
Model Refactorings through Rule-Based Inconsistency
Resolution

Ragnhild Van Der Straeten
Vrije Universiteit Brussel

System and Software Engineering Lab
Pleinlaan 2, 1050 Brussels, Belgium

rvdstrae@vub.ac.be

Maja D’Hondt
Université des Sciences et Technologies de Lille

Laboratoire d’Informatique Fondamentale
59655 Villeneuve d’Ascq Cédex, France

Maja.D-Hondt@lifl.fr

ABSTRACT
The goal of model-driven engineering is to raise the level
of abstraction by shifting the focus to models. As a re-
sult, complex software development activities move to the
modelling level as well. One such activity is model refac-
toring, a technique for restructuring the models in order to
improve some quality attributes of the models. As a first
contribution of this paper, we argue and show that refac-
toring a model is enabled by inconsistency detection and
resolution. Inconsistencies in or between models occur since
models typically describe a software system from different
viewpoints and on different levels of abstraction. A second
contribution of this paper is rule-based inconsistency reso-
lution, which enables reuse of different inconsistency reso-
lutions across model refactorings and manages the flow of
inconsistency resolution steps automatically.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Object-oriented design methods; D.1 [Programing
Techniques]: Miscellaneous; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic; I.2.4 [Ar-
tificial Intelligence]: Knowledge Representation Formal-
isms and Methods

Keywords
Model Refactoring, Inconsistency Management, Description
Logics, Rule-Based Systems

1. INTRODUCTION
Model-driven engineering is an approach to software en-

gineering where the primary focus is on models, as opposed
to source code. Model transformation is considered to be
the heart and soul of model-driven engineering [18].

The inherent complexity of (design) models increases as
more software engineering activities move to the modelling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

level. According to Lehman’s second law of software evolu-
tion: “As a program is evolved its complexity increases un-
less work is done to maintain or reduce it” [11]. To counter
this growing complexity, we need model refactorings [1, 3,
21]. Model refactorings are model transformations that re-
structure the models in order to improve some quality at-
tributes of the models but preserve the behaviour. They
are the design level equivalent of source code refactorings
[7]. In this paper, we will focus on the application of model
refactorings [13].

The activity of applying a model refactoring consists of
changing a particular configuration of model elements. This
usually brings the model in an inconsistent state, which
needs to be resolved subsequently. A first insight and contri-
bution of this paper is that applying most model refactorings
boils down to detecting and resolving a series of inconsisten-
cies. Inconsistency management is well-studied and well-
known domain within software engineering. In [24], the first
author et al. present a classification of different inconsisten-
cies in the context of UML and a formalism for detecting
inconsistencies.

A second insight and contribution of this paper is that
reuse of inconsistency resolutions in and across model refac-
torings is necessary and can be achieved by rule-based in-
consistency resolution. In order to validate this and the
above claim, we analyse a representative set of model refac-
torings and show that (1) executing most model refactorings
consists indeed of resolving a number of inconsistencies and
(2) concrete resolutions of inconsistencies are reused in and
across model refactorings.

This paper is structured as follows. Section 2 introduces
model refactorings, inconsistencies and the relationship be-
tween both concepts. Section 3 argues the necessity of a
rule-based inconsistency resolution approach and introduces
our particular approach and tool support. In Section 4 we
provide a validation and discussion of our approach. Sec-
tion 5 discusses additional issues and future work. Section
6 presents related work and Section 7 concludes this paper.

2. MODEL REFACTORINGS AND INCON-
SISTENCIES

First, we introduce model refactorings through source code
refactorings and their relation to inconsistencies and sec-
ondly, we introduce one refactoring in depth.

2.1 Source Code versus Model Refactoring
Some model refactorings are inspired by source code refac-

torings [7], others are specifically defined from the model
point of view (e.g., state machine refactorings) [3]. In con-
trast to model refactorings, source code refactorings have
been thoroughly studied in literature [7, 16].

Source code refactorings are defined on certain source code
elements which are chosen by the developer. Each source
code refactoring description in [7] contains a mechanics sec-
tion. That section gives a step-by-step description on how
to carry out the refactoring. Each step consists of a certain
activity, for example, copy the body of a certain method. In
most cases, this step is followed by a description of correc-
tions necessary to make the code compile. These corrections
not only affect the newly created elements but also existing
elements. For each application of a refactoring, these correc-
tions can be different. Consequently, although a refactoring
is defined on only those elements indicated by the user, it
can affect different elements.

The activity of how to carry out a model refactoring can
also be described step by step. Similar to the execution of
source code refactorings, a certain step can affect several el-
ements in the model and introduce inconsistencies. The in-
consistencies resulting from the execution of a certain refac-
toring step need to be resolved and (similar to corrections
in source code refactorings) inconsistency resolutions can af-
fect not only the newly created elements but also existing
ones.

Different techniques exist for helping the user to resolve
inconsistencies (for a detailed overview, see [20]). In our
work, we focus on resolution actions that modify models in
order to resolve inconsistencies. We use the term inconsis-
tency resolution to indicate a set of resolution actions that
resolve a certain inconsistency. We do not consider other
techniques such as enforcing of consistency of models at any
time or preserving consistency as much as possible. Such
techniques are considered to be unrealistic in a real-world
project on which several developers are working at the same
time [14].

In this paper, we show that most model refactorings
are executed through the resolution of inconsisten-
cies.

In the remainder of this section, we will give an in-depth
description of the execution of Move Operation. We have
chosen this particular refactoring because, although it is
conceptually a small refactoring, it illustrates very well how
inconsistency resolutions can be used for the support of the
execution of most model refactorings.

2.2 ExecutingMove Operation

In Figure 1, the decision diagram and the different activ-
ities of the Move Operation refactoring are shown. Activity
diagrams as defined in the UML are used to specify the
decision diagram of a model refactoring. The actions repre-
senting a refactoring step in the diagram are marked by a
S. We will now describe step by step the execution of this
model refactoring similar to the description of source code
refactorings by Fowler [7].

Declare the operation in the target class
A possible inconsistency that can occur after this step is that
the operation’s name and signature already exist in the tar-
get class. However as already mentioned in the introduction,
our inconsistencies are classified in the context of UML. In
this classification we do not consider well-formedness rules.
As a result, no inconsistencies are checked after this step.

Declare the operation in the
target class

copy body of operation to
target class

move operation
to target class add parameter add reference delegate to

source class

remove source
operation

retain it as delegating
operation

dangling feature
reference

yes(1)no

dangling
association
reference?

yes(1) yes(2)

yes(4)
No

remove

retain

dangling feature
reference?

yes

behaviour
inconsistencies?

yes

add lifeline

yes(2)

add lifeline

yes(2)

dangling
association
reference?

no

no

synchronise sequence and
state machine diagrams

use existing
lifeline

yes(3)

use reference

yes(3)

use existing
lifeline

yes(1)

add
parameter add reference

yes(1) yes(2)

use existing
reference

yes(3)

dangling
association
reference?

add parameter add reference

yes(1)
yes(2)

yes(3)

use existing
reference

yes

no

S

S

S

S

Figure 1: Decision activities for Move Operation.

Copy the body of this operation to its new target
In this step, answers to the question how to reference the
source object from the target class and the question how to
reference the referenced objects in the body of the operation
from the target class need to be given. Support for answering
these questions can be delivered by an inconsistency resolu-
tion approach at the model level. Possible answers to the
first question are: (1) move the operation to the target class
as well, in this case the model refactoring Move Operation is
executed first for the operation in question; (2) create or use
a reference from the target class to the source, (3) pass the
source object as a parameter to the operation, in this case
the model refactoring Add Parameter (similar to the Add
Parameter source code refactoring [7]) is executed first. Dif-
ferent solutions are possible for when objects are referenced
in the body of the operation that are not known to the tar-
get class: (1) an explicit reference can be added to the class
in question; (2) a parameter can be added to the operation;
(3) as the objects are known to the source class, operation
calls can be sent to the source class, but this involves the
addition of different operations in the source class, which
are delegating operations. Figure 1 shows the different in-
consistencies and possible resolutions. For an explanation
of the different inconsistencies, see [22].

Behavioural inconsistencies [22] can also occur in this step,

e.g., when the sequence of messages received by an object
of a certain class in a particular scenario does not conform
with the specification of the behaviour for this particular
class. These inconsistencies can be resolved in this step, or
after the last step in the execution of this refactoring.

Remove the operation in the source class or retain
it as a delegating operation
If the operation is removed from the source class, an inconsis-
tency can occur in the scenarios where the operation is sent
to an object of the source class while this operation is not
known anymore by the source class or in the specification of
the behaviour of the source class. In this case, the receiver
of the operation must be changed to the correct object that
is an instance of the target class or such an object must be
created. This resolution can cause another inconsistency if
the target class cannot be reached from the object invoking
the operation or if the relationship on which the message
is sent is not known between the objects. This inconsis-
tency can be resolved by either creating a reference or using
an existing one, or adding a parameter to the operation in
question.

In case the operation is turned into a delegating method,
the question how to reference the correct target object from
the source object needs to be answered. Solving this incon-
sistency boils down to an inconsistency resolution. Possi-
ble resolutions are: (1) reference the correct target object
through the creation of a new reference, or (2) use an ex-
isting reference or add a parameter to the operation. If
there are still inheritance inconsistencies or incompatible be-
haviour, these inconsistencies can be resolved at the end of
this step.

3. INCONSISTENCY DETECTION AND
RESOLUTION

3.1 Inconsistency Detection
In [24], the first author et al. present a classification of

inconsistencies. To be able to define and detect these classi-
fied inconsistencies in a precise yet executable way, we need
a formal specification and a formal reasoning engine relying
on this specification. The formalism used and introduced for
this purpose in [24] is Description Logics (DLs) [2]. DLs are
a family of formalisms to represent knowledge. They are less
expressive than first-order logic but have more specific rea-
soning abilities. DLs represent knowledge by defining con-
cepts, roles and individuals. Individuals represent instances
of the defined concepts and can be related to each other by
the defined roles.

The UML is currently the most widely used object-oriented
modelling language. The visual representation of the UML
consists of a set of different diagram types. The different di-
agram types describe different aspects of a software system.
In our work, class diagrams, sequence diagrams and proto-
col state machine diagrams of the UML version 2.0 [15] are
considered. The discussion in this paper however, can be
applied to any object-oriented modelling language.

The UML metamodel is translated into DL concepts and
roles. There is a one-to-one mapping between UML meta-
classes and concepts and between UML meta-associations
and roles. User-defined models are interpreted as instances
of the UML metamodel and are asserted in a factbase as in-
stances of a concept representing a certain metaclass and re-

lated to each other by roles, representing meta-associations.
The state-of-the-art DL system RACER [9] is used in our
approach for the representation and reasoning over fact-
bases representing UML models, because this system has
the most extensive reasoning abilities, an extensive query
language and rule system. The syntax for asserting an indi-
vidual in this DL system, is (instance In C) declaring
In as being an individual of the concept C. For exam-
ple, (instance session class) specifies that the individ-
ual session is an instance of the concept class. The syntax
for asserting that the individuals In1 and In2 are related by
the role R is (related In1 In2 R). For example, the as-
sertion (related session getcustomerspecifics owned-

operation) relates the individual session with getcustom-

erspecifics through the role ownedoperation.
Inconsistencies are detected by querying the assertions

that represent the model. This is expressed in the query
language of RACER, nRQL. It is possible to group queries
together in one “super” query. In [24], the first author et al.
present queries for detecting the classified inconsistencies.

3.2 Rule-Based Inconsistency Resolution
Section 2 has illustrated that executing a model refactor-

ing boils down to resolving a number of possibly recurring
inconsistencies. The decisions that have to be taken in or-
der to execute the Move Operation model refactoring are
depicted in the activity diagram in Figure 1. However, even
for a model refactoring as moderately complex as this one,
this diagram is non-trivial. Indeed, every possible situation
in the model to be refactored leads to a potentially different
flow of inconsistency resolutions. Moreover, the same incon-
sistency resolution can occur multiple times in different com-
binations with other inconsistency resolutions. Although
the previous section only illustrated one model refactoring,
we observe that the same inconsistencies occur in multi-
ple model refactorings. As such, a first important criterion
when resolving inconsistencies as part of model refactorings
is reuse of inconsistency resolutions in and across
model refactorings.

Each detected inconsistency can be resolved in several
different ways. The selection of a particular resolution for
an inconsistency can depend on the particular state of the
model. For the most part, however, selecting a resolution
is a matter of preference of the person who is executing the
model refactoring. Therefore, we require choice points in the
flow of inconsistency resolutions where the refactorer is able
to communicate his or her preference for a particular resolu-
tion. This choice affects the subsequent flow of inconsistency
resolutions. As such, a second criterion we aim to address
is support for user-guided selection of inconsistency
resolutions.

In this paper we argue that a rule-based approach to re-
solving inconsistencies meets the two criteria specified above.
In the following we introduce our approach to rule-based in-
consistency resolution specifically. In Section 4 we validate
and discuss this claim.

3.2.1 Inconsistency Resolution Rules
A generic inconsistency resolution rule has the form: IF

inconsistency X occurs in model M THEN change model

M so that X is resolved. There are typically multiple
resolutions for a particular inconsistency and each one is rep-
resented by one rule. Hence, all rules pertaining to a certain

inconsistency X have the same expression inconsistency X

occurs in model M in their conditions. The occurence of an
inconsistency in a model is detected by querying the data
representing the model, i.e., the model elements. A certain
state of the model attests to the presence of a particular
inconsistency.

A rule’s conclusion states how to resolve the detected in-
consistency. It consists of a sequence of statements, where
each statement is responsible for either adding data to the
model or removing data from the model. As such, the model
elements are rearranged so that the inconsistency is resolved.
However, in order for a certain inconsistency resolution to
be applicable, some model elements typically need to be
present or in a particular configuration. Therefore, this is
also checked in the condition of the rule, after checking the
occurrence of the inconsistency.

In our approach, a set of inconsistency resolution rules
corresponding to an inconsistency is by no means unique or
complete. The rules embody certain strategies for resolv-
ing inconsistencies, other or more strategies can typically
be devised. Therefore, there is no formal verification of the
completeness and soundness of the rules foreseen.

The rule below represents a possible resolution of an in-
consistency occurring in the Move Operation model refac-
toring. In particular, this rule ensures the creation of a new
association from the target class to the source class and an
instance of this association being used in the sequence di-
agram. The rule is expressed in the rule-based system of
RACER.

1. (firerule
2. (and (check-DAR ?class ?op ?m)
3. (?m ?con connectorr)
4. (?m ?mend sendEvent)
5. (?mend ?lifeline coveredsub)
6. (?lifeline ?connectableel represents)
7. (?connectableel ?class2 base)
8. (?u ?assocname user-option-addAssoc))
9. ((related (new-ind assoc ?assocname) ?assocname name)

10. (related (new-ind assoc ?assocname)
11. (new-ind end ?class) memberend)
12. (related (new-ind assoc ?assocname)
13. (new-ind end ?class2) memberend)
14. (related ?class (new-ind end ?class) ownedattribute)
15. (related ?class2 (new-ind end ?class2) ownedattribute)
16. (related (new-ind connector ?assocname)
17. (new-ind assoc ?assocname) associationtype)
18. (related ?m (new-ind connector ?assocname) connectorr)
19. (forget-role-assertion ?m ?con connectorr)))

The entire conjunction is the rule’s condition (lines 2-8),
whereas the rest (lines 9-19) is the rule’s conclusion. The
first element of the condition (line 2) is a nRQL query for
detecting the inconsistency (see Section 3.1). Rule variables
are preceded by a question mark. Noteworthy in this rule is
the last element of the condition (line 8), used for asking the
user for a name for the association that is going to be cre-
ated in the rule’s conclusion, expressed by (new-ind assoc

?assocname). Furthermore, new association ends are cre-
ated and related to the new association and to the correct
classes (lines 10-15). Also a new connector, representing a
link in a sequence diagram on which a message is sent, is
created and related to the newly created association (lines
16-18). The old connector is removed from the original mes-
sage (line 19). The rule is executed for each set of bindings
of the variables, in other words, for each detected instance
of the inconsistency.

3.2.2 Rule Engine

In our approach we employ a forward-chaining rule engine
since the engine has to be activated when model elements
change. As a result of firing a rule that resolves an inconsis-
tency, the model is changed anew, which again ensures that
the rule engine looks for rules that are applicable in the new
situation. One of the criteria we established earlier in this
section is that selecting one of the applicable inconsistency
resolutions is up to the developer. Therefore, after the rule
engine has determined the applicable rules, the developer
is required to select the preferred resolution of an incon-
sistency. The corresponding rule is subsequently actually
fired. Note that resolving an inconsistency might have as a
side effect that another previously detected inconsistency is
resolved. After each inconsistency resolution, the applicable
inconsistency resolutions are updated by the rule engine.

3.3 Inconsistency Management Tool
We set up a proof-of-concept inconsistency management

tool, called RACOoN 1 that is plugged into Poseidon [8],
which is a state-of-the-art UML CASE tool. RACER is
used as the underlying reasoning system. RACOoN allows
for its configuration and for importing the DL translation
of the UML metamodel into RACER. Users can choose and
execute the detection of particular inconsistencies on UML
models. User-defined models are translated into DL asser-
tions and loaded into RACER. Different rules are imple-
mented and loaded in RACOoN. Using these rules, refactor-
ings can be executed.

Different model refactorings are implemented in the envi-
ronment. Figure 2 shows the refactoring manager pane of
our tool incorporated in Poseidon. The user can select a
refactoring, e.g., the Move Operation. After executing the
first two steps of this refactoring, a rule engine is called and
different rule sets are fired. If there are inconsistencies in
the model(s) under consideration, different resolutions are
presented to the user.

The user can select a certain resolution as shown in Fig-
ure 2. If user input is necessary for the execution of this
resolution, such as the name of a model element that is to
be created, the necessary information is requested from the
user. After the execution of this resolution, the cycle begins
anew and the rule engine again looks for applicable rules.
If none is found, the tool moves on to the next step in the
refactoring.

4. VALIDATION AND DISCUSSION

4.1 Model Refactorings and Inconsistencies
In this section, we motivate our first claim (Section 2) by

means of a set of analysed refactorings. We considered one
or two representative refactorings of each category defined
by Fowler [7] (see Table 1). Several reasons for consider-
ing this particular set of refactorings can be stated: (1) the
refactorings defined by Fowler are well-known and some of
these refactorings have already been defined at design level
[21]; (2) the corresponding model refactorings are model
transformations that transform not only the specification of
the static structure as suggested by the UML drawings used
in Fowler. These refactorings affect also the specification of

1RACOoN stands for Resolution Actions for inCONsisten-
cies

User can select a
refactoring

Different resolutions
are presented to the

user

User can select a
resolution

Figure 2: Screenshot of RACOoN presenting different resolutions to the user.

the behaviour of the system under study; (3) because the
source code refactorings defined in Fowler are well-known,
it is obvious to consider their corresponding model refactor-
ings in view of exploring the link between these refactorings
and (generated) source code in the larger context of MDE.

Table 1: Analysis of relation between model refac-
torings and inconsistencies.

Add Parameter

Extract Class

Move Operation
Pull up Operation

Push down Operation
Extract Operation

in
he

rit
an

ce
in

co
m

pa
tib

el
 d

ec
la

ra
tio

n
in

co
m

pa
tib

le
 b

eh
av

io
ur

da
ng

lin
g

ty
pe

 re
fe

re
nc

e

di
sc

on
ne

ct
ed

 m
od

el

in
he

rit
ed

 a
ss

oc
ia

tio
n

re
fe

re
nc

e
in

st
an

ce
 d

ec
la

ra
tio

n
m

iss
in

g

Replace Conditional with
Polymorphism

× × × ×
×× ×

× × × ×
×
×
×
×

×
× × ×

×
×

×× ××

Change Bidirectional
Association to Unidirectional

Move Property
×
×
×
×
×

×

Table 1 summarises which inconsistencies can be detected
and resolved to support a certain model refactoring. The

rows contain the different refactorings we (re)designed at the
model level so far. A X in a cell of the table indicates that
the resolutions of the corresponding inconsistency can be
used to support the execution of the corresponding refactor-
ing. This table indicates that executing the studied model
refactorings consists indeed of resolving inconsistencies and
that the same inconsistencies occur in different model refac-
torings.

Some refactorings however, can be executed without this
process of inconsistency detection and resolution. Consider
a refactoring where a class is inserted in a hierarchy. In a
first step, the new class is created. This does not introduce
any inconsistencies. A second step is to add a generalisation
relationship between this new class and the superclass. This
also does not introduce any inconsistencies. A third step is
to add a generalisation relationship between the subclass
and the new class. Finally, the generalisation relationship
between the superclass and subclass can be removed without
causing any inconsistencies.

4.2 Rule-Based Inconsistency Resolution
We review the criteria we identified in Section 3:

Reuse of inconsistency resolutions in and across mod-
el refactorings. As introduced earlier in Section 3, an in-
consistency resolution encompasses the detection of a partic-
ular inconsistency and one possible way of resolving it. Rule-
based systems provide an explicit rule construct, which we
use for representing inconsistency resolutions. This means
that the detection and resolution parts of an inconsistency
resolution are encapsulated. A rule engine treats rules as
stand-alone modules.

Rule-based systems dramatically boost reuse of rules, since
they only have to be defined once and the rule engine fires
the ones appropriate for a certain situation. As such, the

rule engine constructs implicit flows of rules or, in our case,
inconsistency resolutions.

Table 2: Analysis of reuse of inconsistency resolu-
tions in and across model refactorings.

incompatible declaration

dangling type reference
inherited association

reference

instance declaration
missing

Ad
d

Pa
ra

m
et

er

Ex
tra

ct
 C

la
ss

M
ov

e
O

pe
ra

tio
n

Pu
ll u

p
O

pe
ra

tio
n

Pu
sh

 d
ow

n
O

pe
ra

tio
n

Ex
tra

ct
 O

pe
ra

tio
n

Re
pl

ac
e

Co
nd

itio
na

l w
ith

Po
lym

or
ph

ism

Ch
an

ge
 B

id
ire

ct
io

na
l

As
so

cia
tio

n
to

 U
ni

di
re

ct
io

na
l

M
ov

e
Pr

op
er

ty

S1
S2
S3

S5
S4

S6
S7
S8
S9
S10
S11
S12
S13
S14

1

1

1

1
1

1
1

1
1

1

1

1
1
1

2
2
2
2

2
2

1

1
1

1
1

1
1

2
2

2
2

2
2
2

1

2
2
2
2
2

1

S7→Move Operation; S13 →Add Parameter; S14→Move Property;

We now show that reuse of inconsistency resolutions such
as described above is crucial in the context of model refactor-
ings, and can be addressed by a rule-based approach. We
present an analysis of the relation between several model
refactorings and inconsistency resolutions. The results are
shown in Table 2. This table presents the same 9 model
refactorings as before (colums), but this time in relation to
the concrete inconsistency resolutions (rows) that we have
defined for supporting the execution of these model refac-
torings. We discovered 14 different resolutions for 4 incon-
sistency categories. The cells indicate if an inconsistency
resolution has been employed to execute a model refactor-
ing. In some cases a particular resolution can occur twice
in the same model refactoring, as is also illustrated in the
Move Operation model refactoring presented in Section 2.
It is clear from the table that there is significant reuse of
resolutions in and across model refactorings. Resolutions S1
and S2 are reused once. Resolution S6 is reused 3 times.
The number of times an inconsistency resolution is reused
is not merely the sum of the numbers of a certain row. The
sum of these numbers is a lower bound. S7, S13 and S14
cause the execution of the model refactoring, Move Opera-
tion, resp., Add Parameter and, resp., Move Property. As a
consequence, S3, for example, is reused 6 times.

Note that the inconsistency resolutions belong to struc-
tural inconsistency categories [24]. In this paper we have
omitted the behavioural inconsistency resolutions that oc-

cur in the analysed model refactorings since it gives similar
results.

Support for user-guided selection of inconsistency
resolutions. A very important characteristic of a rule-
based system is that the definition of a rule is separated
from the method employed by the rule engine for selecting
the rules to be fired from the applicable ones. In our context,
this method is user-guided selection of a particular inconsis-
tency resolution. As such, our rule-based approach to incon-
sistency resolution provides a mix between automation and
user input: the rule engine automatically finds all applicable
rules in each situation and as such automatically constructs
an implicit flow of inconsistency resolutions, whereas the de-
veloper is able to select his or her preferred resolution out
of the applicable ones. The developer also has the freedom
to leave certain inconsistencies unresolved.

5. ISSUES AND FUTURE WORK
A first issue is that the resolutions implemented in our

approach can be too fine-grained. Depending on the ap-
plication and system, it must be possible to group different
resolutions or to define new resolutions. This can be realised
by extending our tool support with a rule editor allowing the
addition, removal and grouping of resolutions and allowing
to enable or disable certain resolutions for certain refactor-
ings.

A next issue is a more optimal ordering of the different
rules. Different rules can be fired at the same time, user
interaction is used in our approach to decide which incon-
sistency must be resolved first. However, heuristics and al-
gorithms can be developed to order the different rules. As
a result of the resolution of a certain inconsistency, it can
be that other inconsistencies are resolved as well. This can
happen in our approach as a side-effect of choosing a par-
ticular resolution. To be able to discover the resolutions
of inconsistencies that will resolve other inconsistencies, the
dependencies between the inconsistencies need to be deter-
mined. This determination is future work.

Even with a more optimal ordering of the rules, it is still
possible that a lot of inconsistencies are detected and for
each inconsistency, a lot of resolutions are possible. The
question is how to manage all these inconsistency occur-
rences and their resolutions. Several possibilities can be
investigated. One possibility is to use learning techniques
where the selection of particular resolutions by the user in
a particular context is learned by the resolution approach.
Another possibility is to use predefined resolution alterna-
tives defined by the user. However, we believe none of these
approaches enables the automatic resolution of inconsisten-
cies and we even believe that full automatic inconsistency
resolution is not desirable. For example, if a new model el-
ement needs to be added, the user has to specify its name.
A computer-generated name can be used, but in that case,
the user still has to edit the model if he/she does not agree
on the name.

A final issue is the correctness of a refactoring. A refac-
toring is correct if it terminates, the model is syntactically
correct and some behavioural properties of the model are
preserved [17]. Due to the fact that resolutions can intro-
duce new inconsistencies, a rule can be fired more than once.
This can introduce cycles leading to an infinite chain of res-
olutions. In our tool support, the firing of the same rule on
the same data is allowed only once preventing such cycles.

Formal techniques can be used to prove termination of the
rules. This is outside the scope of this paper. The syntac-
tical correctness of the model is guaranteed because of the
usage of DLs. As already explained, the UML metamodel
is translated into concepts and roles, called definitions, and
the user-defined models are translated into assertions which
can be checked for conformance with the definitions using a
standard DL reasoning task. A last issue of correctness is the
preservation of some behavioural properties of the model by
the model refactoring. Not a lot of work has been presented
in this context. In [5], transformation rules are defined in
the context of model evolution. However, these rules are
not to be interpreted as rules in a rule-based system. These
rules have another purpose than our inconstency resolution
rules. Some behavioural properties of source-code refactor-
ings have been defined in [12] and graph transformations
have been defined to support them. These properties are
quite general and one of them is refined into several possible
behavioural properties and redefined on model level in the
work of the first author et al. [23]. In the work presented
in this paper, only particular resolution rules can be trig-
gered after a specific inconsistency in a certain step in the
refactoring. As a result the behaviour of the application is
preserved. Note that we did not proof this formally.

Until now, we only carried out experiments on small ex-
amples. It would be useful to validate our approach on some
large-scale industrial cases. This validation would provide us
with some empirical data such as the most used resolutions,
the most used model refactorings, the domain-dependent or
company-dependent resolutions. This information is very
useful for improving the usability of our tool support.

6. RELATED WORK
Inconsistency management is well-known in software en-

gineering. However, resolving inconsistencies is a difficult
research problem. Different techniques have been developed
coping with this problem. Synoptic is a technique developed
by Easterbrook [4] in which stakeholders are expected to
define and select resolution actions. In [19] a reconciliation
method is developed which uses distance metrics to indicate
the type and extent of inconsistencies. Based on these dis-
tances, actions are generated and proposed to the users that
can partially resolve the different types of model inconsis-
tencies. van Lamsweerde et al. [25] developed the technique
called KAOS that uses divergence resolution patterns but
only specific kinds of such divergences can be handled. In
these approaches, either the stakeholder gets a lot of respon-
sibility by defining the possible resolution actions, or the set
of actions is restricted to a specific domain such as require-
ments. These approaches also do not take into account that
resolution actions also can introduce other inconsistencies.

In [6], inconsistency handling between Viewpoints, locally
managed software models, is presented. Viewpoints and
inter-Viewpoint rules are all translated to first-order predi-
cate logic, and inconsistencies are identified using the Closed
World Assumption. A meta-language based on first-order
temporal logic, which uses a set of meta-level axioms, is em-
ployed for defining inconsistency handling rules. The main
difference with our approach is that the rules give the user
a likely explanation for the occurence of an inconsistency,
such as typographical error or conflict between specification.
Kozlenkov et al. [10] use abductive reasoning for establish-
ing a user-defined goal consisting of sequences of conditions

required for the goal to be achieved. Our approach uses
deduction rather than abduction for the detection of incon-
sistencies. For inconsistency resolution Kozlenkov et al. use
Prolog rules that are only used as a querying mechanism on
assertions as in our approach.

Research on model refactoring is emerging. A set of basic
UML refactorings is provided in Sunyé et al. [21] to im-
prove the software design in a stepwise fashion. That work
redefines a few source code refactorings on UML diagrams.
Very strict preconditions are specified that need to be satis-
fied before the refactoring can be executed. As a result, no
inconsistencies occur during the execution of these refactor-
ings. The disadvantage of this approach is that model refac-
torings can only be executed on particular designs, obeying
very strict conditions. A model violating these precondi-
tions, can be changed so that it enforces these conditions.
Our inconsistency resolution approach can be used in the
process of changing the model.

Model refactorings are defined in [17] as a sequence of
transformation rules. Reusability of refactoring steps across
different refactorings is not considered, whereas in our work
inconsistency resolutions are decidedly reused, not only con-
ceptually but also their actual definitions as rules. Moreover,
the transformation rules are executed in the order they are
defined and there is no rule engine that chains rules, i.e.
(re)activating rules when data is changed or created.

To the best of our knowledge, tool support for model refac-
torings is only discussed in [3], [1] and [26]. Boger et al. [3]
show how model refactorings can be integrated in the Po-
seidon UML refactoring browser. However, this plug-in is
not available anymore for Poseidon. Astels [1] uses a UML
tool to perform source-code refactorings more easily, and
also to aid in code smell detection. However, possible incon-
sistencies or problems are left for detection by the source-
code compiler. A Move Method e.g., is done by just drag-
ging the method in the corresponding UML class diagram to
the target class. The work on generic and domain-specific
model refactoring using a model transformation engine [26]
has some similarities with our work. First of all, they also
provide a set of predefined model refactoring rules and al-
low new rules to be defined since they also have a language
for describing refactorings. Another similarity is that model
refactoring rules consist of a precondition and a strategy.
The former tests if certain model elements fulfil certain con-
ditions and the latter are made up of operations that add
or remove basic model elements. However, there are also
a number of important differences between the approaches.
The most important difference is that our model refactorings
automatically detect inconsistencies in a model and hence
also the particular model elements that cause the inconsis-
tency. Each set of model elements that are thus detected
are treated by the model refactoring rules in order to re-
solve the inconsistency. In the aforementioned approach,
however, the required model elements are selected manually
and passed as parameters to the model refactoring strat-
egy. As such, these model refactorings are actually more
like functions that are called with actual parameters, than
like rules that are triggered when certain elements match
with the (pre)condition. An important side effect is that
there is no automatic construction of a flow of the model
refactoring rules, as is the case in our approach.

7. CONCLUSION

In this paper model refactorings based on source code
refactorings are introduced. We elaborate on the Move Op-
eration model refactoring and show that in order to execute
these refactorings, a chain of inconsistency detection and
resolution steps is actually performed. We argue that manu-
ally determining inconsistency resolution scenarios that cor-
respond to all possible situations is a daunting and unman-
ageable task. The identified problems are exactly those that
are addressed by rule-based systems.

A rule-based inconsistency resolution approach enables
reuse of inconsistency resolutions in and across model refac-
torings and support for user-guided selection of inconsis-
tency resolutions. This is exemplified by our particular ap-
proach using the DL formalism and by demonstrating our
proof-of-concept inconsistency management tool support in-
cluding model refactorings.

8. REFERENCES
[1] D. Astels. Refactoring with UML. In Proc. Int’l Conf.

eXtreme Programming and Flexible Processes in
Software Engineering, pages 67–70, Alghero, Sardinia,
Italy, 2002.

[2] F. Baader, D. McGuinness, D. Nardi, and
P. Patel-Schneider. The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge
University Press, 2003.

[3] M. Boger, T. Sturm, and P. Fragemann. Refactoring
browser for UML. In Proc. Int’l Conf. eXtreme
Programming and Flexible Processes in Software
Engineering, pages 77–81, Alghero, Sardinia, Italy,
2002.

[4] S. Easterbrook. Handling conflict between domain
descriptions with computer-supported negotiation.
Knowledge Acquisition, 3(3):255–289, 1991.

[5] G. Engels, R. Heckel, J. M. Küster, and
L. Groenewegen. Consistency-preserving model
evolution through transformations. In J.-M. Jézéquel,
H. Hußmann, and S. Cook, editors, Proc. Int’l Conf.
UML 2002 - The Unified Modeling Language., number
2460 in LNCS, pages 212–227, Dresden, Germany,
October 2002. springer.

[6] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer,
and B. Nuseibeh. Inconsistency handling in
multi-perspective specifications. In European Software
Engineering Conference, pages 84–99. springer, 1993.

[7] M. Fowler. Refactoring: Improving the Design of
Existing Programs. Addison-Wesley, 1999.

[8] Gentleware. Poseidon,
http://www.gentleware.com/products/poseidonpe.php3,
March 18 2004.

[9] V. Haarslev and R. Möller. RACER system
description. In Int’l Joint Conf. Automated Reasoning
(IJCAR 2001), 2001.

[10] A. Kozlenkov and A. Zisman. Discovering, recording,
and handling inconsistencies in software specifications.
International Journal of Computer and Information
Science, 5(2), June 2004.

[11] M. M. Lehman, J. F. Ramil, P. Wernick, D. E. Perry,
and W. M. Turski. Metrics and laws of software
evolution - the nineties view. In Proc. Int’l Symposium
Software Metrics, pages 20–32. IEEE Computer
Society Press, 1997.

[12] T. Mens, S. Demeyer, and D. Janssens. Formalising
behaviour preserving program transformations. In
Proceedings of the First International Conference on
Graph Transformation, pages 286–301. springer, 2002.

[13] T. Mens and T. Tourwé. A survey of software
refactoring. Trans. Software Engineering,
30(2):126–139, February 2004.

[14] B. Nuseibeh, S. Easterbrook, and A. Russo.
Leveraging inconsistency in software development.
IEEE Computer, 33(4):24–29, 2000.

[15] Object Management Group. Unified Modeling
Language 2.0 Superstructure Draft Adopted
Specification. ptc/03-08-02, February 2005.

[16] W. F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, Urbana-Champaign, IL,
USA, 1992.

[17] I. Porres. Model refactorings as rule-based update
transformations. In P. Stevens, J. Whittle, and
G. Booch, editors, Proc. Int’l Conf. UML 2003,
volume 2863 of LNCS, pages 159–. springer, 2003.

[18] S. Sendall and W. Kozaczynski. Model
transformation: The heart and soul of model-driven
software development. IEEE Software, 20(5):42–45,
September/October 2003.

[19] G. Spanoudakis and A. Finkelstein. Reconciling
requirements: a method for managing interference,
inconsistency and conflict. Ann. Softw. Eng.,
3:433–457, 1997.

[20] G. Spanoudakis and A. Zisman. Inconsistency
Management in software engineering: Survey and
open research issues, volume 1, pages 329–380. World
Scientific Pub. Co., 2001.

[21] G. Sunyé, D. Pollet, Y. LeTraon, and J.-M. Jézéquel.
Refactoring UML models. In Proc. UML 2001, volume
2185 of LNCS, pages 134–138. springer, 2001.

[22] R. Van Der Straeten. Inconsistency Management in
Model-driven Engineering. An Approach using
Description Logics. PhD thesis, Vrije Universiteit
Brussel, Brussels, Belgium, September 2005.

[23] R. Van Der Straeten, V. Jonckers, and T. Mens.
Supporting model refactorings through behaviour
inheritance consistencies. In T. Baar, A. Strohmeier,
A. Moreira, and S. Mellor, editors, UML 2004 - The
Unified Modeling Language, volume 3273 of LNCS,
pages 305–319. springer, 2004.

[24] R. Van Der Straeten, T. Mens, J. Simmonds, and
V. Jonckers. Using description logics to maintain
consistency between UML models. In P. Stevens,
J. Whittle, and G. Booch, editors, UML 2003 - The
Unified Modeling Language, volume 2863 of LNCS,
pages 326–340. springer, 2003.

[25] A. van Lamsweerde, E. Letier, and R. Darimont.
Managing conflicts in goal-driven requirements
engineering. IEEE Trans. Softw. Eng., 24(11):908–926,
1998.

[26] J. Zhang, Y. Lin, and J. Gray. Generic and
domain-specific model refactoring using a model
transformation engine. In S. Beydeda, M. Book, and
V. Gruhn, editors, Model-driven Software
Development, chapter 9, pages 199–218. Springer,
2005.

