
On-demand Metadata Extraction Network 
(OMEN) 

Daniel McEnnis, Schulich School of Music, McGill University, Montreal 

June 2006 

A thesis submitted to McGill University in partial fulfillment of the requirements of the 
degree of Master ofthe Arts in Music Technology. 

© Daniel McEnnis 2006 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page cou nt, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-28567-1 
Our file Notre référence 
ISBN: 978-0-494-28567-1 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



ABSTRACT .......................................................................................................................................................... 3 
, , 

RESUME ............................................................................................................................................................... 4 

ACKNOWLEDGEMENTS ................................................................................................................................ 5 

1 INTRODUCTION AND MOTIVATION ..................................................................................................... 6 

1.1 DATA SETS .................................................................................................................................................... 6 
1.2 ALTERNATIVE ApPROACHES ....................................................................................................................... 7 
1.3 SUMMARV OF A SOLUTION .......................................................................................................................... 9 
1.4 OVERVIEWOF THESIS STRUCTURE ........................................................................................................... 10 

2 RELEVANT WORK ...................................................................................................................................... 12 

2.1 EXISTING DIGITAL PUBLISHING PROJECTS ............................................................................................... 12 
2.2 EXISTING MUSIC ANAL VSIS PROJECTS ..................................................................................................... 14 
2.3 EXISTING DISTRIBUTED DATABASE PROJECTS ........................................................................................ 15 
2.4 EXISTING DISTRIBUTED COMPUTING PROJECTS ...................................................................................... 17 
2.5 EXISTING BENCHMARKING PROJECTS ...................................................................................................... 20 

3 JAUDIO ............................................................................................................................................................ 23 

3.1 ..................................................................................................................................................................... 23 
MUL TI-DIMENSIONAL FEATURES .................................................................................................................... 23 
3.2 TVPES OF FEATURES .................................................................................................................................. 24 
3.3 EMBEDDING JAUDIO .................................................................................................................................. 26 
3.4 DEPENDENCV RESOLUTION ....................................................................................................................... 27 
3.5 OVERVIEW OF SETTINGS ........................................................................................................................... 27 
3.6 DESIGN DECISIONS .................................................................................................................................... 28 

4 FEA TURES ...................................................................................................................................................... 30 

4.1 TIME-DoMAIN FEATURES ......................................................................................................................... 31 
4.1.1 Root Mean Square ............................................................................................................................ 31 
4.1.2 Relative Difference Function ........................................................................................................... 31 
4.1.3 Zero Crossings ............................................. ..................................................................................... 31 
4.1.4 Strength ofStrongest Frequency via Zero Crossings ..................................................................... 32 
4.1.5 Linear Predictive Coding ................................................................................................................. 32 

4.2 MULTI-WINDOW TIME-DOMAIN FEATURES ............................................................................................ 32 
4.2.1 Fraction ofLow-Energy Windows ................................................................................................... 33 
4.2.2 Beat Histogram ................................................................................................................................. 33 
4.2.3 Beat Sum ............................................................................................................................................ 33 
4.2.4Strength ofStrongest Beat ................................................................................................................. 33 

4.3 FREQUENCV-DOMAIN FEATURES ............................................................................................................. 34 
4.3.1 Power Spectrum ................................................................................................................................ 34 
4.3.2 Magnitude Spectrum ......................................................................................................................... 34 
4.3.3 Strongest Frequency via FFT Maximum ......................................................................................... 34 
4.3.4 Spectral Centroid .............................................................................................................................. 34 
4.3.5 Strongest Frequency via Spectral Centroid .................................................................................... 34 
4.3.6 Method of Moments .......................................................................................................................... 35 
4.3.7 Spectral Rolloff ................................................................................................................................. 35 
4.3.8 Mel-Frequency Cepstrum Coefficients (MFCC) ............................................................................ 35 
4.3.9 Peak Detection .................................................................................................................................. 35 
4.3.10 Partial-based Spectral Centroid .................................................................................................... 36 
4.3.11 Partial-based Spectral Smoothness ............................................................................................... 36 
4.3.12 Compactness ................................................................................................................................... 36 

4.4 HVBRID FEATURES .................................................................................................................................... 37 
4.4.1 Spectral Variability ........................................................................................................................... 37 
4.4.2 Spectral Flux ..................................................................................................................................... 37 

1 



4.4.3 Simplified Spectral Flux ........... ........................................................................................................ 37 
4.5 METAFEATURES ......................................................................................................................................... 38 

4.5.1 Derivative .......................................................................................................................................... 38 
4.5.2 Running Mean ................................................................................................................................... 38 
4.5.3 Standard Deviation ........................................................................................................................... 38 
4.5.4 Derivative of Running Mean ............................................................................................................ 38 
4.5.5 Derivative of Standard Deviation .................................................................................................... 38 

4.6 GENERALAGGREGATORS ......................................................................................................................... 39 
4.6.1 Mean .................................................................................................................................................. 39 
4.6.2 Standard Deviation ....................................................... .................................................................... 39 
4.6.3 MFCC ....................................................................... ......................................................................... 39 

4.7 SPECIFIC AGGREGATORS ........................................................................................................................... 39 
4.7.1 Area Moments ................................................................................................................................... 40 
4.7.2 Multiple Feature Histogram ........................................................................ .................................... 40 

5 WEB INTERFACES ...................................................................................................................................... 41 

5.1 RESEARCHERINTERFACE .......................................................................................................................... 41 
5.2 LIBRARIAN INTERFACE .............................................................................................................................. 46 
5.3 ADMINISTRA TOR INTERFACE .................................................................................................................... 50 

6 NETWORK STRUCTURE ........................................................................................................................... 55 

6.1 MASTER NODE ........................................................................................................................................... 56 
6.1.1 Web Services ..................................................................................................................................... 57 

6.2 LIBRARYNODE .......................................................................................................................................... 58 
6.2.1 Web Services ..................................................................................................................................... 58 

6.3 WORKER NODE .......................................................................................................................................... 59 
6.3.1 File Cache ......................................................................................................................................... 60 
6.3.2 Web Services ............................................................................. ........................................................ 60 

7 LEGAL ISSUES .............................................................................................................................................. 62 

7.1 CANADIAN COPYRIGHT LA W .................................................................................................................... 62 

7.2 USA' S COPYRIGHT LA W ........................................................................................................................... 62 
7.3 CONCLUSION .............................................................................................................................................. 63 

8 CONCLUSIONS AND FUTURE WORK .................................................................................................. 64 

APPENDIX A - USE CASE DIAGRAMS ..................................................................................................... 65 

APPENDIX B - JAUDIO DESIGN ................................................................................................................ 69 

B.1 GLOBAL STRUCTURE ................................................................................................................................. 69 
B.2 DATAMoDEL CLASS ................................................................................................................................. 69 
8.3 EXECUTION OF METADATA EXTRACTION ............................................................................................... 70 

B.3.1 Construction ..................................................................................................................................... 71 
B.3.2 Dependency Resolution .................................................................... ................................................ 72 
B.3.3 Extraction .............................................. ............................................................................................ 73 

APPENDIX C - GLOSSARY .......................................................................................................................... 74 

Axis ........................................................................... ................................................................................... 74 
Cache ................................................................. ......................................................................................... 74 
Dynamic-linked Library ............................................................................................................................. 74 
Ground Truth ...................................................................... ........................................................................ 74 
Servlets and JavaServer Pages ................................................................................................................. 74 
Tomcat ........................................................................................................................................................ 75 
Web Services ............................................... ................................................................................................ 75 
XML ............................................................................................................................................................. 75 

REFERENCES ................................................................................................................................................... 77 

2 



Abstract 

OMEN (On-demand Metadata Extraction Network) addresses a fundamental problem in 

Music Information Retrieval: the lack of universal access to a large dataset containing 

significant amounts of copyrighted music. This thesis proposes a solution to this problem 

that is accompli shed by utilizing the large collections of digitized music available at 

many libraries. Using OMEN, libraries will be able to perform on-demand feature 

extraction on site, returning feature values to researchers instead of providing direct 

access to the recordings themselves. This avoids copyright difficulties, since the 

underlying music never leaves the library that owns it. The analysis is performed using 

grid-style computation on library machines that are otherwise underused (e.g., devoted to 

patron web and catalogue use). 

3 



Résumé 

OMEN (On-demand Metadata Extraction Network, pour Réseau d'Extraction de 

Caractéristiques à la Demande) touche un problème fondamental en Recherche 

d'Information Musicale: l'inexistence d'un accès universel à un large ensemble de 

données musicales protégées par des droits d'auteur. La solution envisagée propose 

d'utiliser les grandes collections de musique numérisée disponibles dans de nombreuses 

bibliothèques. En utilisant OMEN, les librairies pourront effectuer une extraction de 

caractéristiques à la demande sur leur site, retournant aux chercheurs les valeurs calculées 

plutôt que de fournir un accès direct aux enregistrements eux-mêmes. Ceci évite les 

problèmes liés au droits d'auteur puisque la musique de laquelle sont extraites les 

caractéristiques ne sort par de la bibliothèque qui la possède. L'analyse est effectuée en 

utilisant des ressources de calcul en réseau sur les machines de la bibliothèque qui ne sont 

pas ou peu utilisées à ce moment (par exemple les machines dévouées à l'accès web ou 

au catalogue). 

4 



Acknowledgements 

1 would like to thank Ichiro Fujinaga for his unflagging support, especially the countless 

hours reading and providing insightful comments and suggestions through numerous 

revisions of this thesis. 1 would also like to thank Cory McKay for his assistance in 

implementing jAudio. 

5 



1 Introduction and Motivation 

Music Information Retrieval (MIR) is a new and rapidly expanding research field, 

involving various tasks to analyzing and organizing music. Unfortunately, it is currently 

difficult for MIR researchers to effectively evaluate their algorithms. The primary 

obstacle to achieving this is the inability for the researchers to obtain uniform access to a 

large dataset of audio files that is representative ofthe music currently listened to. Access 

to music currently listened to is important for ensuring results are applicable to real world 

problems. 

The On-demand Metadata Extraction Network (OMEN) seeks to resolve this 

difficulty by altering how MIR research is conducted--creating an international network 

of libraries that utilize existing CD collections and presenting these collections as a single 

unified dataset without violating copyright law or requiring MIR researchers to download 

the dataset. A prototype of this system has been implemented and deployed within the 

DDMAL lab in the music technology department of the McGill school of music. 

1. 1 Dafasefs 

White the many different kinds of tasks in MIR have different requirements, there 

are sorne common factors. In general, MIR researchers want to make sure that their 

algorithms (accomplishing whatever task they are working on) will work on the music 

that a typical listener would listen to. Furthermore, many approaches to these tasks 

require a substantial number of pieces of music to work effectively. In addition, MIR 

researchers wish to make sure that their algorithms make as few assumptions about the 

6 



nature of the music analyzed as is feasible for their task, requiring a wide range of music 

as weIl. FinaIly, the dataset must be available for aIl MIR researchers to access. 

Currently, there is a lack of quality datasets. There are two reasons for this 

difficulty: the amount of data required and copyright restrictions on the music. Since 

researchers require a large number of pieces for sorne algorithms as weIl as a diverse 

range of music, a large dataset is required. To put this requirement in perspective, most 

MIR researchers utilize "small" datasets consisting of approximately 20GB of data. This 

is roughly equivalent to 30 CDs of audio. These datasets are too small to contain a good 

cross-section of aIl music. Furthermore, most recorded music is copyrighted. As a 

consequence, every time a dataset is copied, aIl copyright holders in the collection must 

be compensated. This makes legally copying a large dataset prohibitively expensive as 

weIl as time consuming. If these datasets are to be downloaded over the Internet, we are 

presented with another potential problem related to network bandwidth. Thus, both the 

cost and difficulties involved in providing access to a good dataset mandates a different 

approach than copying the dataset for each researcher. 

One solution to the dataset problem is to utilize the existing collections of CDs at 

libraries. The copyright costs have already been paid and the materials are already 

available to researchers who either use the materials in the library or check them out. 

However, this do es not solve how to provide access to this dataset for MIR researchers 

around the world. 

1.2 Alternative Approaches 

Since copying the dataset is not feasible, alternative ways of allowing researchers 

access to the dataset should be explored. There are several models to choose from. One 

7 



option is a centralized site where MIR researchers send their algorithms to be executed on 

supercomputers from start to finish. Since the data is never copied, there is no copyright 

charge. However, it requires that one site acquire aIl the music in the dataset-a daunting 

financial challenge-and provide aIl computer time. 

The other two approaches take advantage of the natural split between analysis and 

feature (metadata) extraction (see above). By extracting the features on site and sending 

the resulting metadata back to researchers for analysis, one also never copies data. This 

greatly lessens the computationalload on the hosting sites since participating libraries 

only carry out a portion of the computation. Furthermore, this approach permits a 

distributed dataset-enabling use of multiple libraries' music. 

One implementation of this approach is to pre-compute aIl features for aIl music 

in the dataset and place the results on the Internet for download. However, a number of 

tasks require moment-by-moment metadata that makes the metadata many times larger 

than the music that generated it. Furthermore, there are different parameters and settings 

for how features are collected that create a combinatorial explosion of versions of the 

metadata generated for each piece of music in the dataset in order to guarantee that MIR 

researchers can access the features with their desired parameters. This makes the 

metadata collection for each file so massive that it cannot be reasonably stored. 

Furthermore, ca1culating aIl these versions requires prohibitive amounts of computer 

time. These factors make pre-computing metadata unfeasible. 

An alternative to pre-computing is on-demand metadata extraction. This process 

avoids the problems of pre-computing by only performing calculations when they are 

requested. As a result only the subset of metadata actuaIly used by researchers is created. 

8 



While previously generated results can be cached for speed, they can also be discarded 

(and possibly recomputed later) if the hosting server runs low on disk space. However, 

while less extreme than pre-computing, on-demand computing still requires significant 

computer time from libraries. Fortunately, libraries already have this computing power 

available in the form of under-utilized computers provided to allow patrons to search the 

library catalogs and surf the Internet. 

1.3 Summary of a Solution 
In order to implement an on-demand metadata extraction network, one needs to 

solve a number of problems. One is that the distributed dataset needs an online web 

interface that would allow MIR researchers mechanisms for selecting what subset of the 

dataset to be used for their experiments. A library of feature extraction algorithms is 

needed for generating the features. There also needs to be a mechanism for implementing 

the dataset as a distributed database. Finally, grid computing is required to distribute the 

computation load inside libraries. 

In order to address these problems, infrastructure is needed that will make it easy 

for libraries to deploy this service. OMEN (On-demand Metadata Extraction Network) 

provides this infrastructure. OMEN will consist ofthree levels. The first will be a global 

levellinking the various participating libraries into a common portal website where 

researchers can access diverse datasets as a single entity. The second level will be the 

library portal where a master computer for the library will provide an archive of all music 

made available for analysis and coordinate all analysis conducted at the library. The third 

level will consist of 'worker' library computers that can perform analyses under the 

9 



supervision of the lihrary's master computer using grid computing. The relationships 

hetween these levels of infrastructure are summarized in Figure 1. 

Researcher Main 
Portal 

, \ , 
ouery! Query 

/ R~sult \ Res~1l 

(;;) .. Llbrary· ~ 

L::J CJ 
Que,y /Query\ Query \ 
~ F!esull .. Res':llt \ Resull 

Ubrary 
Computer 

Ubrary 
Computer 

Ubrary 
Computer 

Figure 1: Relationships Between Infrastructure Levels 

Analyses will he conducted using the jAudio (McEnnis et al. 2005) library. This 

infrastructure will permit librarians to merge their existing CD archives into a single large 

dataset that will be available to researchers for analysis as a single archive without 

requiring copying of the underlying datasets, solving a major problem for MIR 

researchers. 

1.4 Overview of Thesis Structure 

This thesis provides an in-depth description ofOMEN. The first two chapters 

provide an introduction-a description of the problem and a description of relevant 

research. Chapters 3 through 6 provide an in-depth description ofOMEN. The remainder 

of the thesis consists of appendices and a glossary-peripheral information pertinent to 

OMEN. 

10 



Chapter 2 describes relevant research in this area. This research is divided into 

five categories-digital publishing research, music analysis research, distributed database 

research, distributed computing research, and multimedia benchmarking research. 

Chapter 3 de scribes jAudio. The major features and innovations of jAudio are 

discussed here. Chapter 4 describes the features present in jAudio. These features are 

divided into six categories-time domain features, multi-window time-domain features, 

frequency-domain features, and hybrid features, general aggregators, and specific 

aggregators. 

Chapter 5 provides a description of the web interfaces provided by OMEN. These 

interfaces are the researcher interface, the library interface, and the administrator 

interface. Chapter 6 describes the difIerent classes of computers in OMEN. These classes 

are Master Node, Library Node, and Worker Node. 

Chapter 7 discusses legal issues involved in the deployment of OMEN. Chapter 8 

gives an overview and discusses future work. Appendix A includes a collection of use­

case diagrams that illustrate the execution steps in OMEN for different tasks. Appendix B 

provides a detailed description of how jAudio performs feature extraction. Appendix C 

provides a glossary of concepts and software packages described in the thesis. 

11 



2 Relevant Work 

OMEN touches on a number of different disciplines. This includes publishing of 

datasets with their metadata, audio analysis software, distributed computing, distributed 

databases, and the efforts of other benchmarking projects to produce good datasets. 

2.1 Existing Digital Publishing Projects 

Constructing a friendly web interface to both access information about the OMEN 

dataset and load new audio files and their metadata into OMEN is an important part of 

making this dataset use fuI to MIR researchers. There exist a number of packages, both 

open source and commercial, that provide friendly interfaces for loading new pieces of 

data and their associated metadata as weIl as providing means to publish this data to the 

Internet. Sorne, like Greenstone and Streetprint, are open-source projects aimed at 

libraries. Others are traditional cataloguing software like Collectorz products and The 

Book Collection. Finally, there are new web-page commercial efforts such as 

LibraryThing. 

Greenstone is a digital publishing tool created by Waikato University (Witten et 

al. 2000). It is a full-featured software package for creating a web site for searching and 

browsing a digital collection. It is geared towards libraries publishing existing digital 

collections, particularly libraries with extensive metadata about their holdings. It has a 

particular focus on text with a sophisticated search engine for searching text within a 

repository. The current version supports the importing of pre-existing metadata in MP3 

music files. A new version, version 3 (Bainbridge et al. 2004), is currently in alpha and is 

implemented using web services that permit distributed libraries. 

12 



Streetprint was originally designed by the University of Alberta to publish British 

street literature (Ogle 2005). Similar to Greenstone, it provides an easy way to take a 

collection of existing digital documents with metadata and create a web site for 

interacting with the digital repository. Streetprint also provides support for a 'media type' 

for displaying multimedia content in a collection. 

The Collectorz family of commercial products (Harte and Hoogerdijk 2006) also 

provides a way to take a collection and publish its contents. This product is geared 

towards home users who wish to catalogue (and publish online) their own collections. It 

has sorne relatively sophisticated mechanisms for acquiring metadata (such as scanning 

barcodes on CDs). Unfortunately, the web sites generated are static and have no search 

functionality . 

The Book Collection software package (Book Collection 2006) also provides 

mechanisms to catalogue and manage collections of books. It is aimed at home users and 

sm aIl organizations with a variety of ways to acquire metadata on books using 

information such as barcodes or ISBN numbers. It differs from other commercial 

packages in that it provides mechanisms for creating a dynamic web site that uses the 

Book Collection database to provide searching and keep the content up to date. 

LibraryThing (Spalding 2006) takes a different approach with an entirely web­

based system where users upload information about their books to create an online record 

of their collection. It is aimed at users and provides various different means of searching 

the metadata present (both the metadata from the publishers and the metadata manually 

attached to the book entries themselves). 

13 



2.2 Existing Music Analysis Projects 
While OMEN utilizes jAudio to extract metadata (features) from music files (see 

Chapter 3), there are a number of other systems that also complete a similar task. Each 

project approaches this extraction process differently. 

Marsyas was tirst published in 2000 as C++ library for performing analysis on 

music files (Tzanetakis and Cook 2000). It is the tirst widely used library of this type and 

provided a library plus sample applications. Not all features present in the library are 

present in the sample applications. The design is modular-adding new features is 

relatively easy. However, unlike jAudio, changes require recompilation and dependencies 

between features must be explicitly calculated by the user. 

Clam is a C++ application produced by the Universitat Pompeu Fabra (Amatrain 

and Arumi 2002). It is a GUI-based application that does provide metadata extraction 

capabilities. However, the main focus of the project is on analysis/synthesis. 

M2K is a Java based application produced by the University of Illinois (Downie 

et al. 2005a). It is a GUI prototyping environment built on top of the D2K (ref). It is 

relatively easy to add new features to M2K without requiring a recompilation of the M2K 

application. Furthermore, applications constructed using M2K are interpreted so no 

compilation is needed when executing experiments. Unfortunately, while M2K is open 

source, D2K is a commercial application and only available with a commercial or 

academic license. 

Maaate is a C++ application produced by the Commonwealth Scientitic and 

Industrial Research Organization (Pfeiffer et al. 2005). Its primary purpose is to extract 

features already encoded in an MPEG-l audio file. The system provides access to the 

14 



originally encoded features, aIl intermediate steps in the decoding process, and the final 

output. However, this extraction is geared more towards visualization than analysis. 

The final analysis project is the implementation of the MPEG-7 metadata 

descriptors by Sikora (2004). While a description ofthese features exists (Quackenbush 

and Lindsay 2001) a more complete description of the features is located online (de 

Mallorca 2004). This application is not available for download. However, a web form is 

made available to submit an extraction request remotely. Source code for this 

implementation is not available. 

2.3 Existing Distributed Database Projects 
Since OMEN distributes its dataset across a number of different locations, it faces 

different challenges than a more traditional centralized dataset. There exist a number of 

different projects that tackle the problems inherent in accessing, indexing, and searching 

distributed datasets. The approaches vary widely, but aIl deal with distributed datasets of 

multimedia content. On one extreme is www.archive.org where aIl data is transferred 

from the source (the Internet) to a centralized network of computers. On the other 

extreme, a multimedia database leaves aIl data and metadata on the disparate servers, 

instead transforming queries into a distributed query forwarded to each databases for 

processmg. 

The www.archive.org database is run by the Internet Archive non-profit 

organization devoted to documenting the Internet (Internet Archive 2006). It utilizes a 

custom search engine to harvest data from the Internet and stores it in a large cluster of 

servers caIled the Wayback Machine. Multimedia data is also archived. Furthermore, 

15 



there is a separate audio site that permits downloads of bands that permit distribution of 

live performances. 

Researchers can request shell access to the database cluster ofthe Wayback 

archive. While no analysis software is made available, users are permitted to upload their 

own analysis software. Unfortunately, there is no software provided for parsing the 

archive files or identifying which of the files contained in the archive file are music. 

Another example is a prototype developed by Petkovic and Jonker (2004). This is 

a database system designed to process video using a collage of different analysis 

techniques, combining the results of these techniques into a single database system. The 

problems this prototype seeks to solve are the need to automatically extract and make 

available for querying a variety of dissimilar features and coping with massive storage 

requirements and extremely expensive insertion-time calculations. The prototype solves 

this problem by using distributed database servers that each includes metadata extraction 

software that is executed at the time that a video is added to the database. The metadata 

generated, however, is stored in a single central database. 

The EGSO, VSO, and CoSEC solar data archives all seek to connect massive 

widely separated databases of solar images. EGSO is a coalition of European solar 

observatories. VSO is a coalition ofUS-based solar observatories. CoSEC is a corporate 

partnership featuring Lockheed Martin. AlI three of these projects face the same 

problem-how to identify what data researchers need from these massive widely 

distributed databases and get that data to the researchers in the form that they require. 

EGSO and VSO utilize a central portal that colIects the queries presented to it and 

then distributes these queries to aIl participating solar observatories (Messorotti et al. 

16 



2003, Gurman et al. 2005). One feature planned for EGSO but not yet implemented is to 

permit users to upload their own software for identifying what images to return. FinaIly, 

the relevant search results are retumed. 

CoSEC implements a different solution. It has a central broker that identifies aIl 

the different web services of each participating observatory (Hurlbert et al. 2001). Query 

requests are then forwarded directly to the observatories and the results of the search 

retrieved. In addition to search, the observatories also publish other analysis services that 

can be performed that are also accessible with a smart client. 

FinaIly, there exists a prototype created by Berthold (2002) for her PhD thesis. 

This thesis focused on integrating multimedia objects into a distributed database system. 

The problem to be overcome includes massive amounts of data and the need for efficient 

access. The system assumes that aIl metadata is known in advance. What is unique about 

the solution presented is that the central access point to the database retains no data or 

metadata. AlI queries are transformed into a distributed query that is forwarded to each 

database system that then returns the results of the search to the controIler. 

2.4 Existing Distributed Computing Projects 
OMEN utilizes distributed computing within each library to accelerate requests 

for feature extraction. There exist a number of projects that demonstrate different ways to 

accelerate on-demand metadata extraction through distributed computing. One possibility 

is massively paraIlel computing. Another possibility is through the use of clustering 

technology as demonstrated by the (RSiI project. A third possibility is the use of peer-to-

peer (p2p) technology such as used in sensor grids. P2p is a technology that aIlows a 

17 



network of computers to search for and exchange data without requiring a central 

computer to control who communicates with whom. 

There are several examples of massively parallei computing where users donate 

time on ordinary desktop computers in order to facilitate a project. The first is the Great 

Internet Mersenne Prime Search (GIMPS), closely followed by distributed.net. Nearly aIl 

other massively parallei computing projects are now conducted using an application 

framework known as Berkeley Open Infrastructure for Network Computing (BOINC) 

that provides a toolkit and common infrastructure for constructing massively parallei 

computing projects. While these projects differ greatly in purpose, their solutions for 

handling distributed computing are standardized with the common 

infrastructure (Anderson 2004). 

GIMPS started in January of 1996 searching for Mercenne primes (Lawton 2000). 

Each worker computer is assigned a number to analyze and retums the result of that 

calculation to a central server. 

Distributed.net has two projects (Curzio et al. 2006). One project is cracking 

codes. Each computer is assigned a set ofkeys to process and communicate to the server 

if any of the keys decrypt the message. The other is calculating optimum Golomb rulers. 

Each computer evaluates whether each potential Golomb ruler in their assignment are 

Golomb rulers and then retums the results to the central server. 

The BOINC framework is based on the seti@home project and provides 

mechanisms for easily creating and distributing a significant number of massively 

parallei projects beyond seti@home including Folding@Home and climateprediction.net 

(Anderson 2004). Participating projects provide their own data server and client code 

18 



while the maintainers of the BOINe project maintain the scheduling and management 

system for aIl projects that utilize their framework. AlI data and executables for analyzing 

the data for a task is tirst transmitted to a participating computer. Then the analysis is 

conducted. FinaIly, the results are returned to projects data server where the results are 

integrated into that project's data repository. 

The (RS)2I project (Bretschneider and Kao 20002) uses a different approach to 

distributed computing. This project analyzes a large database of satellite images where 

the features used for searching may not be known until a query is received. Furthermore, 

the size of the image to be analyzed is variable, vastly increasing the computational 

complexity. To solve this problem, the (RSiI project caches sorne metadata on the 

central server and employs a Beowulf cluster-a group of (usually identical) computers 

that are connected to one another by high-speed network connections-to perform feature 

extraction on-demand. To speed the process further, the set of images to be searched is 

pruned using metadata, then the resulting dataset is distributed around the cluster for 

processmg. 

Another approach is a fully p2p solution presented by Li et al. (2003). Their 

system for querying a grid of sensors connected by wireless, battery powered transmitters 

makes use of p2p techniques for transmitting queries to the relevant sensors and returning 

the results of the query. These sensors collect information, but the batteries would drain 

too quickly if the data were retumed to the central source--especially since 

communication is the largest drain on the battery. In order to process these queries 

effectively and without draining the batteries, Li et al. developed a system for creating 

metadata at the nodes and accessing this metadata effectively without a central controller. 

19 



Finally, there is Globus, a toolkit for building grid applications (Foster et al. 

2002). While not a distributed application in and of itself, it provides a set of tools for 

constructing applications that use grid computing that solves many of the problems of 

coordinating collaboration in distributed computing between organizations with different 

security and usage policies. A sample ofthese tools includes modules for ensuring 

security, modules for secure data distribution, and modules for scheduling of 

computation. 

2.5 Existing Benchmarking Projects 
Constructing good multimedia datasets is a common problem that aIl multimedia 

benchmarking projects must address. For each benchmarking project, the datasets must 

be large enough to provide adequate training sets for the algorithms tested as weIl as 

diverse enough to reach conclusions that are generalizable. There are a number of 

different competitions testing the performance of various multimedia search and 

classification algorithms involving various types of multimedia that have dealt with this 

problem. There is the TRECA video track, the Bencahathlon competition, the 

ImageCLEF competition, and the MIREX competition. 

The TREC Video track was present in the 2001 and 2002 TREC conference 

(Smeaton and Over 2002). It expanded into its own competition separate from TREC 

starting in 2003 (Over et al. 2005). Initially, the database was constructed from video 

downloaded from the Internet Archive and Open Video Project. The database was later 

expanded to include copyrighted data available only to the participants. Initially, the 

competition tested a number of algorithms for their ability to match semantic descriptions 

to video shots (segments ofuninterrupted video from a single camera) that were pre-

20 



calculated. Each entry ran their algorithms against the database, marking video shots as 

either containing the query or not. Later competitions added additional tasks to the 

competition. 

The Benchathlon network (also known as BIRDS-I) was a competition created 

and sponsored by HP. Initially, its goal was to evaluate algorithms for use in image 

finding tools used on mobile devices (Gunther and Beretta 2001). It used a single 

database that consisted of hand categorization of images acquired from the Internet. This 

was the basis for the first competition in 2001 at the Internet Imaging Conference. The 

project expanded into Benchathlon with additional contributions from other sources, 

leading to the Benchathlon competitions in 2002 and 2003 also at the Internet Imaging 

Conference. 

ImageCLEF is another image benchmarking competition that is part of the Cross 

Language Evaluation Framework (CLEF) competition (Clough et al. 2004). It uses a 

single database consisting of copyright free images of St. Andrews University. The 

competition is unusual in that metadata is inc1uded in the competition-the captions for 

the images-but queries are placed in another language. 

MIREX is the music information retrieval competition held at the International 

Conference on Music Information Retrieval (ISMIR) in 2005 (Downie et al. 2005b). It 

was preceded by the Audio Description Contest at ISMIR 2004. Each of the ten contests 

has their own database stored at the International Music Information Retrieval Systems 

Evaluation Laboratory (IMIRSEL) (Downie 2004). The data consisted of contributions 

made by participating researchers, sorne of which had copyright restrictions. This caused 

21 



difficulties distributing representative test sets that researchers could use to test their 

algorithms before submission. 

22 



3 jAudio 

jAudio is a framework for feature extraction designed to eliminate duplication of 

effort in calculating features from audio signaIs (McEnnis et al. 2005). This system meets 

the needs of MIR researchers by providing a collection of analysis algorithms that are 

suitable for a wide array of MIR tasks. In order to provide these features with a minimal 

learning curve, the system implements a GUI that makes the process of seIecting desired 

features straightforward. A command-line interface is also provided to manipulate jAudio 

via scripting, and jAudio may also be used as a dynamic linked library (a collection of 

sub-programs) for use in other applications. Design decisions and their consequences are 

discussed further at the end of the chapter. 

OMEN utilizes jAudio to provide feature extraction capabilities. jAudio has a 

number of attributes that make it ideal for this purpose. jAudio provides support for 

multi-dimensional features. Furthermore, jAudio provides multiple types of features­

features, metafeatures, and aggregators. In addition, jAudio was designed to be used as an 

embedded library, thus it has a sophisticated dependency resolution algorithm, intuitive 

settings for controlling extraction parameters, and an XML configuration file that permits 

users to add new features to it without modifying the dynamic linked library. 

3.1 Mulfi-dimensional Feafures 

Features extracted by jAudio are not restricted to one dimension. This is 

especially important for features such as MFCC's (see Chapter 5) that typically have 

many dimensions. Furthermore, in jAudio, the number of dimensions for a particular 

feature may not be known prior to extraction. This is especially useful for features such 

23 



as Magnitude Spectrum (see Chapter 5) where the number of dimensions is dependant on 

the window size. However, while the number of dimensions can vary based on the 

settings used, it cannot vary based on the input audio signal. 

3.2 Types of Features 

jAudio extracts three different classes of features-features, metafeatures, and 

aggregators. Features, including multi-dimensional features, are the fundamental type of 

information thatjAudio processes and are calculated for each window. Metafeatures 

provide a template for creating new features derived from other features. These derived 

features are also calculated every window. Aggregators provide a way to control how 

jAudio produces per-song output from the per-window data. 

Features are the basic unit offeature extraction. Features produce output on a per­

window basis. Their input can be the digital representation of the audio signal being 

analyzed, the results of previous calculations, or both. AlI features, which require more 

than one window of data before output is possible, use a sliding window that permits 

jAudio to output for each window for these features. The output can be either uni­

dimensional or multi-dimensional and the number of dimensions can be determined at 

execution time. 

Metafeatures are feature templates that are automatically applied to aIl features to 

create new derived features. The primary purpose of metafeatures is to allow developers 

to produce common variations of features without having to explicitly code these 

variations for each feature. Derived features function exactly like regular features, and are 

also output on a per-window basis. jAudio provides three metafeature classes­

Derivative, Mean, and Standard Deviation. In addition, metafeatures can be chained 

24 



together to create new metafeatures. jAudio provides two such chained metafeatures­

Derivative of the Mean, and Derivative of the Standard Deviation. These five 

metafeatures can be used to provide up to five additional features for each standard 

feature. An example ofthis in practice: the feature Root Mean Square (RMS) can be 

automatically expanded from one to six features-RMS, Derivative of RMS, Running 

Mean of RMS, Running Standard Deviation of RMS, Derivative of the Running Mean of 

RMS, and Derivative of the Running Standard Deviation ofRMS. 

Aggregators are functions that collapse a sequence of vectors into a single vector 

or into a smaller sequence of vectors. This is similar to aggregate features introduced by 

Begrestra et al. (2006). Compared to metafeatures, aggregators pro duce output only on a 

per-song basis, not on a per-window basis. Aggregators take as input a sequence of 

vectors-the extracted windowed feature values over the entire input file-and output a 

single vector in its place. In essence, information on how a feature varies with time is 

collapsed into a single feature vector for each input file in its entirety. For the Standard 

Deviation aggregator, for example, each dimension of the output vector is the standard 

deviation of the values for that dimension in the input vector across all windows of the 

song. It is also possible to design aggregators that encapsulate more sophisticated and 

detailed information on how a feature varies from window to window. 

Aggregators come in two varieties. The first is a function that is applied to the 

output of every feature to be saved. Mean and Standard Deviation are examples of this. 

The other type is a targeted aggregator that is applied only to one or more specifie 

features. An example of this kind of aggregator is the AreaMoments Aggregator that, for 

a given order of input features, treats their combined sequence of vectors as a two-

25 



dimensional image matrix and calculates two-dimensional moments from this matrix. 

This second type of aggregator is useful for acquiring information about how the features 

in a collection of features change together over time, a potentially very meaningful type 

of information that cannot generally be accessed with alternative feature extractors. 

Users of jAudio can create their own aggregators of either type. Currently, jAudio 

has three aggregators that are applied to the output of every feature: Mean, Standard 

Deviation, and MFCC. There are also two features that are applied selectively: Multiple 

Feature Histogram and Area Moments. 

3.3 Embedding jAudio 

jAudio is designed so that it can be used either as a standalone application or as a 

dynamically linked library that can be embedded in other applications. Special emphasis 

has been placed on making it easy to add new features and aggregators to jAudio. jAudio 

provides an XML configuration file to identify and dynamically load aIl features and 

aggregators. In order to add a new feature or aggregator, one need only add a reference in 

the XML configuration file. There is no need to recompile jAudio after doing so. 

In order to further accommodate the addition of features at runtime, jAudio 

automatically searches a plugin folder containing compiled Java classes for the 

implementation of the features described in the XML configuration file. The location of 

the plugin folder is specified in the first line of the XML configuration file as a URL. By 

using a URL instead of a path, it is possible to use a web site or other remote location to 

acquire the class files needed to construct features and aggregators. By modifying the 

configuration file and adding corresponding compiled Java classes to the plugin foIder, it 

is possible to add new features while jAudio is still running. The compiled Java classes 

26 



that implement these features do not have to be in the plugin folder. Features whose 

implementations are already made available to jAudio through other means (i.e., via the 

c1asspath) are incorporated automaticaIly. 

3.4 Dependency Resolution 

An additional unique feature of jAudio is its dependency resolution capabilities. 

Users do not have to know what the dependencies of a feature are when choosing which 

features to extract. Before the extraction begins, jAudio silently determines which 

additional features must be calculated in order to satisfy aIl the dependencies of the 

chosen features. These additional features are only used intemaIly, and do not appear in 

jAudio's output. AlI features to be inc1uded are then automaticaIly ordered to ensure that 

a feature is only calculated after aIl of the features that it depends on have first been 

calculated. An example ofthis is the Moments feature-it depends on the Magnitude 

Spectrum feature. As a result, for every window in which Moments is calculated, it 

occurs after Magnitude Spectrum is calculated. This algorithm is described in detail in 

Appendix B. 

3.5 Overview of Settings 

jAudio uses a number ofuser definable settings that influence how features are 

extracted. These settings can be roughly grouped into three areas-file types and sample 

rate, window size and window overIap, and output types. 

jAudio supports a wide variety of file types by utilizing the JavaSound libraries 

inc1uded in Java. This makes it possible to process Wave files, AIFF files, Au files, and 

Snd files. In addition, jAudio utilizes an additionallibrary to provide support for MP3 

27 



files. Through use of Tritonus Java plugins (Tritonus 2005), jAudio also has support for 

re-sampling the input signal to a new sample rate. jAudio allows users to determine this 

sample rate, which is then held constant for all files analyzed-regardless of the sampling 

rate of the input files. 

jAudio also provides control over the size of the analysis window and the degree 

of overlap between adjacent windows. This setting is set once for aH features and aH files. 

(Permitting separate window sizes for each feature interferes with dependency resolution 

since features can be dependant on other features with a differing window size.) By 

default, the analysis window is 512 samples in length with no overlap. 

jAudio also permits users to choose one of two output file formats-ARFF or 

ACE. These can serve as input for machine leaming packages. ARFF is the data format 

used as input by the Weka machine leaming system (Witten and Frank 2005). ACE is the 

input format used by the ACE machine leaming system (McKay et al. 2005). The user 

may also choose whether output should be generated per-file (using aggregators) or per­

window (not using aggregators). Due to limitations in the ARFF format, it is not possible 

to produce both per-window and per-file output at the same time when producing ARFF 

output. 

3.6 Design Decisions 

jAudio was designed to meet a number of different criteria. The system should 

provide a plugin interface for adding features and aggregators. It should provide 

command-line access, provide a GUI interface, and be easily embedded in other 

applications. Setting up feature extraction should be quick and simple. In particular, users 

28 



should not need to know the dependencies of the features they use. Furthermore, the 

computation al burden should be reasonable and the code should be portable. 

A number of implementation decisions were made to accommodate these design 

goals. In order to make configuring feature extraction simple and quick, features are 

chosen from a list instead ofby constructing patches in (more complicated) graphical 

interfaces such as those used in CLAM (Amatrain and Arumi 2002) and M2K (Downie et 

al. 2005a). Similarly, window size and sample rate are fixed across aIl features. Allowing 

per-feature settings would require a more complicated interface that would be counter to 

simplicity. Automatic dependency resolution also resolves the biggest complication with 

existing systems-the need to explicitly include features whose results are not wanted but 

which are required for other features. By configuring each feature at most once, each 

feature need only be calculated once regardless of the number of times it is referenced, 

greatly reducing computational costs. By using Java, portability can be maintained. While 

there might be a concem over performance, Moreira et al. (2000) demonstrate that 

properly optimized Java code can achieve performance comparable to optimized Fortran. 

29 



4 Features 

OMEN utilizes jAudio as a library for metadata extraction. jAudio provides 

implementations for a number of different features used to generate metadata. Features 

produce output for each window of the signal. Each of these features can be subdivided 

into four broad categories: those features that depend only on one window of a time­

based representation of the signal (time-domain features), those features that depend on a 

vector of windows of a time-based representation (multi-window time-domain features). 

those that depend only on the frequency representation of a signal (frequency-domain 

features), and hybrid features that depend on changes in the frequency representation of a 

signal over time. Furthermore, jAudio provides aggregators that come in two varieties: 

general aggregators (that are applied to the output of aIl features) and specifie aggregators 

(that are only applied to the output of specifie features). 

OMEN has an interface designed to make creating new features and aggregators 

as easy to create as possible while maintaining flexibility. In order to accomplish this, 

each feature has a standard description class where developers define information such as 

what other features have. Similarly, aggregators have a description class that defines the 

content of the feature. Keeping this information in the feature's or aggregator's source 

code (rather than a separate configuration file) eases development. Features have an 

extractFeature method that has as a parameter the PCM representation of the current 

window as weIl as aIl dependencies defined in the description. The Aggregators' 

aggregate method has as a parameter a list of the output generated by the relevant 

features' extract method for aIl windows. This structure shifts aIl decisions about whether 

or not there is enough information to compute a feature or include a window in the data 

30 



provided to an aggregator to jAudio's feature extraction routines. This is possible because 

jAudio is restricted exclusively to extracting features and so can fix decisions that would 

otherwise require researcher input. 

4.1 Time-Domain Feafures 

The output of time-domain features is calculated from exactly one window of the time-

domain representation of a signal. Unless otherwise stated, the output each feature is a 

single value per window. 

4.1.1 Root Mean Square 

Root mean square (RMS) is the average energy per sample of one window of the signal. 

RMS~ ~±x; 
n-I 

Where Xn is the nth sample of the window. 

4.1.2 Relative Difference Function 

This feature is calculated by taking the log of the absolute value of the derivative of RMS 

(Klapuri 1999). For extremely small or zero values of the derivative, an arbitrarily small 

value is supplied instead. 

4.1.3 Zero Crossings 

This feature measures how many times the signal value crosses zero in a given window. 

The definition of 'crossing zero' is when the signal changes sign or changes from non-

zero to zero. 

31 



4.1.4 Strength of Strongest Frequency via Zero Crossings 

This feature transforms the unit of the zero-crossings feature from number of crossings 

per window into Hertz: 

Frequency in Hz = (~)(!), 

where Z is the number of zero crossings, S is the sample rate, and N is the number of 

samples in the window. The output ofthis feature is an approximation of the pitch of the 

signal if the signal is monophonic. 

4.1.5 Linear Predictive Coding 

Linear predictive coding (LPC) provides a set of feedback filter coefficients that provides 

a compact representation of a window of samples. LPC is calculated as follows. First, 

create a matrix from the window data that is L(W + L) where Lis the number of 

coefficients and W is the length of the window of data. The tirst column is the contents of 

the window zero-padded with the data in each subsequent column shifted 1 row towards 

the bottom of the column (adding an additional zero at the top of the column) so that the 

last column starts with L zeros followed by the contents of the window. Then multiply the 

transpose of this matrix by itself to create a LxL autocorrelation matrix. This matrix is 

inverted and multiplied by a matrix that has an order LxI where the tirst entry is 1, and 

the rest O. The resulting matrix is the LPC coordinates (Jackson 1999). 

4.2 Multi-Window Time-Domain Features 

These features are calculated over multiple windows of the time-domain signal. Unless 

otherwise noted, these features use a default super-window of 100 windows and output a 

32 



single value per window. A super-window is a window that consists of other windows. 

The length of aIl super-windows can be altered. 

4.2.1 Fraction of Low-Energy Windows 

This feature calculates the average value ofthe RMS over its super-window, and then 

calculates the percentage of individual windows whose RMS value is less than this mean 

value. This feature is useful for determining whether a signal has a stable, constant RMS, 

or has a tendency to have strong spikes. 

4.2.2 Beat Histogram 

This feature performs a Fast Fourier Transform (FFT) (McCleIlan et al. 1999,371--4) 

against a super-window of RMS values in order to construct a histogram representing 

rhythmic regularities. A longer super-window of 256 windows is used to capture longer 

rhythmic regularities. This feature outputs a vector of values equal in length to the length 

of the super-window. This is used as a base feature for determining best tempo match. 

4.2.3 Beat Sum 

This feature is dependant on the beat histogram. It is calculated as the sum of aIl the 

entries in the beat histogram's vector. This gives sorne measure of the prevalence of 

regular beats occurring in the signal. 

4.2.4Strength of Strongest Beat 

This feature is dependant on the beat histogram feature. Its value is the maximum value 

in the beat histogram. 

33 



4.3 Frequency-Domain Feafures 

These features utilize the output of the FFT (McClellan et al. 1999,371-4) provided in 

jAudio. AIl of these features are dependent on either the magnitude spectrum feature or 

the power spectrum feature. 

4.3.1 Power Spectrum 

This feature first calculates the FFT of a window of samples, then a single vector is 

created from its real and imaginary components by squaring both the imaginary and real 

part, and then adding the result together. 

4.3.2 Magnitude Spectrum 

This feature is the square root of the power spectrum. 

4.3.3 Strongest Frequency via FFT Maximum 

This feature provides the index of the maximum value in the power spectrum. 

4.3.4 Spectral Centroid 

This feature is the "center of mass" of the power spectrum. It is calculated by multiplying 

each value in the power spectrum vector by its index in the vector and dividing this result 

by the sum of aIl entries in the vector. The resulting spectral centroid is the index in the 

vector where exactly half of the energy in the power spectrum is located in indices above 

the spectral centroid and exactly half below. 

4.3.5 Strongest Frequency via Spectral Centroid 

This feature transforms the unit of the spectral centroid from a vector index to Hertz. 

34 



4.3.6 Method of Moments 

This feature consists of the first four statistical moments of the magnitude spectrum. This 

incIudes the area (zeroth order), mean (first order), spectral centroid (second order), 

spectral skew (third order), and spectral kurtosis (fourth order). These features describe 

the shape of the spectrograph ofa given window (Fujinaga 1997). 

4.3.7 Spectral Rolloff 

This feature provides similar information to spectral centroid, but instead of providing the 

index where 50% of the energy is at a lower indices in a given power spectrum vector, 

this value ca1culates the index where 85% of the energy is located at a lower indices in 

the power spectrum vector. This default cutoff of 85% can be altered. 

4.3.8 Mel-Frequency Cepstrum Coefficients (MFCC) 

This feature is a concise description of a spectrum that is calculated from the magnitude 

spectrum (Bolger et al. 1963). MFCCs are ca1culated using the following steps: calculate 

the logarithm of each element of the power spectrum vector. Then convert the vector into 

Mels (a perceptually-based frequency scale). Finally, take the discrete cosine transform 

of this vector. 

4.3.9 Peak Detection 

This implementation is a simple algorithm whose output provides a vector of the peaks 

present in the frequency-representation of a signal. Peaks are defined as a local maximum 

in the magnitude spectrum where the peak's value is greater than one-tenth the value of 

the global maximum. It should be noted that this feature does not track peaks. 

35 



4.3.10 Partial-based Spectral Centroid 

This feature is based on McAdam's (1999) spectral centroid algorithm used for 

instrument classification. It is calculated by multiplying each value in the vector of peaks 

by its index in the vector and dividing this result by the sum of all entries in the vector. 

This feature differs from a traditional spectral centroid in that peaks (listed in the paper as 

parti ais ) are numbered sequentially and the spectral centroid is calculated on this vector 

of peaks rather than the power spectrum. In MPEG-7, this feature is called harmonic 

spectral centroid (Quackenbush and Lindsay 2001). 

4.3.11 Partial-based Spectral Smoothness 

This feature is an implementation of McAdam's (1999) Spectral Smoothness algorithm 

that operates on a vector of peak values. Using this vector, the spectral smoothness is 

calculated as follows: 

S 1 S hn ~l (P[]) log(P[n -1]) + log(P[n]) + log(P[n + 1]) pectra moot ess = LJ og n - -"'------'-----'~---"'----
n-I 3 

where P[nj is the nth peak vector and N is the length of the peak vector. It should be 

noted that if less than three peaks are present, this feature does not return a value. 

4.3.12 Compactness 

This feature is derived from McAdam's Spectral Smoothness (McAdams 1999). The 

difference between these features is that, instead of operating on a vector of partial s, this 

feature operates on the magnitude spectrum. It is calculated as follows: 

C 
~l (M[]) log(M[n -1]) + log(M[n]) + log(M[n + 1]) ompactness = LJ og n - --='-------"""'-------"'-----
n-I 3 

36 



where M[n] is the nth entry in the magnitude spectrum's vector and N is the length of the 

vector. This feature is used to measure the degree of noise in a signal. 

4.4 Hybrid Features 

These features use a combination of both time-domain information and spectral 

information. 

4.4.1 Spectral Variability 

This feature is considers the magnitude spectrum as a population and calculates the 

standard deviation over the magnitude spectrum. 

4.4.2 Spectral Flux 

This feature is an implementation of McAdam's (1999) algorithm for spectral flux and is 

calculated using a vector ofpeaks. It is implemented as the Pearson's autocorrelation 

between two consecutive vectors of peaks. Peaks are matched by order of occurrence 

starting from the lowest frequency peak. If the number of peaks differs in consecutive 

windows of the frequency representation of the signal, the unmatched peaks are 

discarded. In MPEG-7, this feature is called harmonic spectral deviation (Quackenbush 

and Lindsay 2001). 

4.4.3 Simplified Spectral Flux 

This feature uses the sum of the squares of the difference between consecutive magnitude 

spectrum windows. It is used to describe the rate of change in the spectral content of the 

signal. It is identical to spectral flux except that it is based on the magnitude spectrum 

instead of a vector or peaks. 

37 



4.5 Metafeatures 

Metafeatures are feature templates that can use the output of any feature and create a new 

feature from it. Like features, metafeatures produce output for each window of the digital 

signal. Currently, there are three metafeatures defined in jAudio: Derivative, Standard 

Deviation, and Mean. Furthermore, these metafeatures can be chained, creating more 

complicated features. In jAudio, five new features are generated from every feature. 

4.5.1 Derivative 

This metafeature implements a simple discrete derivative, retuming the difference 

between adjacent values. 

4.5.2 Running Mean 

This metafeature provides the arithmetic mean of an arbitrary feature across a super­

window. 

4.5.3 Standard Deviation 

This metafeature provides the standard deviation of an arbitrary feature across a super­

window. 

4.5.4 Derivative of Running Mean 

This metafeature provides change in the running mean across a super-window. This 

feature is useful for tracking trends in any output that is inherently noisy. 

4.5.5 Derivative of Standard Deviation 

This metafeature provides change in the standard deviation across a super-window. This 

feature is use fuI in tracking changes in variability of a feature. 

38 



4.6 General Aggregators 

General Aggregators are functions that take the output offeatures (which generate output 

for each window) and transform this into a single output per input file. General 

aggregators are automatically applied to every feature. However, general aggregators can 

only utilize the output of a single feature at a time. 

4.6.1 Mean 

This aggregator calculates the mean value of the underlying feature. If the feature is 

multidimensional, the mean is calculated for each dimension separately. 

4.6.2 Standard Deviation 

This aggregator calculates the standard deviation of the underlying feature. If the feature 

is multi-dimensional, the standard deviation is calculated for each dimension separately. 

4.6.3 MFCC 

This aggregator treats the underlying feature as a digital audio signal. By default, the 

feature output is treated as having a sample rate of 16KHz. The algorithm for calculating 

MFCCs for this aggregator is identical to the algorithm for the MFCC feature. If the 

feature is multidimensional, the calculations are performed on each dimension separately. 

4.7 Specifie Aggregators 

Specifie Aggregators are applied only to specifie features instead of aIl features. AIso, 

specifie aggregators can combine the input of more than one feature at a time. An 

aggregators of this type must specify which features are to be used as input. 

39 



4.7.1 Area Moments 

This aggregator first flattens aIl the features into a single array of output, concatenating 

the dimensions of the source features in order to create a single matrix of output values. 

Then the source is treated as a two-dimensional image and the two-dimensional statistical 

moments are calculated utilizing the same algorithm as the feature. 

4.7.2 Multiple Feature Histogram 

This aggregator is designed to track concurrent changes between features over an input 

signal. Each dimension is separately divided into bins. (i.e., 2 bins would be bottom 50% 

of values and top 50% of values). Each window is assigned an identifier according to the 

combination ofbin values for each dimension in the input array for that window. The 

output is a histogram of these identifiers. 

40 



5 Web Interfaces 

OMEN provides three different web interfaces for each of the three different 

kinds of users that will use it. Each of these interfaces serves a different purpose and meet 

different design criteria. The first type is a researcher. This is a person that will conduct 

experiments that will use the content of the library's collection. The second web interface 

is the Librarian Interface. This interface is for librarians to control access to their archive 

and to keep the centrally stored metadata about the music library's collections up to date. 

The final interface is the web Administrator Interface. This interface is for maintenance 

of the structure of OMEN itself. This includes managing users, managing music libraries, 

and maintaining and updating OMEN. 

5.1 Researcher Interface 

The primary purpose of the Researcher Interface is to make it as easy as possible 

for researchers to access cached metadata or request the extraction ofnew metadata. To 

accomplish this, the Researcher Interface provides access to the ability to search against 

the combined metadata from the various libraries. In addition, the Researcher Interface 

permits the user to either upload or generate settings for analysis, submit a request for 

metadata extraction, delete previously created data, view settings, file lists, or results 

already created, submit a new feature for inclusion in OMEN, and change the settings on 

their account. Researchers can create an account by registering using a link from the 

login page. 

The search query interface consists of a simple keyword search against aH 

metadata fields. However, the Researcher Interface also includes the ability to remove 

41 



entries from the list, select a random sample of the CUITent file set, and to save the file list 

as a named query (see Figure 2). 

Figure 2: Researcher Search Query Interface 

Named queries are a mechanism to allow a researcher to save a list of files for 

later use in experiments. These file lists are listed by hyperlinked name in the 

researcher's homepage and can be later viewed by clicking on the name. By allowing 

researchers to save queries independently of the features to be extracted, researchers can 

reuse a common file list (i.e., for benchmarking purposes) even ifresearchers are not 

using the same features. 

AIso, there is a mechanism for storing settings for use in experiments. These 

settings can be loaded into OMEN in one of two ways. One can use the Upload Settings 

42 



interface to upload a jAudio settings file created using the jAudio Java application, or one 

can use the Create Settings interface on the homepage to explicitly create a settings file 

(see Figure 3). In both cases, the researcher supplies a name for the settings. The settings 

are then stored and displayed by name on the researcher's homepage. This feature allows 

researchers to store settings that are applicable for their research without tying those 

settings to a particular data set. 

lm 
p.O 
116k ..:l 
r 
r 
p-

IACE 0:1 

Ille dflault values or aIIJ'Ibutes, leave Ille ""Ir)' blaDk. 
r MapItude Spednim 

Power Spednim 

S~C..,1rOId 

DorIvatJve ors~ C..,1rOId 

RWIIIIn& MaD ors~ C..,1rOId 

Size ofWindow 10 A_ """"'" 

S_~ orSpeanlC..,1nIId 

Size of Window for S1IDdard Devlalioa 

DorIvatJve orRWIIIIn& MaD or~ C..,1rOId 
Size ofWindow 10 A __ 

DorIvatJve orStaadard ~ ors~ C..,1nIId 

Figure 3: Researcher Create Settings 

OMEN also provides an interface for submitting an experiment for execution. The 

first step is to choose which of the named settings and named queries to use for this 

experiment. The researcher also provides a name for the experiment and specifies 

whether or not the results should be made public. Once the experiment has been named, 

43 



the researcher is directed back to the researcher's homepage where the newly started 

experiment is now listed as an experiment in progress. By choosing to separate the 

definition of queries and settings from execution, researchers can reuse components, 

reducing the amount of information required to initiate an experiment. However, this 

makes initiating an experiment a three-step process. 

Another aspect of the Researcher Interface is the De/ete Data interface. In this 

window, researchers can select which of the queries, settings, and result sets are to be 

removed from the system. It should be noted that there are dependencies between the 

different components that prevent the deleted items from being permanently removed 

from the database. Queries and settings that are utilized by results cannot be fully deleted 

without deleting the results that reference them, even though they are removed from the 

users homepage. However, items that have been deleted but not removed will not count 

against the disk space usage of the researcher. Since metadata files can get quite large, a 

mechanism is needed to allow researchers to determine which data sets are most critical 

for their work. This will not necessarily eliminate the need for an administrator to delete 

files, but it will allow researchers a mechanism for avoiding potentially damaging 

intervention by an administrator. 

Beyond deletion, a researcher can also view queries, settings, and results by 

following the hyperlinked names on the researcher's homepage (see Figure 4). Viewing 

queries shows the researcher the files in the query along with aIl the metadata of those 

files. Viewing settings shows the settings of the global options such as window size and 

window overlap and also shows aIl features that are active and the attribute settings for 

each of these features. Viewing results provides links for showing the query and settings 

44 



used to create the result set. In addition, OMEN provides links for downloading either the 

feature definition file and feature values file (if the output type is ACE) or a single ARFF 

file (if the output type is ARFF). One can also download the feature values file as a 

zipped file with one file per music file analyzed. This makes it easy for researchers to 

determine whether existing metadata or experiment components meet CUITent needs that 

may eliminate the need for a request to occur at aU. 

Statua 

-Sotdap ----

Figure 4: Researcher Status Page 

The Publish Feature interface permits the researcher to make available for use a 

new feature not cUITently present in the analysis system. The feature implemented must 

foUow either the FeatureExtractor interface (for general features) or the Aggregator 

interface (for aggregators) (see Chapter 4). The submitted Java file must also inc1ude 

Javadoc comments giving detailed explanation of the feature (including the purpose of 

the feature.) The Javadoc requirements are not enforced at submission, but changes must 

be approved by the administrator before they will be published for use. Providing a 

mechanism for adding new features to OMEN is critical. However, allowing researchers 

45 



to directly upload their code into the system is a serious security risk. One side effect of 

this system is that aIl researchers must provide source code for their submissions. While 

this will limit submissions, permitting secret feature extraction algorithms limits the 

ability of the MIR community to properly evaluate the uniqueness and correctness of 

these features. 

FinaIly, a researcher can manage the details oftheir account. This includes 

changing their password, and changing their email address. 

5.2 Librarian Interface 

The Librarian Interface provides a web interface for a library to manage the files 

that it provides for analysis, for monitoring and managing the work queue, for managing 

usage policies, and for managing the library account with the master portal. This 

interface's primary design goal is to maximize librarians' ability to control the use of 

library resources while minimizing the expertise required to maintain the system. 

Librarians can be added or removed from the Manage Accounts section of the interface. 

The interface for managing files permits the librarian to view, add, or remove 

metadata about files from the main portal. This interface is divided into three 

components. The first component is used for editing metadata and removing files. The 

second component is the upload interface. Here, librarians can upload an iTunes XML 

file containing the metadata of files to be added to the archive. The third component of 

the interface is a web entry form where librarians can enter new metadata manually. This 

portion of the interface allows librarians to control the metadata published about their 

resources. In order to maximize control, each entry can be edited manuaIly. To make the 

interface accessible and usable for non-technical users, the iTunes XML file was chosen 

46 



sinee it is a well-documented format that can be easily created using readily available 

software without requiring any specialist knowledge. 

Each library maintains exclusive control over the extent to which computers in the 

library participate in metadata extraction. The Manage Workers interface shows aIl the 

computers at the library that are currently configured for processing (see Figure 5). 

This list contains each computer's id, URL for processing, name, and the reset worker 

button. The reset worker button sends a message to the worker computer to cancel aIl 

current analysis and to clear its cache of aIl music files. Caneeled analysis is added back 

to the queue to be re-deployed. This portion of the interface has a conflict between 

control and simplicity. Librarians must understand relatively complicated URLs 

describing the location ofworker computers. However, this information is essential for 

controlling the local computing grid. Ideally, computers configured to participate in the 

local grid should broadcast their identity to the controlling Library Node. However, this 

functionality would complicate both the client and server beyond what is feasible for the 

prototype. 

1 

UbnryHome 

~omepoae 

1 

ManI'" Queue 1 
Remove orcblnp onI«ot lIIIIysIa 

noq.-

RqiIIer _lUes wilb die OMEN 
portal. 

Managing Worker Computers 
id URL 

r 1 ~ttP:llddnW-2.10ClI:808C 
r l ~ttP:llddnW-2.1oc":808C 
r ~ ~ttP:llmil .. .IO(a1:8080I" 

r l ~ttP:J/ddmal-l:8080/iI'd. 
r fi ~ttP:llbyrd.IO(":8080laxl 
r Z ~ttP:IlPi1rlcor.loc":8080I' 
Ade! 1 Del... 1 Commit Ch!npt! 1 CIne" 1 

Name 
~ .. s Workstatlon 

pans Workstation 2 

~athtriMS Workstation 

!LAUrens Workstation 

!Râbocc .. Worknition 

""hleys Work.tatlon 

Figure 5: Managing Workers 

Roset Workor 1 
Roset Workor 1 
Ros .. _or 1 
Ros .. _or 1 

Roset _or 1 
Reset Workor 1 

47 



By clicking on a worker in the list, the librarian can view the CUITent settings for 

that particular worker. The features displayed in this component are the id of this worker 

and the values of each of the settings ofthis computer. The settings for workers are 

Thread Priority, Max Cache Size, and On Id/e Thread Priority controls what priority 

should be used to execute analysis jobs (see Figure 6) Max Cache Size refers to the 

maximum amount of disk space that should be used to temporarily store the music files 

that are present in the request. On Id/e designates whether or not this worker should work 

only when the computer is idle. This setting is not supported on all systems, so the 

receiving computer may silently ignore it. While these settings are required for complete 

control over the use of library resources, they require technical expertise to understand 

their purpose. Therefore, these settings are removed from the primary worker lists and 

placed in a separate settings interface that is accessible from the worker list for those 

librarians that have the expertise to understand the settings. 

Ubrary lIomr 1 

-~ 

1 
MtawOocuc 1 _ .. ~_01 ........ _ 

1 ... _=o~~.1 
1 s. __ ;: ••• OMBN 1 

Managing Worker Computer SettIngs 

w ...... n....w_ 

..-, n 
..... CcMSbo i.-;;:~ .. ~ .. ,...=----
RCIIIieC 10 tcneaUVCr 1 Trw ::1 , ....... , .-.0' 

Figure 6: Worker Settings 

In addition to configuring individual workers, the Library Interface provides an 

interface that allows librarians to globally set hours of operation for OMEN (i.e., when 

the library is closed) (see Figure 7). Any requests received after OMEN stops executing 

analysis are queued for execution when analysis resumes. While it may be useful to set 

different times of operation for different groups of computers, this would greatly 

48 



complicate the interface. A single, global controllist provides sufficient functionality 

without placing undo burdens on the librarians. 

Managing Operating Hours 

Ubrar.y Home clay boun minute 
r IsUlt .!l Isu.clay .!l 117 .!l 130.!l 
r IStop .!l 1 Monday .!l la .!l ro3 

1 

M'n'u Oueue 

Remove or cbanae 0Idet of 
• II\IlyIls requesII 

r- I SIiII .!l 1 Monday 3 121 .!l 10 .!l 
r ISIop .!l 1 Tu •• day .!l la .!l 10 .!l 
r 1 Start .!l 1 Tue.day .!l 121 .!l ro3 
r Is,op .!l IwodOlday .!l la .!l ro3 
r IStl" .!l IWod •• day .!l f2ï3 10 .!l 
r IStop 3 1 ThU,.day 3 la .!l 10 .!l 
r 15'1" .!l 1 Thursday .!l 121 .!l 10 .!l 
r IStop .!l 1 rriday .!l la .!l 10 .!l 
r- 1 Still .!l 1 rl1day .!l 121 .!l 10 .!l 
r ISIop 3 1 Saturday 3 1 • .!l 10 .!l 

De!ctc FI!es 
r IsUIt .:J ISaturday .:J 117 .:J [303 
r- Is,op .!l ISunday .!l 112 .!l ['03 

DeIoIe 1Ue0lllll0s~ .. 1Ib 
1be DAMIS poilai 

Ade! 1 Del... 1 Cort1mit Chanp. 1 Cancel 1 

lllll!lld ITun""'1IIII1Ik 

~1oIId 1be iTuIIea~ 
~" __ offiles 

to1be_ 

MIIlIIf: WorkHA 

VIew, add,lIId ......... worlœr 
CCIIIIfII*n u .. eU u cbanae tbeir 

lIIIIdnp 

Mllift TImes If Ooeratioa 

CoaIroI1be boun wben OMBN 
wID perfonn .. olle. 

MIDI&I A<œUDt 

~ lCCIIIIty Cor 
c:ommunlcalinl wldt wamn or 
portal. Allo add or """,,vc ..... 

Figure 7: Operating Hours 

The Manage Queue interface allows the librarian to alter the active queue of 

analysis requests that are currently pending as weIl as requests currently being processed 

(see Figure 8). In this interface, the librarian is able to cancel an analysis request and 

move a request up or down in the queue. Once a request has started executing, the request 

is now off the execution queue and can only be altered by canceling it. Since the queue is 

potentially changing extremely quickly, it is more important that librarians be able to 

request changes quickly as opposed to ease of use. 

49 



R_or __ allllllylis_ 

AdUlIIo 

~_ftIeo_IheOMl!!l_. 

EdlUlIa 

IlpIood rrw- IIIIIlIk 

U~:.œm:-~_IID~. 

v ........ NIIIO'OCftdr;aCOGflPl*'l • ...... _--
l 

,,-na. oI!lJIrnlIon 1 
c.... ... _ wheaOWIIN wta_ _. 

" 
T,,*Qaeuo 

Tut ID 
>2 
>2 
'2 

'2 
'2 
'2 
'2 
'2 
'2 
'2 
'2 

" '2 

" 
" '2 

" 
" '2 

'2 
'2 
'2 
'2 
twill 

Managing the Task Queue 

TaskNuœ 
olIM ... ......... ......... 
olIM NIl ......... ......... ......... ......... ....... 
......... 
..... MI ........ _ND _ ... _ .... 
....... _MO 
olIM ... ....... ....... -.... ....... ....... 

.... Id 

90' 

""'ID 
'102 

9O! 

"" !lOS 

"'" 007 

900 ... 
0' • 

0" 
9'2 
0., 
". 
91S .,. 
917 

9 .. 

9 .. 

9lD 

921 
922 

m 
9Z4 

Dftc:rioft.,MOve 

1""'...... -'" 
1""'· ..... -'" 
1 .......... -'" 

1""' ...... -'" 
1""'....... -'" 1.......... -'" 
1-...... il 
1-...... -'" 
~~ 
1- -'" 
lu.......... il 
~----:=i 

lu.......... .:1 
1""' ...... il 
1- .:1 
1- .:1 
1_ :3 
1- -'" 
1_ 3 
1""' ...... -'" 
~~ 
1- .:1 
1""' ...... .:1 

Figure 8: Managing the Queue 

"-'1 
"""'""'1 
c-.It 1 

c-.Jt 1 

"-'1 
c-.Jt 1 
c-.Jt 1 

~.J 
~'I 
CoMooit 1 
~I 
(_1 
c_1 
~,I 

CoMooit 1 
CoMooit 1 
~I 

~I 

~I 
<-MI 
~I 
<-MI 
~I 

Finally, the Librarian Interface has a component for performing changes to the 

library's account. The librarian can change the list oflibrarians authorized to log in and 

reset the passwords of librarian accounts. 

5.3 Administrator Interface 

The administrator is responsible for maintaining the master site for both librarians 

and researchers. The Administrator Interface is based on the assumption that the 

administrator of OMEN is technically competent and wishes to complete tasks with the 

minimal number of steps. To accomplish this goal the administrator has five main 

components: Manage Researchers interface, Add Libraries interface, Publish Features 

interface, Manage Public Data interface, and Manage Account interface. 

The Manage Researcher interface has components for viewing and editing 

researcher accounts (see Figure 9). The administrator can remove accounts, reset 

50 



passwords, and change email addresses. With the exception of removing accounts, the 

functionality of this interface is duplicated by the Researcher Interface Manage Account. 

This is important because sorne users will be unable or unwilling to manage their own 

account, making it imperative that the administrator also has access to this functionality. 

AlI accounts are available from the same page with aIl potential actions on an account 

listed on the same line as the account itself. This permits an administrator to find an edit 

an account in two steps---opening the account page and performing the needed edit. 

~.ni.l.mc.nnis@lmail.mCgi c!wlgt! Email 1 Roset Pu,_rd 1 DeJet. 1 
~i.nan.Ii@lmail.mcgill.ca c!wlgt! EmaU 1 Roset Puoword 1 Dolote 1 
iâShl~uslc.mcgm.ca c!wlgt! EmaIl 1 Roset Pu'ward 1 DeJete 1 
yebecca6llmus1c.mcglll.ca c!wlgt! EmaIl 1 Roset Pu,ward 1 DeJete 1 

Figure 9: Managing Researchers 

The Add Libraries interface alIows the administrator to manage the libraries 

participating in OMEN. AlI existing libraries are listed in the interface along with the 

corresponding email addresses and the locations oftheir Library Node. The email address 

and locations can be altered or the libraries deleted entirely. AIso, new libraries can be 

added to OMEN by supplying the name, email, and location of the Library Node (see 

Figure 10). Like with managing researchers, aIl tasks relating to managing libraries are 

51 



inc1uded on the same page, permitting administrators to add a library or perform an edit 

with a minimal number of steps. 

Emoll l..ocotioD 
ldOI1i.i.mCfnnl.~I.mcgl r-jhtt-p:,"""""dd-mai--"'-'2:80"""'80-,axl-. SUbmll CIw!go 1 Doleto 1 

CadIcrinco WmkswIonl ~"p:"mll .. .Iocal:8080'o> SUbmll Change 1 Dolet. 1 

Add Libroly 1 

Figure 10: Managing Library Accounts 

The Publish Feature interface shows aIl pending requests by researchers for 

adding features to OMEN (see Figure Il). Each request has buttons for View Feature, 

Down/oad Feature, Accept Feature, and Reject Feature. The View Feature button shows 

the source code of the Java file. The Down/oad Feature button permits the administrator 

to download the feature for testing against a local system. The Accept Feature button 

sends the administrator to a page to upload the compiled version of the feature. Then 

OMEN propagates the new feature by calling the NewFeature web service at aIllibraries. 

The Reject Feature button sends the administrator to a page where the administrator 

explains why the feature is rejected. This pro cess has more steps than other tasks, 

however they are necessary to ensure that the system is not compromised by rogue code. 

Utilizing only the oversight of an administrator to safeguard the security of OMEN is 

52 



valid since many of the most difficult to detect attacks (i.e.,buffer overflows) are already 

caught by Java's built in error checking. The primary purpose of the check is to detect 

obvious attacks such as file or network access within a feature and to ensure that the 

features compile before distribution. 

FalllftN ..... 
jAudioFeomreEx1llCtDr.AudioFeaIUreS.ConswuQ 

jAudiol'callm:Extroetor .AudIoFeaIUrcs.B1IicPIà 

lleooardl ... 
mcounis VI_ 1 Downlood 1 ~ ~ 
mœllllÎl Viow 1 DcMnIood 1 Ampt 1 ~ 

ijAooOoPeoIlUleEJttrlO1or.A,K1ioP< ........ s.BuiicVoc_OCIÎllII mcounis VIew 1 Downlood 1 Ace. 1 ~ 

Figure 11: Managing New Features' 

The Manage Data interface aUows the administrator to eliminate cached data as 

needed. Data is grouped by type: file lists, settings, and results. Each entry is represented 

by its name. Unlike the Researcher Interface, data deleted is permanently deleted from 

the system. This permits administrators to cope with a potentiallack of disk space when 

researchers have failed to police their own usage. AU tasks and information related to 

managing data is placed within a single page to minimize the number of steps to 

accomplish the task. 

The final component is the Manage Account interface. This interface permits the 

administrator to change the administrator password and the administrator's email address 

53 



as weIl as add new administrators and reset the passwords or change email addresses of 

other administrators. 

54 



6 Network Structure 

In the previous chapter, OMEN was explained by describing its web interfaces. In this 

chapter OMEN is described by detailing each web service published by each class of 

computers (referred to as nodes) in the OMEN network. These services describe the 

communication between each of the different classes of computers for any given task. 

There are three types of nodes-Master Node, Library Node, and Worker Node. The 

Master Node is a central computer consisting of a single computer. The Library Node is 

the master computer for a given digitallibrary. Worker Nodes are computers near a 

Library Node that perform on-demand metadata extraction on music files (see Figure 12). 

Worker 
Node 

Master 
Node 

Worker 
Node 

Library 
Node 

Figure 12: Network Topology 

Worker 
Node 

55 



This structure was chosen for both its simplicity and for the control it provides. 

The distinction between Master Node and Library Node is needed to cope with copyright 

issues and provide control over participation to those institutions providing the 

computing and music resources. The split between Library Node and Worker Node is 

necessary to draw a distinction between the computer accessible to the rest ofthe network 

and those only accessible inside the library. 

Inside a library, a server-client model is required in order to prevent those outside 

the library from knowing about the location of worker computers, interfering with the 

librarians' complete control over the use of library resources. While distribution of music 

files inside the network might be more efficient with P2P than client-server, a client­

server model is much simpler and the impact of the bandwidth limitations of the Library 

Node is mitigated by caching. 

A server-client model for communication between the Master Node and the 

Library Nodes has the advantage of simplicity and permits researchers to access the 

network using a web browser. A P2P solution could also work, but would require custom 

software to access and would require sophisticated consistency validation to ensure 

changes are fully propagated to aIl Library Node computers before they are applied. 

6.1 Master Node 

The Master Node is a monolithic central server that provides a central access 

point for accessing OMEN. It also provides a central point for monitoring analysis 

requests. This node hosts the researcher and administrator interfaces. 

56 



6.1.1 Web Services 

The Master Node provides a substantial number ofweb services (see Glossary) 

utilized by Library Nodes. These are PublishResults, GetFileList, AddFiles, 

RemoveFiles, and NotifyAnalysisFailure. 

The PublishResults service provides a mechanism for Library Nodes to report 

back to the Master Node the results of the analysis performed. This analysis can be in one 

of two forms: a single ARFF file or an ACE definitions file and an ACE values file. The 

PublishResult service receives the results from each Library Node and stores them in its 

database. 

The GetFileList service provides a mechanism for Library Nodes to retrieve the 

file records that it has published to the Master Node. This is used to provide a means for a 

librarian to search its library' s file list for errors to correct or files to remove. 

The AddFiles service provides a mechanism for Library Nodes to add new file 

entries into the Master Node's database. Files are uploaded in a custom XML file passed 

by the Library Node. 

The RemoveFile service provides a mechanism for allowing libraries to remove 

files from the master database. This service is also responsible for marking queries 

invalidated by the removal of files. 

The NotifyAnalysisFailure permits a Library Node to notify the Master Node that 

analysis failed. A variety of different reasons can be encoded in the parameter including 

explicit termination by librarians, missing files, or errors caused by buggy feature 

implementations. 

57 



6.2 Library Node 

Library Nodes are programs running on specifie computers located at each participating 

library and are the master computers for their respective digital libraries. This node holds 

10caIly a copy of aIl files that are available for analysis. Furthermore, this node is 

responsible for handling aIl analysis requests, dispatching these requests to the Worker 

Nodes at the library. Furthermore, the Library Node is host to the library interface that 

provides access to settings specifie to the library (see Chapter 6). 

6.2.1 Web Services 

The Library Node exports a number of services to create metadata or upgrade OMEN: 

ExecuteBatch, PublishResult, GetFile, AddFeature, and NotifyAnalysisFailure. 

The ExecuteBatch service is caIled by the Master Node when a new analysis 

request is routed to the Library Node. This service is responsible for parsing this request 

into a number of requests for analysis of exactly one file. Each of these requests is then 

queued into a work queue. FinaIly, a scheduler runs to dispatch work to any idle workers 

in the network. 

The PublishResult interface serves a similar purpose for the Library Node that the 

PublishResult service does for the Master Node. This service is responsible for receiving 

the results from each of the Worker Nodes. The results are then forwarded to the Master 

Node. The scheduler is then run to see ifthere is any work in the work queue for the now­

idle worker. 

The GetFile service is called by Worker Nodes when that node does not have the 

file locally that it needs to complete an analysis request. This service provides the file to 

the Worker Node. 

58 



The AddFeature service provides a mechanism for the Master Node to publish to 

Library Nodes new features for inclusion in the analysis subsystem. This service is 

responsible for replicating this caU across aU worker computers. 

The NotifyFailure service provides a mechanism for Worker Nodes to notify the 

Library Node that it is unable to complete the analysis request that it was given. This 

service is responsible for reassigning the analysis request to another Worker Node by 

returning the request to the work queue. The type of failure is passed via an argument and 

includes not idle, missing file, invalid file, termination by Library Node, and problems 

from buggy feature implementations. 

6.3 Worker Node 

The Worker Node is the workhorse ofOMEN. Worker Nodes are those computers 

already in place in the library for patron use that perform analysis. Since a Worker 

Node's primary purpose is providing search and web capabilities-not computation-a 

variety oftechniques are needed to ensure that patron's use is not adversely affected. The 

techniques available in OMEN to accomplish this task can be activated or deactivated 

using the library web interface at the Library Node (see Chapter 5). One technique is that 

each Worker Node can be given hours of operation so that the computers are not 

executing analysis requests during hours that the library is open. Another technique 

available is to utilize 'on idle' computing which permits the application to execute if and 

only if the computer is currently running a screensaver. A third technique available is to 

set thread priority at the Worker Nodes. Setting thread priority informs the Worker Node 

how important the analysis task is. A low value will slow down analysis, but make it less 

likely that the analysis will interfere with patron use. 

59 



6.3.1 File Cache 

Streaming music from the Library Node to the Worker Nodes is extremely bandwidth 

intensive-the time needed to transfer a file is comparable to the time needed to analyze 

it (Bray and Tzanetakis 2005). Fortunately, the same files will typically be analyzed 

repeatedly. By caching (keeping a local copy) of files that are analyzed, the Library Node 

can transfer the file to a Worker Node once, but analyze it many times, radically reducing 

bandwidth usage. While this uses significant disk space, the disk drives of the Worker 

Nodes are typically under-utilized. 

6.3.2 Web Services 

The Worker Node hosts a number of services that permit the Library Node to request 

analysis, publish settings and upgrades, and reset the worker. These services are: 

ExecuteBatch, AddFeature, Reset, ApplySettings, and CancelAnalysis. 

The ExecuteBatch service allows the Library Node to communicate to the Worker 

Node the analysis it is to perform. This inc1udes a reference to the file to perform the 

analysis on and the settings that the analysis should use. If the file is not present within 

the file cache, the Worker Node requests this file from its Library Node. Once the 

analysis has been performed, the results of the analysis are published to the Library Node 

using its PublishResults web service. If an error is encountered during execution, the 

Worker Node calls the NotifyFailure service instead. 

The AddFeature service provides a mechanism for the Library Node to deliver 

new code for features to each of its workers. This service is responsible for placing the 

c1ass file attachment into its c1ass path and updating the file listing available features with 

the name of the new c1ass. 

60 



The Reset service tells the Worker Node to erase its file cache and cancel any 

analysis requests it has received. This service is useful to deal with corrupted caches and 

as a last resort for terminating executing processes. This command will terminate any 

analysis currently running and calI NotifyFailure at the Library Node with an argument 

that indicates that the analysis was canceled at the Library Node's request. 

The ApplySettings service permits the Library Node to change how the Worker 

Node carries out its request. This includes whether the Worker Node should execute on 

idle only and the priority setting of the analysis threads. 

The CancelAnalysis service provides a mechanism for the Library Node to cancel 

any analysis conducted on the Worker Node. When this message is received, the Worker 

Node cancels any running analysis and caBs the Library Node's NotifyFailure with an 

argument that indicates that the analysis was canceled at the Library Node's request. 

61 



7 Lega 1 155 ues 

One of the primary reasons that the OMEN project is needed is to cope with legal 

restrictions. These legal restrictions are part of a larger debate on the cultural issue of 

compensation for access to and use of music. The issue is further complicated by the vast 

disparities in copyright laws between countries and the indeterminate state of the laws 

within these countries. This discussion of legality is not a legal opinion and is not 

guaranteed to be accurate representations of legal responsibilities and/or rights. 

7.1 Canadian Copyright Law 
The copyright laws in Canada are remarkably flexible for the use of copyrighted 

works for the purpose ofresearch. According to the Copyright Act "Fair dealing for the 

purpose ofresearch or private study does not infringe copyright." (Copyright Board of 

Canada 2006). This would appear to permit any analysis system if the analysis system is 

used exclusively for the purpose of research. 

7.2 USA 's Copyright Law 
Unfortunately, copyright law in other countries is not nearly so forgiving. 

Copyright in the USA is govemed by Title 17 of the United States Code and is an 

extremely complicated 290-page document. While research is entitled to 'fair use' 

exemptions, the law is extremely vague as to what activities are considered acceptable 

research. In particular, one of the considerations when deciding fair use is "the effect of 

the use upon the potential market for or value of the copyrighted work." (Copyright Law 

of the United States 2003). By never copying the music outside the institution that 

purchased it, OMEN seeks to side step many of the issues of copyright under USA law. 

62 



While the legality of transferring music to different devices internally has never been 

tested in court, the consortium representing nearly aIl commercial music in the USA, the 

Recording Industry Association of America (RIAA), has stated before the Supreme Court 

in USA that "The record companies, my clients, have said, for sorne time now, and it's 

been on their Website for sorne time now, that it's perfectly lawful to take a CD that 

you've purchased, upload it onto your computer, put it onto your iPod. There is a very, 

very significant lawful commercial use for that device, going forward." This testimony 

would seem to provide participating institutions protection from litigation from the RIAA 

for uses internaI to the organization. 

7.3 Conclusion 
Additional research is needed to determine the legal status of OMEN, particularly 

outside Canada and USA, before it could be adopted by the Music Information Retrieval 

community. However, given that OMEN is designed to accommodate relatively strict 

restrictions in the USA, it is probable that OMEN will pass legal muster elsewhere. 

63 



8 Conclusions and Future Work 
OMEN provides a mechanism for legally providing all Music Information 

Retrieval (MIR) researchers with access to a large dataset of music. This will permit 

researchers to compare results of MIR algorithms using the same music at any time, not 

just during specifie competitions. It will also save researchers significant amounts of time 

by removing the need to construct their own datasets or resort to non-representative 

music in the public domain. 

However, there is still work to be done. In particular, the system requires 

additional security to prevent unauthorized access of OMEN resources. This includes 

functionality such as digital signatures for authenticating communications between nodes. 

Another area for improvement is the scheduling algorithm for the Library Nodes. 

The required bandwidth could be greatly reduced if more care were taken to distribute 

feature extraction requests to Worker Nodes that already have needed files in their 

caches. 

In addition, a mechanism is needed to identify duplicate files across libraries and 

more sophisticated mechanisms are needed for creating file lists and editing file 

metadata. Finally, OMEN should, in the future, provide a way to present to MIR 

researchers only those files that have ground truth (see Glossary) for particular MIR 

tasks. 

64 



Appendix A - Use Case Diagrams 

65 



Processing a Featu re Extraction Request 

Master Node Library Node 

Execute Batch 

Queue.Add 

Worker Execute Batch 

Pu blish Resu It Library Publish Result 

Worker Node 

\0 
\0 



OataModel 

Extracti ng Featu res 

Feature Processor 

extractFeatu res 

findAndOrder 
Featu resToExtract 

preProcessRecordings 

Constructor 

AudioSamples 

r­
\0 



Submitting a New Feature 

Researcher Administrator Master Node Librarv Node Worker Node 

1 

Submlt Feature 
1 ___________________ J ____________________ _ 

Notify 

1 

1 
1 1 

f\pprove Featur~ 
New Featur 

New Feature 

00 
\0 



Appendix B - jAudio Design 

It is frequently use fui to know the underlying algorithms used to accomplish 

particular tasks. To this end, the overall structure, the key class involved in feature 

extraction, and the feature extraction algorithms are explained. 

B.1 Global Structure 

jAudio was designed to using the Model View Controller design pattern 

(Buschmann et al. 2001). In this pattern, a program is divided into three parts-models, 

views, and controllers. The model part is where the data of the program is stored, views 

are the representations of the data that users see, and controllers are the mechanism by 

which a model is changed. In jAudio, the DataModel class comprises the model; the GUI 

classes comprise one view, and the jAudioFE class comprises the command-line view; 

and the Controller class is the controller part. When using jAudio as a library, OMEN 

implements its own views and controllers and uses the DataModel class as a model. 

B.2 DataModel Class 

The DataModel class provides the model of the model view controller. It stores 

the information needed to perform analysis including information about features and 

information about analysis settings. 

The building of a DataModel object involves several parameters. The frrst is the 

callback stub for a view (called a ModelListener) that provides mechanisms for a 

DataModel object to report progress during analysis. The second is the location of the 

XML configuration file used to define what features and aggregators are available for use 

69 



by jAudio. At the start of the construction, DataModel constructs an array of available 

metafeature factories. These factories are hard coded into the constructor. Next, the 

DataModel object parses the XML file. The location of the plugin directory (the location 

where jAudio looks to find compiled Java c1ass files implementing features and 

aggregators) is extracted from the configuration XML file. Each feature and aggregator in 

the configuration file is then dynamically loaded. For every combination offeature 

extracted from the configuration XML file and metafeature factory defined, a new feature 

is created. These new features are deactivated by default, but are added to the list of 

available features, completing construction of the DataModel object. 

DataModel contains a number of variables that control how metadata extraction 

takes place. The first two variables are an array offeatures and an array of Boolean 

variable describing whether or not the corresponding feature is currently enabled. A 

variable of type ModelListener is provided to generate progress reports on progress of the 

analysis. There is also a variable that holds references to aIl files to be analyzed. There 

are also two variables for controlling the output of the jAudio. These two variables permit 

the output to be redirected to destinations otherthan a file (like a network connection). 

8.3 Execution of Me fa da ta Extraction 

The extraction process can be divided into three phases---construction, 

dependency resolution, and extraction. The construction phase loads the parameters 

involved in carrying out metadata extraction (provided either by the GUI or by an XML 

file provided by the user). The dependency resolution phase establishes which features 

need to be extracted and in what order. Finally, the extraction phase is where the 

70 



individual audio files (chosen via the GUI, listed on the command-line, or provided in an 

XML file provided by the user) are analyzed. 

8.3.1 Construction 

The extraction process is initiated by calling the extract method of a DataModel 

object. It has a number of parameters used to control the execution of the extraction. The 

first two variables deal with the windowing of the input signal. The first variable gives 

how long the window should be in samples. The second variable determines the window 

overlap, which indicates what percent of the pervious window should be duplicated in the 

next window (ranging from 0 to 1). The next variable is the target sampling rate ofthe 

analysis in Hertz. (If audio files have different sampling rates, they will be automatically 

re-sampled to the target rate). The next variable is a Boolean value indicating whether or 

not the files analyzed should be normalized before extraction. The next two variables 

indicate whether metadata should be generated for every window, once for each file, or 

both. The following two variables give the names of the files where output should be 

stored. For ACE output, these two variables correspond to the feature definitions file 

(listing the features that have been extracted) and the feature values file (listing the values 

extracted for each file). For ARFF output, the first variable is ignored and output is sent 

solely to the second file. If these values are null, the internaI variables for controlling 

output are used. Next is an array of the files to be analyzed. Finally, there is a variable 

indicating what format the output should be in---either ACE's data format ofWeka's 

ARFF format. 

71 



8.3.2 Dependency Resolution 

InitiaUy, a helper object of type FeatureProcessor is created. This object's 

constructors has as parameters aU of the variables in the DataModel and aU the 

parameters to the execute method. FeatureProcessor performs dependency resolution for 

aU features that have been chosen for extraction. This process has two distinct steps. The 

tirst to identify which features must be extracted (but not saved) in order to satisfy the 

dependencies of features that are to be extracted. The second step involves determining 

what order these features should be calculated in order that aU features are extracted only 

after aU the features they depend on have also been extracted. 

jAudio begins automatic dependency resolution by making a list of aU features 

whose output is to be saved (A). Another list (B) will be built that will eventually contain 

a list of aU features to be extracted. These two lists can differ, as a user may not wish to 

save a given feature, but this feature may nonetheless need to be extracted in order to 

calculate another feature that does in fact need to be saved. 

Initially B is set to be identical to A. jAudio then loops through each feature in B 

and adds each feature' s dependencies to B if they are not already in B. The loop 

terminates when jAudio completes an iteration without adding any new features. 

Once the features to be extracted have been identitied, jAudio orders these 

features to ensure that every feature is calculated only after its dependencies have been 

calculated. To accomplish this, jAudio creates an ordered list of features to extract (C). It 

then cycles through aIl the features in B. If aU dependencies of a given feature are in C, 

then it is added to C as weIl. This loop terminates once aH features in B have been added 

to C. 

72 



8.3.3 Extraction 

Once the FeatureProcessor object has been built and the features to extract have 

been determined and ordered, the executeFeatures method ofFeatureProcessor is called 

once for each file to be analyzed. For each file, the audio data is transformed into samples 

via the preProcessRecordings method. Then the samples are broken up into windows of 

data, the features are extracted sequentially for each window, and summary statistics are 

calculated, if requested. Finally, output containing the extracted metadata is generated. 

jAudio initially opens the given music file for preprocessing. This file is loaded 

into memory then, if needed, transformed into pulse code modulation (PCM) format (i.e., 

sample-based representation), and resampled to the sampling rate chosen by the user. If 

requested, the signal is normalized at this point. Finally, the signal is mixed down to one 

channel. The result is a description ofthe signal that is an array of double values between 

-1 and 1. 

The array of samples is then broken down into windows of the appropriate size 

and overlap. Ifthere is insufficient data to fin the last window, it is zero padded to full 

length. Each feature is extracted for each window by calling its extractFeature method 

using the dependencies calculated in the FeatureProcessor constructor. Ifit is not possible 

to calculate the output for a feature (due to, for example, not enough windows calculated 

yet to satisfy dependencies), then no output is produced for that feature for that window. 

Once an the features have been calculated, the results are output in the appropriate 

output format (either Weka's ARFF or ACE's data format). No output is generated until 

all calculations have been completed. 

73 



Appendix C - Glossary 

Axis 

Axis is a dynamic-linked library that supports the deployment of web services written in 

the Java programming language. While it can be run independently, it is typically used 

within a servlet container program such as Tomcat. It is an open-source program 

published by the Apache foundation (Web Services 2006). 

Cache 

A cache is a temporary local copy of something. In the context of networking, a cache 

refers to a copy made of something transmitted over the network that is temporarily 

stored at the computer that receives it so, if it is needed again, the local copy can be used 

instead of requesting the original again. 

Dynamic-linked Library 

A dynamic-linked library is a collection of sub-programs that are designed to be used by 

other programs. When an outside program requests a sub-program in the dynamic-linked 

library, the library is read from the disk and the sub-program executed. 

Ground Truth 

A collection ofmetadata that describes what the 'correct' analysis is for a particular task. 

This is useful to test how well algorithms perform a given task. 

Servlets and JavaServer Pages 

Servlets and JavaServer pages are technologies that permit developers to write dynamic 

web pages using the Java programming language. In order to produce web using these 

74 



technologies, a special web server known as a servlet container is needed. Sometimes this 

container is integrated into a web server, but it is often a stand-alone program. 

Tomcat 

Tomcat is a servlet container that converts servlets and JavaServer pages into web pages. 

It is an open-source program published by the Apache organization (Tomcat 2006). 

Web Services 

Web services are web pages specifically designed to be accessed not by humans, but 

other computers. When a computer requests a web service, it sends as part of its request 

an XML file providing information to the computer supplying the web service much like 

a web browser submits information to a web server when submitting a form. The 

computer supplying the web service performs a task and then sends an XML file back to 

the computer that initiated the request. The primary benefit of using web services is that 

the communication is independent of any programming language or operating system, 

much like a web page can be viewed on different web browsers or different operating 

systems. 

XML 

XML is a technology for describing data in such a way.that humans can also read the data 

and understand what it is representing and is easy for computers to read as weIl. Pieces of 

information are surrounded with tags that describe what the data inside represents. The 

format of these tags are fixed and the rules for nesting tags in si de tags follow a strict 

syntax to make it easy for computers to use, but the names of the tags are chosen so as to 

75 



make it as c1ear as possible for hum ans to understand what the data inside the tags 

represents. 

76 



References 

Amatrain, x., and Arumi, P. 2002. Clam: Yet another library for audio and music 
processing? In Proceedings of Annual ACM Conference on Object Oriented 
Programming, Systems, and Applications. 

Anderson, D. 2004. BOINC: A system for public-resource computing and storage. In 
Proceedings of IEEE/A CM International Workshop on Grid Computing. 

Apache Tomcat. 2006. [cited April 142006]. Available from http://tomcat.apache.org 

Bainbridge, D., Don, K., Buchanan, G., Witten, I., Jones, S., Jones, M., and Barr, M. 
2004. Dynamic digitallibrary construction and configuration. In Proceedings of 
European Conference on Digital Libraries. 

Berthold, H. 2002. Afederated multimedia database system. Ph.D. Dissertation. 
Technischen Universitat Dresden. 

Boiger, B., Healy, M., and Tukey, 1. 1963. The quefrency analysis oftime series for 
echoes: Cepstrum, psuedoautocovariance, cross-cepstrum, and saphe-cracking. In 
Proceedings of Symposium Time Series Analysis. 

Book Collector. 2006. [cited May 20 2006]. Available from http://www.portable­
software.com/download/bclBook%20Collection.htm. 

Bray, S., and Tzanetakis, G. 2005. Distributed audio feature extraction for music. In 
Proceedings of International Conference on Music Information Retrieval, 434-7. 

Bretschneider, T., and Kao, O. 2002. A retrieval system for remotely sensed imagery. In 
Proceedings of Conference on Imaging Science, Systems, and Technology. 

Clough, P, Müller, H., and Sanderson, M. 2004. The CLEF 2004 cross-language image 
retrieval track. In Proceedings of Cross-Language Evaluation Forum. 

Copyright Board of Canada: Copyright Act. 2005. [cited September 26,2006]. Available 
from http://www.cb-cda.gc.ca/info/act-e.html. 

Copyright Law of the United States. 2003. [cited September 26,2006]. Available from 
http://www . copyright. gov /title 17 /preface. pdf. 

Curzio, C., Lawson, J., Froment-Curtil, J., and Vender, J. 2006. distributed.net. [cited 
February 142006]. Available from http://distributed.net. 

de Mallorca, P. 2004. MPEG-7 overview. [cited February 172006]. Available from 
http://www.chiariglione.orglmpeglstandards/mpeg-7/mpeg-7.htm. 

77 



Downie, S., Ehmann, A., and Tcheng, D. 2005a. Music-to-knowledge (M2K): A 
prototyping and evaluation environment for music information retrieval research. 
In Proceedings of Special Interest Group on Information Retrieval. 

Downie, S., Futrelle, J., and Tcheng, D. 2004. The international music information 
retrieval systems evaluation laboratory. In Proceedings of International 
Conference on Music Information Retrieval. 

Downie, S., West, K., Ehmann, A., Vincent, E., 2005b. The 2005 music information 
retrieval evaluation exchange (MIREX 2005): Preliminary overview. In 
Proceedings of International Conference on Music Information Retrieval, 300-3. 

Foster, I., Kesselman, C., Nick, l, and Tuecke, S. 2002. Grid services for distributed 
system integration. IEEE Computer 35 (6): 37--46. 

Fujinaga, I. 1997. Adaptive optical music recognition. Ph.D. Dissertation. McGill 
University 

Gunther, N, and Beretta, G. 2001. A benchmark for image information retrieval using 
distributed systems over the Internet: BIRDS-l. In Proceedings of Internet 
Imaging. 

Gurman, l, Dimitoglou, G., Hourclé, 1., Bogart, R, Tian, K., Hill, F., Suarez-Sola, I., 
Wampler, S., Martens, P., Yoshimura, K., and Davey, A. 2005. The virtual 
observatory: Still in a small box. In Proceedings of Joint Assembly. 

Harte, M.-l, and Hoogerdijk, A. 2006. Collectorz. [cited May 20, 2006]. Available from 
http://www.colectorz.com. 

Hulbert, N., Freeland, S., Shine, R., Bose, P., and Woodward, M. 2001. A prototype 
problem solving environment for living with a star data. In Proceedings of Joint 
Assembly. 

Internet Archive. 2006. [cited February 122006]. Available from http://www.archive.org. 

Jackson, L. 1999. Digital Fi/ters and Signal Processing. 3rd ed. Norwell, MA: Kluwer 
Academic Publishers. 

Klapuri, A. 1999. Sound onset detection by applying psychoacoustic knowledge. In 
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal 
Processing. 

Lawton, G. 2000. Distributed net applications create virtual supercomputers. Computer 
33 (6): 16-20. 

78 



Li, X., Kim, Y., Govidan, R, and Hong, W. 2003. Multi-dimensional range queries in 
sensor networks. In Proceedings of International Conference on Embedded 
Networked Sensor Systems. 

McAdams, S. 1999. Perspectives on the contribution of timbre to musical structure. 
Computer Music Journal 23: 85-102. 

McClellan, l, Schafer, R, and Yoder, M. 1999. DSP First: A Multimedia Approach. 
Upper Saddle, New Jersey: Prentice Hall. 

McEnnis, D., McKay, C., Fujinaga, 1., and Depalle, P. 2005. jAudio: A feature extraction 
library. In Proceedings of International Conference on Music Information 
Retrieval,600-3. 

McKay, C., McEnnis, D., Fiebrink, R, and Fujinaga, 1. 2005. ACE: A general purpose 
classification ensemble optimization framework. In Proceedings of International 
Conference of Music Information Retrieval, 161-4. 

Messorotti, M., Coretti, 1., Padovan, S., Zlobec, P., Antonucci, E., Cora, A., Volpicelli, 
A., Dimitoglou, G., Reardon, K., Tripicchio, A., and Severino, G. 2003. The 
Italian solar data archives: National and European perspectives. Memorie della 
Societa Astronimica Italiana 74: 391. 

Moreira, l, Midkiff, S., Gupta, M., Artigas, P., Snir, M., and Lawrence, R 2000. Java 
programming for high-performance numerical computing. IBM Systems Journal, 
39(1): 18-24. 

Ogle, M. 2005. Streetprint.org. University of Alberta, Faculty of Arts, Canada Research 
Chair Humanities Computing Studio. [cited October 2 2005]. A vailable from 
http://www.crcstudio.arts.ualberta.ca/streetprint. 

Over, P., Kraaij, W., and Smeaton, A. 2005. TRECVID 2005: An introduction. In 
Proceedings of TREC Video Retrieval Evaluation. 

Petkovic, M., and Jonker, W. 2004. Integrated use of different content derivation 
techniques within a multimedia database system. Journal of Visual 
Communication and Image Representation 15 (3): 303-29. 

Quackenbush, S., and Lindsay, A. 2001. Overview of MPEG-7 audio. IEEE Transactions 
on Circuits and Systems for Video Technology Il (6): 725-9. 

Sikora, T. 2004. MPEG-7 audio analyzer: Low level descriptors (LLD) extractor. [cited 
January 272006]. Available from http://mpeg-7lld.nue.tu-berlin.de/. 

Smeaton, A., and Over, P. 2002. The TREC-2002 video track report. In Proceedings of 
Text Retrieval Conference. 

79 



Spalding, T. 2006. Library thing. [cited May 20,2006]. Available from 
http://librarything.com 

Tritonus: Open source java sound. 2005. [cited May 122006]. Available from 
http://tritomus.org 

Tzanetakis, G., and Cook, P. 2000. MARSYAS: A framework for audio analysis. 
Organized Sound 4 (3): 169-75. 

Web Services: Axis. 2006. [cited April 14 2006]. Available from http://ws.apache.orglaxis 

Witten, 1., and Frank, E. 2005. Data Mining: Practical Machine Learning Tools and 
Techniques. 2nd ed. San Francisco: Morgan Kauffinan. 

Witten, 1., McNab, R., Jones, S., Cunningham, S., and Bainbridge, D. 2000. Greenstone: 
A comprehensive open-source digital library software system. In Proceedings of 
ACM Digital Libraries. 

80 


