

Table 7: Extending a KEP3a to different threads.
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approach presented here has advantages in terms of memory use, execution speed, and energy
consumption.

However, there is still room for optimization. The thread scheduling problem is related to the
problem of generating statically scheduled code for sequential processors, for which Edwards has
shown that finding efficient schedules is NP hard [11]. We encounter the same complexity, but our
performance metrics is a little different. The classical scheduling problem tries to minimize the
number of context switches. On the KEP3a, context switches are free, because no state variables
must be stored and resumed. However, to ensure that a program meets its dependency-implied
scheduling constraints, threads must manage their priorities accordingly, and it is this priority
switching which contributes to code size and costs an extra instruction at run time. Minimizing
priority switches is related to classical constraint-based optimization problems as well as to compiler
optimization problems such as loop invariant code motion.

This paper has made the case for a custom processor design for the efficient execution of concur-
rent reactive programs. However, the underlying model of computation, with threads keeping their
individual program counters and a priority based scheduling, could also be emulated by classical
processors. This would be less efficient than a custom processor, but still could take advantage
of the compact program representation developed here. The CKAG could serve as a basis for
traditional intermediate language (C) code generation; the main issue here would be an efficient
implementation of the scheduler. However, as one would not have to run the scheduler at every
instruction, as currently done by the KEP3a, but only at fork or delay nodes, this might still be
reasonably efficient. Furthermore, it would be interesting to implement a virtual machine that has
an instruction set similar to the KEP3a; see also the recent proposal by Plummer et al. [22]. Finally,
it should be a very interesting project to implement the KEP3a itself in Esterel, which would not
only make an interesting benchmark, but could also be used to synthesize a virtual machine.

We are also investigating to augment the KEP3a with external hardware to speed up the compu-
tation of signal expressions [15]. Another interesting problem raised by the KEP3a’s multi-threaded
architecture is the analysis of its WCRT. Finally, we are also interested in developing an advanced
energy management methodology, which is based on the WCRT information, to save the power
consumption further.
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