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Verification of Communicating DataDriven Web Services

Alin Deutsch Liying Sui Victor Vianu Dayou Zhou

University of California, San Diego
Computer Science and Engineering

{deutsch,lsui,vianu,dzhou}@cs.ucsd.edu

ABSTRACT

We study the verification of compositions of Web Service
peers which interact asynchronously by exchanging mes-
sages. Each peer has access to a local database and reacts
to user input and incoming messages by performing various
actions and sending messages. The reaction is described
by queries over the database, internal state, user input and
received messages. We consider two formalisms for specifica-
tion of correctness properties of compositions, namely Lin-
ear Temporal First-Order Logic and Conversation Protocols.
For both formalisms, we map the boundaries of verification
decidability, showing that they include expressive classes of
compositions and properties. We also address modular ver-
ification, in which the correctness of a composition is predi-
cated on the properties of its environment.

1. INTRODUCTION
Recent years have witnessed the proliferation of Web ser-

vices powered by an underlying database and interacting
with human users and with peer Web services. Examples in-
clude e-commerce sites, scientific and other domain-specific
portals, e-government, and data-driven Web services. The
development of such services is facilitated by the emergence
of high-level specification tools which automatically gener-
ate the code implementing the Web service (a commercially
successful representative is WebML [7]). Besides increasing
developer productivity, high-level specification tools create
opportunities for automatic verification. Such verification
leads to increased confidence in the service’s correctness by
addressing the most likely source of errors –the specifica-
tion itself– as opposed to the less likely errors in the well-
maintained automatic code generator.

In prior work [13], we studied as a first step the verifica-
tion of isolated Web services which interact only with exter-
nal users (through a Web browser interface). Many settings
however require services to interact with each other, typi-
cally by exchanging messages. For instance, even seemingly
self-contained e-commerce Web sites place calls to an exter-
nal Web service to charge a credit card. Similarly, a bank’s
loan management application exchanges messages with a
credit reporting agency’s Web service.

In this paper, we present a significant extension of our ver-
ification work to compositions of Web services (also called
peers), which interact by asynchronous message exchange.
The peers receive both input from their users (through the
Web interface) and messages from other peers. They react
by updating their internal state, by sending messages (such
as a credit check request to a credit agency’s Web service)
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Figure 1: Bank loan application

or by performing actions (such as the generation of a no-
tification letter). Each peer’s reaction is a function of the
current contents of the database, state, user input and re-
ceived messages. We illustrate a composition below.

Example 1.1 Consider a bank’s loan application process
involving the applicant customer, the loan officer, his man-
ager, and the credit reporting agency (shown in Figure 1).
Applicant, loan officer and manager play their part in the
process using Web interfaces running on top of the Web
services A,O,M respectively. The credit reporting agency
provides the Web service CR.

The officer’s Web service O, for instance,

• receives application messages from the customer’s Web
service;
• allows the officer to view details about the applicant,

available in the bank’s customer database;
• allows the officer to request the customer’s credit his-

tory, obtained via a message from CR, which retrieves
the information by querying its own local database;
• allows the officer to input his recommendation of ac-

ceptance or denial;
• sends a message with the recommendation, as well as

the customer data and credit history to the Web ser-
vice M, which allows the manager to input her final
decision, returned as a message to O;
• generates notification letters for customers.

As a sample correctness property, we’d like to ensure that
the composition satisfies bank policy, according to which the
officer may make an unsupervised decision granting loans to
applicants with excellent credit rating and denying them to
those with poor rating. All other credit ratings require the
manager’s involvement. We show in this paper how such
properties are expressed and automatically verified. ✷
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A run is a sequence of snapshots through which the col-
lection of peers evolves during the interaction with users
and with each other. The correctness of a composition is
specified by properties which express requirements on indi-
vidual run snapshots (using First-Order Logic), as well as
the temporal relationship among these snapshots. Verifica-
tion involves searching for runs which violate the property.
We are interested in sound and complete verification, which
produces a counterexample run if and only if the property
is violated.

We consider two formalisms for property specification,
namely First-Order Linear Temporal Logic and Conversa-
tion Protocols. Conversation protocols were introduced in [17]
as a generalization of an industrial standard (IBM’s conver-
sation support project [19]). Classical conversation proto-
cols are concerned only with the sequence of message names
observed during the interaction. In this paper, we extend
them with awareness of the message contents.

Contributions. For both property formalisms, we map
the boundaries of verification decidability. In particular, we
explore various semantics for message-based communication
(singleton versus set messages, lossy versus perfect commu-
nication channels, bounded versus unbounded received mes-
sage queues). We also identify syntactic restrictions on the
peer and property specifications which, under appropriate
communication semantics, guarantee decidability of verifica-
tion in PSPACE. This complexity is the best one can hope
for given that propositional LTL verification of finite-state
Mealy machines is PSPACE-complete [9]. We show that our
restrictions are quite tight: even slight relaxations thereof
lead to undecidability. When the composition consists of a
single peer with no message channels, the restrictions de-
generate to the notion of input-boundedness from [13]. We
demonstrated the expressivity of input-bounded peer spec-
ifications in [12] by modeling significant parts of four well-
known database-powered Web sites (demo available at [1]).
The favorable experimental results obtained in [12] for ver-
ification of individual input-bounded services suggest that
similarly good performance can be expected for composi-
tions.

Finally, we address modular verification, in which the cor-
rectness of a subset of the peers is checked when the full
specification of the other peers is not available and the only
knowledge about them is declared as properties of their mes-
sage input-output behavior. Modular verification is useful
when some peers are provided by autonomous parties unwill-
ing to disclose implementation details, or when verification
of a partially specified composition is desired.

Relationship to Software Verification. In the broader
context of software verification, our work addresses sound
and complete automatic verification of a novel class of reac-
tive systems communicating asynchronously. The systems
are infinite-state because the underlying database and user
input values are not fixed in advance. This is a departure
from most existing research, which focuses on communicat-
ing finite-state systems (called CFSMs in [6, 2, 3], and e-
compositions in the context of Web services, as surveyed
in [22, 23, 24, 21]). Conventional wisdom in software verifi-
cation holds that sound and complete verification of infinite-
state systems is infeasible, prescribing instead the approach
of finite-state abstraction followed by classical finite-state
model checking. In the data-driven Web service scenario we
consider, data values are first-class citizens and abstract-

ing them away is not satisfactory. For instance, abstraction
would allow us to check that upon receiving some credit
score request, the reporting agency sends some reply mes-
sage, but preclude us from requiring the reply to reflect the
customer’s database record. To handle data-driven compo-
sitions and data-aware correctness properties, we employ a
novel mix of model-checking and database/logic techniques.
Our results suggest that the data-driven composition sce-
nario with peer specifications based on database queries is
particularly well-suited to automatic verification, in contrast
to general-purpose software verification.

Paper Outline. The remainder of the paper is organized
as follows. Section 2 introduces our formalism for specifi-
cation of data-driven peers and compositions. Sections 3
and 4 study the verification of properties expressed by Lin-
ear Temporal First-Order Logic, respectively Conversation
Protocols. We address modular verification in Section 5. We
present related work in Section 6 and conclude in Section 7.
All proofs are shown in Appendix A.

2. PEERS AND COMPOSITIONS
We describe a framework for the specification of compo-

sitions, starting from the individual Web services (called
peers) involved in a composition. Peers communicate with
each other by sending and receiving messages via one-way
channels implemented by message queues. Each queue is
associated with a unique sender who places messages into
the queue, and a unique receiver who consumes messages
from it in FIFO order. The queue is called an out-queue by
the sender and an in-queue by the receiver. The queues are
classified into flat queues and nested queues. Flat queues
deliver single-tuple messages, e.g. the age and social secu-
rity number of a given customer. Nested queues transport
messages consisting of a set of tuples, e.g. the set of books
written by an author. Notice that, by modeling communica-
tion channels with queues, we assume that messages arrive
in the same order they were sent.

Each peer consists of
–an underlying database that remains fixed throughout

the interaction with the environment;1

–a set of state relations that are updated throughout the
interaction;

–a set of input relations which capture the input provided
by the user who picks among a set of options generated by
the peer.

–a set of action relations modeling the performed actions
(e.g. the sending of a notification letter is modeled as the
insertion of a tuple into the letter table)

–a set of in-queues through which the Web service receives
messages;

–a set of out-queues used to send messages;
–a set of rules specifying the reaction to user input and

received messages.
The rules specify how the set of current user input choices
is generated, and how the Web service reacts to the user’s
input and/or to the arrival of messages. The reaction is a
function of the current contents of the database, state, user
input and received messages, and it involves updating the
state, performing actions (such as the placement of an order)
and sending messages (such as a credit check request to a

1We do not claim that the peer’s database does not change;
we simply regard the changing part of the database as state.
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credit agency’s Web service). Formally, we have:

Definition 2.1. A Web service (or peer) W is a tuple
〈D,S, I,A,Qin,Qout,R〉, where:

• D,S, I,A,Qin,Qout are relational schemas called, re-
spectively, database, state, input, action, in-queue and
out-queue schemas. The sets of relation symbols of
the schemas are disjoint (but they may share constant
symbols). The queue schemas are partitioned into a
flat and a nested part: Qin = Qf

in ∪Qn
in and Qout =

Qf
out ∪Qn

out.

We require S to include, for each in-queue Q, a propositional
state emptyQ indicating if the queue Q is empty, referred to
as a queue state. (Note that queue states are only available
for in-queues, since we assume out-queues are located at the
recipients of sent messages and thus their state is not acces-
sible by the peer.) We also denote by PrevI the relational
vocabulary {prevI | I ∈ I}, where prevI has the same arity
as I (intuitively, prevI refers to the most recent non-empty
input to I).

Finally, R is a set of rules containing the following:

• For each input relation I ∈ I of arity k > 0, an input
rule

OptionsI(x̄)← ϕI(x̄)

where OptionsI is a relation of arity k, x̄ is a k-tuple
of distinct variables, and ϕI(x̄) is an FO formula over
schema D ∪ S ∪PrevI ∪Qin, with free variables x̄.

• For each state relation S ∈ S that is not a queue state,
one, both, or none of the following state rules:

– an insertion rule S(x̄)← ϕ+
S (x̄),

– a deletion rule ¬ S(x̄)← ϕ−
S (x̄),

where the arity of S is k, x̄ is a k-tuple of distinct vari-
ables, and ϕ+

S (x̄), ϕ−
S (x̄) are FO formulas over schema

D ∪ S ∪ I ∪PrevI ∪Qin, with free variables x̄.

• For each action relation A ∈ A, an action rule

A(x̄)← ϕA(x̄)

where the arity of A is k, x̄ is a k-tuple of distinct
variables, and ϕA(x̄) is an FO formula over schema
D ∪ S ∪ I ∪PrevI ∪Qin, with free variables x̄.

• For each out-queue relation Q ∈ Qout, one send rule

Q(x̄)← ϕQ(x̄)

where the arity of Q is k, x̄ is a k-tuple of distinct
variables, and ϕQ(x̄) is an FO formula over schema
D ∪ S ∪ I ∪PrevI ∪Qin, with free variables x̄.

Intuitively, the input rules specify a set of options to be pre-
sented to users, from which they can pick at most one tuple
to input. This feature corresponds to menus in user inter-
faces. At every point in time, input J contains the current
input tuple and prevJ contains the most recent previous
non-empty input to J . The state rules specify the tuples
to be inserted or deleted from state relations (with conflicts
given no-op semantics, as seen below). If no rule is specified
for a given state relation, the state remains unchanged. The
action rules specify the actions to be taken in response to the

input. The send rules specify the tuples used to construct
the message. For nested queues, all tuples yielded by one
firing of the send rule are collected into one message. Flat
queues are intended to be used when the send rule is known
to yield a single tuple. If several tuples are generated, then
at most one of them is non-deterministically placed into the
queue and the others are dropped.

Remark. Syntactic sugar The above allows us to sim-
ulate various syntactic sugar on individual peers as done
in [13] (such as a notion of a current Web page; rules gov-
erning the transition to the next page; inputs for buttons
and HTML links; etc.). For simplicity, we abstract syntactic
sugar and focus on modeling the distributed communication
aspect of the composition.

Notation To improve readability, in the following we dis-
play any relation R in the specification of serviceW, depend-
ing on whether it belongs to W.I,W.D,W.S,W.A,W.Qin

and W.Qout, as R,R,R, R, ?R and !R, respectively.

Example 2.2 We specify the loan officer’s peer O from Ex-
ample 1.1. O’s schema is given as:

O.D = {customer(cId,ssn,name)}

O.I = {reccom(cId,recommendation)}

O.S = {application(cId,loan),

awaitsHist(cId,ssn,name,loan,rating),

awaitsMgr(cId,ssn,name,loan,rating,

account,balance)}

O.A = { letter(cId,name,loan,decision)}

O.Qf
in = {apply(cId,loan), decision(cId,dec),

rating(ssn,category)}

O.Qn
in = {history(ssn,account,balance)}

O.Qf
out = {getRating(ssn), getHistory(ssn)}

O.Qn
out = {recommend(cId,loan,decision,rating,

account,balance)}

We show some of O’s rules below. O runs on top of a
customer database which records each customer’s id, ssn
and name. The input reccom allows the officer to provide
an approval or denial recommendation for any customer, by
picking from a menu generated by input rule (1). Upon
arrival of an application message, O reacts automatically,
without the officer’s involvement, as follows. The applica-
tion message is saved in the application state (rule (2)) and
a credit rating request message is sent to the credit agency
peer CR (rule (3)). Notice how the customer database is
consulted to translate the bank-specific customer id to the
ssn required by the credit agency’s Web service. On re-
ceipt of a message rating a customer’s credit as “excellent”,
an approval letter is generated (4). Customers with “poor”
rating get denial letters (5). For all other ratings, a message
is sent to request the credit history details, namely the list
of open accounts and their balance (rule (7)). In addition,
the customer’s information and rating are recorded in the
state awaitsHist (rule (8)), where they await the response of
CR. Upon its receipt, the complete customer information
gathered so far is recorded in the state awaitsMgr (rule (9)).
The subsequent input of a recommendation by the officer
triggers the sending of a recommendation message to the
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manager’s Web service M (rule (10)). M’s reply causes an
appropriate letter-writing action (6).

Optionsreccom(id,rec)← ∃ssn,name customer(id,ssn,name)

∧(rec = “approve” ∨ rec = “deny”) (1)

application(id,loan) ← ?apply(id,loan) (2)

!getRating(ssn) ← ∃id,loan,name ?apply(id,loan) (3)

∧ customer(id,ssn,name)

letter(id,name,loan,dec)← ∃ssn customer(id,ssn,name)

∧application(id,loan)

∧[?rating(ssn, “excellent”) ∧ dec = “approved” (4)

∨ ?rating(ssn, “poor”) ∧ dec = “denied” (5)

∨ ?decision(id,dec)] (6)

!getHistory(ssn) ← ∃r ?rating(ssn, r) (7)

∧ ¬(r = “excellent” ∨ r = “poor”)

awaitsHist(id,ssn,name,l,r)← ?rating(ssn, r) ∧

¬(r = “excellent” ∨ r = “poor”) ∧ application(id,l)

∧customer(id, ssn,name) (8)

awaitsMgr(id,ssn,name,loan,rating,acc,bal)←

?history(ssn, acc, bal)

∧ awaitsHist(id,ssn,name,loan,rating) (9)

!recommend(id,ssn,name,loan,rec,rating,acc,bal)←

reccom(id,rec)

∧awaitsMgr(id,loan,ssn,name,rating,acc,bal) (10)

✷

We next define the notion of a configuration of a Web
service, and the transition relation among configurations.
Informally, a configuration consists of the fixed database,
the contents of the message queues, as well as the states,
previous and current inputs, and actions. To formalize the
usage of message queues, we first introduce the following
notation, allowing us to refer to the first and last message
in each in-queue. Suppose Qin is an instance of the in-
queues, i.e. a mapping associating to each R ∈ Qin a finite
sequence of instances of R. Given Qin, we define the re-
lational instances f(Qin) and l(Qin), both of schema Qin,
holding the first, respectively last messages from all queues.
Thus, if R ∈ Qf

in (Qin(R) is a flat queue), then f(Qin)(R)
and l(Qin)(R) contain each a singleton tuple which is the
first, resp. last message in Qin(R). If R ∈ Qn

in, f(Qin)(R)
and l(Qin)(R) contain the set of tuples making up the first,
resp. last message of Qin(R). If Qin(R) is empty so are
f(Qin)(R) and l(Qin)(R).

Definition 2.3. Let W = 〈D,S, I,A,Qin,Qout,R〉 be
a Web service. A configuration of W is a tuple
〈D, S, I, P, A,Qin, Qout〉 where the database D is an instance
of D, the state S is an instance of S, the input I is an in-
stance of I, the previous input P is an instance of PrevI,
and the action A is an instance of A. Additionally, Qin

(Qout) associates to each R ∈ Qin (R ∈ Qout) a finite se-
quence Qin(R) (Qout(R)) of instances of R. We refer to Qin

and Qout respectively as instances of the in-queues and out-
queues. For each R ∈ Qin, the queue state emptyR is true
iff the sequence associated to R by Qin is empty. Finally,
for each relation R in I of arity k > 0, I(R) ⊆ {v} for some
v ∈ OptionsR, where OptionsR is the result of evaluating
ϕR on D, S, f(Qin), and P ; if R has arity zero (so R is
a propositional state), then I(R) is a truth value such that
I(R)→ OptionsR.

We next define the transition relation of a Web service.
This relation defines for every current configuration of the
Web service its legal successor configurations, reachable in
one atomic step.

Definition 2.4. Let W = 〈D,S, I,A,Qin,Qout,R〉 be
a Web service and Ci = 〈Di, Si, Ii, Pi, Ai, Q

in
i , Q

out
i 〉, a con-

figuration of W. A configuration

Ci+1 = 〈Di+1, Si+1, Ii+1, Pi+1, Ai+1, Q
in
i+1, Q

out
i+1〉

of W is a legal successor configuration of Ci iff:

• Di = Di+1 i.e. the database remains unchanged. We
will denote it with D.

• for each relation prevR in PrevI, Pi+1(prevR) = Ii(R)
if Ii(R) 6= ∅, and Pi+1(prevR) = Pi(prevR) otherwise.

• for each relation S in S that is not a queue state,
Si+1(S) is the result of evaluating

(ϕ+
S (x̄) ∧ ¬ϕ−

S (x̄))∨
(S(x̄) ∧ ϕ−

S (x̄) ∧ ϕ+
S (x̄))∨

(S(x̄) ∧ ¬ϕ−
S (x̄) ∧ ¬ϕ+

S (x̄))

on D,Si, f(Qini ), Ii, and Pi, where ϕǫS(x̄) is taken to
be false if it is not provided (ǫ ∈ {+,−}). In particular,
S remains unchanged if no insertion or deletion rule
is specified for it.

• for each relation A in A, Ai+1(A) is the result of eval-
uating ϕA on D,Si, f(Qini ), Ii, and Pi.

• for each relation R in Qout, let mR denote the re-
sult of evaluating ϕR on D,Si, f(Qini ), Ii, and Pi.
If R ∈ Qn

out, Q
out
i+1(R) is obtained by enqueuing mR

into Qouti (R). If R ∈ Qf
out, then if mR is non-empty,

Qouti+1(R) is obtained by enqueuing into Qouti (R) a sin-
gleton containing a non-deterministically picked tuple
from mR. If mR is empty, Qouti+1(R) = Qouti (R) so the
queue remains unchanged.

• for each relation R in Qin, if R is mentioned in the set
of rules R, the corresponding new in-queue Qini+1(R) is
obtained by dequeuing the first message from Qini (R).
Otherwise, Qini+1(R) = Qini (R).

Notice that we employ a “snapshot” semantics, in the sense
that at each step all rules are simultaneously interpreted
over the current configuration. In particular, all occurrences
of R ∈ Qin in R refer to the same first message in qR. Also
notice that a message sent in the current configuration i
is enqueued at the receiver in the successor configuration
i + 1. Furthermore, since W’s out-queues are some other
peers’ in-queues, W side-effects the receiver’s queues upon
transitioning to the successor configuration.
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We next define the syntax and semantics of a composition
of Web services.

Definition 2.5. A composition is a set of Web services
C = {Wi}1≤i≤n such thatWi.Qin∩Wj .Qin = ∅ andWi.Qout∩
Wj .Qout = ∅ for i 6= j, so each queue is an output (in-
put) queue for at most one peer. We say that C is closed if⋃n

i=1Wi.Qin =
⋃n

i=1Wi.Qout, otherwise it is open. We
refer to the composition members as peers.

Intuitively, a composition is closed if every peer’s in-queue is
some other peer’s out-queue and conversely, so that no input
messages are received from or sent outside the composition.

Since we are interested in verifying the correctness of a
composition’s behavior, we describe the latter via the no-
tion of “run” of a closed composition. Essentially, a run
is a sequence of snapshots through which the composition
evolves. Each snapshot specifies the current configuration
of each peer. We consider only serialized runs, i.e. runs in
which at every step precisely one peer performs a transition.

Definition 2.6. Let C be a closed composition {Wj}1≤j≤n
and D = {Dj}1≤j≤n be database instances where each Dj
is an instance of Wj .D. A run of C over D is an infinite
sequence {(ki, 〈C

j
i 〉j∈[1,n])}i≥0, where ki ∈ [1, n] and Cji is a

configuration of peer Wj, such that:

• for each j ∈ [1, n], the state, action, previous input
and queues of Cj0 are empty and its database is Dj ;

• for each i ≥ 0, j, l ∈ [1, n] and for each R ∈ Wj .Qout∩
Wl.Qin, the queues associated to R in C

j
i and Cli are

identical;

• for each i ≥ 0,

(i) Cki
i+1 is a legal successor configuration of Cki

i for
peer Wki

, and

(ii) for each 1 ≤ l ≤ n with l 6= ki, the database,
input, previous input, state and actions of Cli+1

and Cli coincide, and so do the queues for each
R ∈ (Wl.Qin \Wki

.Qout ∪Wl.Qout \Wki
.Qin).

We say that (only) peer Wki
moves at step i. 〈Cji 〉1≤j≤n is

called the snapshot at step i.

Intuitively, at step i in the run, only the peer Wki
moves

while the others wait their turn. While waiting, their con-
figurations are preserved, except for the queues which are
updated by peer Wki

. These are the queues into whichWki

sends, and from which Wki
receives.

Lossy and perfect channels The semantics of Web com-
positions as defined above assumes that channels are perfect,
i.e. all messages sent across a channel are received. This
is modeled by enqueuing each sent message into the corre-
sponding in-queue. In practice however, channels are often
lossy, i.e. messages may be lost in transit. Indeed, this is
reflected in the models used in standard work on commu-
nicating finite-state automata [2, 3]. We can also define a
variant of the semantics for Web compositions that captures
lossy channels, by non-deterministically allowing sent mes-
sages to not be enqueued in the corresponding in-queue. We
refer to such Web compositions as Web compositions with
lossy channels, and to the Web compositions defined above

as Web compositions with perfect channels. As we shall see,
many of the results depend on whether channels are lossy
or perfect.

There are many ways in which the correctness of a com-
position can be specified. We investigate two alternatives
next: temporal logic (Section 3) and conversation protocols
(Section 4).

3. LTLFO PROPERTIES
The correctness of a composition is specified by state-

ments which can express the properties of individual run
snapshots (using First-Order Logic), as well as the tempo-
ral relationship among these snapshots (using Linear Tem-
poral Logic operators). We call these statements LTL-FO
properties.

Definition 3.1. (Inspired by [14, 4, 27]) The language
LTL-FO (first-order linear-time temporal logic) is obtained
by closing FO under negation, disjunction, and the following
formula formation rule: If ϕ and ψ are formulas, then Xϕ
and ϕUψ are formulas. Free and bound variables are defined
in the obvious way. The universal closure of an LTL-FO
formula ϕ(x̄) with free variables x̄ is the formula ∀x̄ϕ(x̄).
An LTL-FO sentence is the universal closure of an LTL-FO
formula.

Note that quantifiers cannot be applied to formulas con-
taining temporal operators, except by taking the universal
closure of the entire formula, yielding an LTL-FO sentence.

Composition Schema. Let C = {Wj}1≤j≤n be a com-
position. Properties of runs are expressed over the compo-
sition schema of C which consists of

• the union of all peer schemas in which each relation is
qualified by the name of its peer:
C.Y =

⋃n

j=1{Wj .R |R ∈ Wj .Y} for each

Y ∈ {I,prevI,S,A,Qin,Q
f
in,Q

n
in,Qout,Q

f
out,Q

n
out};

• the set of propositional states {moveW | W ∈ C}. In-
tuitively, at every step of a run, moveW holds iff W is
the moving peer at that step.

Semantics of LTL-FO Properties. Let ψ = ∀x̄ϕ(x̄)
be an LTL-FO sentence over the above schema. We say that
the composition C satisfies ∀x̄ϕ(x̄) (denoted C |= ψ) iff every
run ρ of C satisfies ψ. Let ρ = {ρi}i≥0 be a run of C over
databases D̄, and let ρ≥j denote {ρi}i≥j , for j ≥ 0. Note
that ρ = ρ≥0. Let Dom(ρ) be the active domain of ρ, i.e.
the set of all elements occurring in relations or as constants
in ρ. The run ρ satisfies ∀x̄ϕ(x̄) (denoted ρ |= ∀x̄ϕ(x̄)) iff
for each valuation ν of x̄ in Dom(ρ), ρ≥0 satisfies ϕ(ν(x̄)).
The latter is defined by structural induction on the formula:
An FO sentence ψ is satisfied by ρi = (ki, 〈C

j
i 〉1≤j≤n) if the

structure ρ′i satisfies ψ, where ρ′i is obtained from ρi by

• replacing the instance q of in-queues in ρi with the
relational instance f(q);

• replacing the instance q of out-queues of ρi with the
relational instance l(q);

• setting the propositional state moveWki
to true and

moveW for W 6=Wki
to false.

Intuitively, an in-queue symbol Q used in an LTL-FO for-
mula is taken to refer to the first message of Q, currently
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available as an input message, and an out-queue symbol Q
refers to the message most recently added to the queue Q.
Note that, in order to refer to the output messages gener-
ated at step i, one has to refer to the last messages of the
out-queues at step i+ 1.

The semantics of Boolean operators is the obvious one.
The meaning of the temporal operators X, U is the following
(where |= denotes satisfaction and j ≥ 0):

• ρ≥j |= Xϕ iff ρ≥j+1 |= ϕ,

• ρ≥j |= ϕUψ iff ∃k ≥ j such that ρ≥k |= ψ and ρ≥l |= ϕ
for j ≤ l < k.

Observe that the above temporal operators can simulate all
commonly used operators, including B (before), G (always)
and F (eventually). Indeed, ϕBψ (“ϕ must hold before ψ
fails”) is equivalent to ¬(¬ϕU¬ψ); Gϕ (“ϕ generally holds”)
is equivalent to false B ϕ; Fϕ (“ϕ finally holds”) is express-
ible as true U ϕ . We use the above operators as shorthand
in LTL-FO formulas whenever convenient.

Example 3.2 LTL-FO sentences can express many inter-
esting properties of compositions. For instance, property
(11) below states that every received application message
from an applicant found in the customer database will even-
tually result in either an approval or a denial letter.

∀id,l,name,ssn G

[(O.?apply(id,l) ∧O.customer(id,ssn,name))

→ F

(O. letter(id,name,l,“denied”)

∨O. letter(id,name,l,“approved”))] (11)

The following requires loans to be approved only for ap-
plicants with excellent credit rating or for those previously
cleared by the manager.

∀id,name,loan G

[(∃ssn CR.!rating(ssn,“excellent”) ∧O.customer(id,ssn,name)

∨ M.!decision(id,“approved”))

B

¬O. letter(id,name,loan,“approved”)]

✷

3.1 Decidable Verification
In this section we establish two restrictions under which

verification is decidable for a significant class of compositions
with lossy channels. These restrictions will be justified in
Section 3.2, where we show that even modest relaxations
lead to undecidability. The first restriction is syntactic and
is called input-boundedness. The second is of a semantic
nature, assuming bounded-length queues.

Input-boundedness is a natural restriction inspired by the
observation that each peer is driven by the user input and by
the incoming messages. Essentially, we require that quan-
tified variables range only over the active domain of the
current inputs, the previous inputs and the first messages of
flat (but not nested!) queues. This restriction is enforced
syntactically as follows.

The set of input-bounded FO formulas over a composition
C’s schema is obtained by replacing in the definition of FO
the quantification formation rule with the following:

• if ϕ is an input-bounded formula, α is an atom using a
relational symbol from C.I∪C.PrevI∪C.Q

f
in∪C.Q

f
out,

x̄ ⊆ free(α), and x̄∩ free(β) = ∅ for every state, action
or nested in-queue atom β in ϕ, then ∃x̄(α ∧ ϕ) and
∀x̄(α→ ϕ) are input-bounded formulas.

A peer is input-bounded iff

1. all state, action, and send rules into nested queues are
given by input-bounded formulas, and

2. all input rules, as well as all send rules into flat queues
use ∃∗FO formulas in which all state and nested queue
atoms are ground.

An LTL-FO sentence over the composition schema is input-
bounded iff all of its FO subformulas are input-bounded.

Example 3.3 Peer O in Example 2.2 is input-bounded, and
so are the properties in Example 3.2. Examples for non-
input-bounded properties can be found in [13]. ✷

For the particular case when the composition consists of
a single peer without any message queues, the above restric-
tion degenerates to the notion of input-bounded Web service
from [13]. To show that input-bounded specifications of in-
dividual peers cover a large class of applications, we have
modeled significant parts of a computer shopping Web site
similar to the Dell computer shopping site, an airline reser-
vation site similar to Expedia, an online bookstore in the
spirit of Barnes & Noble, and a sports Web site on the Mo-
torcycle Grand Prix (all published at [1]).

As it turns out, for proper compositions the syntactic
input-boundedness restriction is insufficient to yield decid-
ability. We need to make the further assumption that the
queues are bounded. We say that a composition has k-
bounded queues if each queue may simultaneously contain
at most k messages. Messages arriving when the receiver’s
in-queue is full are simply dropped. With these restrictions,
we can state our main decidability result:

Theorem 3.4. It is decidable whether an input-bounded
composition with k-bounded queues and lossy channels sat-
isfies an input-bounded LTL-FO property. Furthermore, the
problem is pspace-complete for schemas with fixed bound on
the arity, and expspace otherwise.

The proof is outlined in Appendix A. It essentially con-
sists in a non-trivial PTIME-reduction to the problem of
verifying input-bounded properties of compositions consist-
ing of a single peer with no queues. In addition, the peer can
inspect, for each input I , the k previous non-empty inputs
to I , using relations previI for 1 ≤ i ≤ k (instead of just
the immediately previous non-empty input prevI , as in our
definition of a peer). We refer to peers with this ability as
peers with k-lookback. The decidability of verification for
peers with k-lookback is shown by adapting and extending
Theorem 3.5 in [13], as follows.

Lemma 3.5. (follows from [13]) It is decidable, given
a composition C = {W} where W is an input-bounded peer
with k-lookback and no message queues and an input-bounded
LTL-FO property ϕ, whether C satisfies ϕ. The problem is
pspace-complete for schemas with fixed bound on the arity,
and expspace otherwise.
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Remarks Transmission delays In our model of composi-
tions, we assumed instantaneous transmission of messages
(that are not lost) by having each message be enqueued im-
mediately after being sent. The model and results can be
easily adapted to model arbitrary transmission delays, as
long as the capacity of each channel is bounded. In the sim-
ulation of the composition by a single peer, the transmission
delays can be captured by partitioning each in-queue into a
received portion followed by an in-transit portion, and trig-
gering the transition of a message from the in-transit por-
tion to the received portion using a new propositional input
turned on non-deterministically by a dummy user. The de-
cidability does not extend to channels with unbounded ca-
pacity. Indeed, this is similar to having unbounded queues,
for which verification is undecidable (see Corollary 3.6).
Perfect nested message channels Theorem 3.4 assumes that
all channels are lossy. It turns out that the result still holds if
nested message channels are perfect, and flat message chan-
nels are lossy. The proof (see Appendix) is the same, except
that the input lostQ used to simulate the loss of a nested
message is removed.

3.2 Boundaries of Verification Decidability
We have shown in Section 3.1 that we can soundly and

completely verify a significant and expressive class of com-
positions and properties. It is natural to ask whether the
restrictions of Theorem 3.4 are truly necessary. In this sec-
tion we show that this is indeed the case, in the sense that
minimally relaxing any single restriction leads to undecid-
ability. The proofs are all in Appendix A.

We first investigate the assumptions pertaining to the
boundedness of queues and lossyness of channels. We imme-
diately obtain the following as consequences of prior work on
peers which are communicating finite-state machines (CFSM)
with queues holding propositional messages: verification is
undecidable for unbounded queues, whether they are perfect
(Brand and Zafiropulo [6]) or lossy (Abdulla and Jonson [2]):

Corollary 3.6. (of [6, 2]) It is undecidable to deter-
mine if an input-bounded property is satisfied by an input-
bounded composition C with unbounded queues, regardless of
whether they are lossy or perfect.

According to Corollary 3.6, the unbounded-queue assump-
tion alone suffices to cause undecidability. Theorem 3.7 be-
low provides the complementary result, showing that the
perfect-queue assumption is sufficient for undecidability even
when all queues are bounded. This result highlights the im-
pact of data-awareness on the verification problem. Con-
trast it with the finite-state case, in which the composition
of CFSMs via bounded, perfect queues is easily reducible to
a single FSM, for which verification is decidable.

Theorem 3.7. It is undecidable whether an input-bounded
property is satisfied by an input-bounded composition with no
nested queues and 1-bounded, perfect flat queues.

Recall that the semantics of sending into flat queues re-
quires a message to be non-deterministically picked when-
ever the send rule generates several candidates. We consider
a plausible alternative semantics in which the generation of
multiple candidate messages is treated as a run-time error,
in the sense that no message is sent and an error flag is set
instead. To this end, we extend the schema of each peer

W with a propositional state errorR for each flat out-queue
R ∈ W.Qf

out. This state is appropriately set by the legal
successor relation and it can be consulted by the peer rules
and the properties. We say that the flat queues in this peer
flavor have deterministic send rules.

Theorem 3.8. It is undecidable whether an input-bounded
property is satisfied by an input-bounded composition of peers
with no nested queues, and 1-bounded lossy flat queues with
deterministic send rules.

We next consider a list of minor relaxations of the syn-
tactic input-boundedness restriction (Section 3.1). First,
we focus on the restriction disallowing quantified variables
to appear in nested queue atoms. Notice that a conse-
quence of this restriction is the impossibility to test empti-
ness of messages received via nested queues: if R ∈ W.Qn

in,
∃x̄ ?R(x̄) checks the non-emptiness of the message received
along queue qR. Also notice that this test is legal if R ∈ Qf

in.
Consider a relaxation of input-boundedness allowing access
to a built-in predicate empty(?R) that is set to true iff the
first message in qR is non-empty. We show that this is
enough to yield undecidability, even if the emptiness tests
are only used in formulating the property to be verified.

Theorem 3.9. It is undecidable whether an input-bounded
property with emptiness tests on nested messages is satisfied
by an input-bounded composition C with 1-bounded queues
(lossy or perfect).

A second restriction imposed by input-boundedness re-
quires the nested queue atoms appearing in input and in flat
queue send rules to be ground (contain terms constructed
only of constants, no variables). Its removal leads to unde-
cidability.

Theorem 3.10. It is undecidable whether an input-bounded
property is satisfied by a composition C with 1-bounded queues
and lossy flat queues, where C is input-bounded except for al-
lowing non-ground nested in-queue atoms in input rules, or
in flat queue send rules.

The proof of Theorem 3.10 follows from an easy modifi-
cation of the proof of a result in [13] and is omitted.

4. CONVERSATION PROTOCOLS
The most prominent kind of correctness property for com-

positions considered in previous work is the notion of (finite-
state) conversation protocol. It requires that the sequence
of messages as observed by some global observer belongs
to an ω-regular language accepted by a Büchi automaton.
The notion was introduced by Fu, Bultan and Su [17], as
a generalization of an earlier version proposed by an indus-
trial standard (IBM’s conversation support project [19]) for
the model of communicating finite-state machines (CFSMs)
sending and receiving propositional messages via queues.

Conversation protocols of the above flavor can also be
verified for our compositions. We refer to such protocols as
“data-agnostic”, because they ignore the contents of mes-
sages, checking only the sequence of observed message names.
For instance, in our running example, a data-agnostic proto-
col would require any getHistory message to be followed by
a history message. Alternatively, we may consider a “data-
aware” extension of conversation protocols, where the con-
tents of messages is taken into account in the specification
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of the protocol. We first show how data-agnostic protocols
can be verified for compositions, then consider data-aware
protocols.

In the context of lossy channels and bounded queues, sev-
eral semantics for conversation protocols are possible. One is
to ignore dropped messages and only consider messages ac-
tually being enqueued. Intuitively, this places the observer
of messages at the recipients. We refer to this semantics
as observer-at-recipient. An alternative would be to ob-
serve all sent messages, regardless of whether or not they
are enqueued. This corresponds to placing the observer at
the source of sent messages. We refer to this semantics as
observer-at-source. We first consider data-agnostic conver-
sation protocols with observer-at-recipient semantics.

Let C be a composition and Σ = C.Qout. A data-agnostic
conversation protocol for C is a pair (Σ,B) where B is a
Büchi automaton over alphabet Σ.2 Satisfaction of (Σ,B)
by C under the observer-at-recipient semantics is defined as
follows. Let ρ = {ρi}i≥0 be a run of C. We first define the
set of propositions Q in Σ satisfied by each configuration
of the run. The configuration ρ0 satisfies no proposition Q.
A configuration ρi, i > 0, satisfies Q if a new message is
placed in the queue for Q in the transition from ρi−1 to ρi.
Let σ(ρi) provide the subset of Σ satisfied by ρi, i ≥ 0. The
run ρ satisfies the protocol iff {σ(ρi)}i≥0 is accepted by B.
The composition C satisfies the protocol (Σ,B) iff every run
of C satisfies the protocol. Clearly, data-agnostic conver-
sation protocols for our infinite-state compositions strictly
generalize conversation protocols for finite-state systems.

Example 4.1 Since Büchi automata are strictly more ex-
pressive than LTL [28, 9], conversation protocols include
properties expressible in LTL. For presentation simplicity,
we illustrate an LTL-expressible protocol which, in our run-
ning example, requires each credit rating request message
getRating to be followed by a rating reply:

G(getRating→ F rating).

✷

Theorem 4.2. It is decidable whether an input-bounded
composition with bounded queues and lossy channels satis-
fies a data-agnostic conversation protocol with observer-at-
recipient semantics. The problem is pspace-complete for
schemas with bounded arity, and expspace otherwise.

Note that pspace decidability is reasonable as far as verifica-
tion goes, given that LTL verification of finite-state (Mealy)
machines is already pspace-complete [9].

Suppose we wish to verify protocols under the alternative
observer-at-source semantics. Unfortunately, verification is
undecidable in this case.

Theorem 4.3. It is undecidable, given an input-bounded
composition C with bounded queues and lossy channels, and
a data-agnostic conversation protocol (Σ,B) with observer-
at-source semantics, whether C satisfies (Σ,B).

We next consider data-aware conversation protocols. In
view of Theorem 4.3, we only consider protocols with observer-
at-recipient semantics, which is assumed by default. The

2A Büchi automaton is a finite-state automaton accepting
infinite sequences iff they drive the automaton to visit some
final state infinitely often [28].

data-aware protocols generalize finite-state protocols, the
data-agnostic protocols discussed above, and also input-bounded
LTL-FO properties over the schema C.Qout. We show the
decidability of checking compliance of a composition with
respect to the resulting protocol.

Definition 4.4. A data-aware conversation protocol over
the schema of composition C is a triple (Σ,B, {ϕσ}σ∈Σ),
where: Σ is a set of propositional symbols, {ϕσ}σ∈Σ is a
family of FO formulas over schema C.Qout, one for each
symbol in Σ, and B is a Büchi automaton with transitions
guarded by boolean formulas over Σ.

Intuitively, we use the symbols in σ ∈ Σ as shorthands for
formulas ϕσ over the current snapshot.

We next define the semantics of data-aware conversation
protocols of the observer-at-recipient flavor. Recall that the
semantics of FO formulas interprets each Q ∈ C.Qout as the
message last placed in the queue for Q. This is consistent
with the observer-at-recipient semantics for protocols.

Let P be a protocol (Σ,B, {ϕσ}σ∈Σ). If each ϕσ is a sen-
tence, a run ρ of composition C satisfies P iff B accepts the
infinite sequence obtained by computing the truth values
for {ϕσ}σ∈Σ in each snapshot of ρ. If the ϕσ’s are formulas
with free variables, let x̄ :=

⋃
σ∈Σ freeVars(ϕσ). Denoting

with Dom(ρ) the active domain of ρ, ρ satisfies P iff for
each valuation ν of x̄ in Dom(ρ), ρ satisfies the protocol
(without free variables) (Σ,B, {ϕσ(ν(x̄))}σ∈Σ). We say that
composition C satisfies conversation protocol P iff every run
ρ of C satisfies P .

Note that any LTL-FO property over schema C.Qout can
be expressed by a data-aware conversation protocol, while
the converse is not true. This observation follows from well-
known results relating the expressivity of propositional LTL
and Büchi automata [28]. An example data-aware conver-
sation protocol is property (12) in Example 5.1 below.

We say that conversation protocol P = (Σ,B, {ϕσ}σ∈Σ)
is input-bounded if each ϕσ is input bounded.

Theorem 4.5. It is decidable whether an input-bounded
composition with bounded queues and lossy channels satis-
fies an input-bounded data-aware conversation protocol. The
problem is pspace-complete for schemas with bounded arity,
and expspace otherwise.

Boundary of decidability. As in the case of LTL-FO
properties over the entire schema, even small relaxations of
the restrictions under which the above decidability results
were obtained lead to undecidability of verification. We con-
sider relaxations similar to those in Section 3.2.

Theorem 4.6. The following are undecidable:
(i) satisfaction of a data-agnostic protocol by an input-

bounded composition with unbounded queues.
(ii) satisfaction of a data-agnostic conversation protocol

by an input-bounded composition with no nested queues and
1-bounded, perfect flat queues.

(iii) satisfaction of a data-aware conversation protocol with
ground message parameters, by an input-bounded composi-
tion with deterministic lossy flat 1-bounded queues and per-
fect nested 1-bounded queues.

(iv) satisfaction of a data-agnostic conversation protocol
augmented with emptiness tests on nested messages, by an
input-bounded composition with (perfect or lossy) 1-bounded
queues.
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5. MODULAR VERIFICATION
It is often useful to verify a composition C in a modular

fashion, i.e. to verify that a subset of its peers behaves cor-
rectly when the full specification of the other peers is not
available and the only knowledge about them is declared in
the form of properties of their input-output behavior. Such
verification is the best one can hope for when the various
peers are provided by autonomous parties unwilling to dis-
close the internal implementation details. Even when all
peers are owned by a single party, modular verification en-
ables the validation of a peer subset before the design of the
others is completed.

Recall that a set of peers C is an open composition if
C.Qin 6= C.Qout. In particular, any single peer with at
least one queue is an open composition. Notice that C in-
teracts with outside peers by means of the message queues
in the symmetric difference C.Qin ∆ C.Qout = (C.Qin \
C.Qout) ∪ (C.Qout \ C.Qin). The queues in C.Qin \ C.Qout

hold messages output by the environment, and are denoted
E .Qout, where we denote the environment with E . The
queues in C.Qout \ C.Qin hold messages consumed by the
environment, and are denoted E .Qin. A transition of the
environment modifies the queues in E .Qin ∪E .Qout by non-
deterministically removing first messages from the queues in
E .Qin and enqueuing new messages in the queues in E .Qout.
We assume that in each run the tuples enqueued in environ-
ment transitions use values from some finite domain. A run
of C is defined by allowing, in addition to regular moves of
peers in C, non-deterministically interleaved transitions of
the environment. These are detected by a special proposi-
tional state moveE that is true whenever a transition of the
environment occurs. We omit the formal definition, which
is an extension of Definition 2.6.

We next formalize the modular verification problem. An
environment specification (spec) for C is an LTL-FO formula
over C.Qin ∆ C.Qout. Thus, an environment spec describes
the input-output behavior of the outside peers as temporal
connections between messages they receive and send.

Example 5.1 We are interested in verifying that O from
Example 2.2 satisfies property (11) from Example 3.2 pro-
vided that the credit reporting agency replies to credit in-
quiries, and moreover returns only credit categories from a
pre-defined list (ranging from “poor” to “excellent”). This
is expressed as an environment specification as follows:

G ∀ssn [?getRating(ssn) (12)

→

(!rating(ssn,“poor”) ∨ !rating(ssn,“fair”)

∨!rating(ssn,“good”) ∨ !rating(ssn,“excellent”))]

✷

Intuitively, it is natural to interpret the specification of
an environment with observer-at-source semantics, indepen-
dently of the properties of the channels connecting the com-
position C with its environment. In other words, if Q is an
output of the environment, an atom Q(x̄) used in the de-
scription of the environment is true at some point in a run
iff message Q(x̄) is sent at that point by the environment.
However, recall that in the context of bounded queues and
lossy channels, our observer-at-recipient semantics ignores
dropped messages, so Q(x̄) is taken to be the last enqueued
message in the queue for Q. Thus, if the environment sends

Q(x̄) at step i, the only fact observable at the recipient is
that, if a message is received at step i+ 1 in queue Q, then
it has to equal Q(x̄). To correctly interpret environment
specs in the context of bounded queues and lossy channels
with our observer-at-recipient semantics, we translate their
specification as follows. Let ψ be an environment spec. The
observer-at-recipient translation of ψ is the formula ψr ob-
tained by replacing in ψ each atom Q(x̄) where Q ∈ E .Qout

by X(receivedQ → Q(x̄)), where receivedQ is a new propo-
sitional state that holds at step i iff the queue for Q received
a new message between step i− 1 and i (receivedQ holds ei-
ther if the length of queue Q increased from step i − 1 to
step i, or if a message was read from Q at step i−1 and the
length of Q stayed the same; this can be defined in terms of
states and inputs already available, so receivedQ is simply a
convenient shorthand).

Example 5.2 The observer-at-recipient translation of the
environment in Example 5.1 is

G ∀ssn [?getRating(ssn)→

X(received!rating →

(!rating(ssn,“poor”) ∨ !rating(ssn,“fair”)

∨!rating(ssn,“good”) ∨ !rating(ssn,“excellent”)))]

(after combining several implications with received!rating
on the left-hand side). ✷

The soundness of the observer-at-recipient translation can
be shown formally as follows: (i) define observer-at-source
runs of the environment recording the consumed and gener-
ated messages at each transition, (ii) define satisfaction of
an environment spec ψ by observer-at-source runs of the en-
vironment, (iii) define the set of observer-at-recipient runs
corresponding to observer-at-source runs, and (iv) show that
for each environment spec ψ, the observer-at-recipient runs
corresponding to the observer-at-source runs satisfying ψ are
precisely those satisfying ψr. We omit the straightforward
details here.

We are now ready to define satisfaction of a property ϕ
under environment spec ψ. Since in a run of C the environ-
ment transitions are interleaved with transitions of peers in
C, the property ψ describing runs of the environment must
be relaxed to take into account the interleaved transitions.
Intuitively, this is done by considering only configurations
where moveE is true. In detail, for a propositional state α,
we denote by Xα a temporal operator whose semantics is
the following:

• ρ≥j |= Xαϕ iff ρ≥i |= ϕ, where i = min{m | m >
j, ρm |= α};

• ρ≥j |= ξ1U
αξ2 iff ∃k ≥ j such that ρk |= α and ρ≥k |=

ξ2 and ρ≥m |= ξ1 for every m such that j ≤ m < k
and ρm |= α.

It is clear that Xα and Uα can be simulated with usual LTL
operators.

Definition 5.3. Let C be an open composition, ϕ an LTL-
FO formula over the schema of C, and ψ an environment
spec for C. Let α = moveE and ψ̄ be obtained by replacing
in ψ each occurrence of the X and U operators with Xα

and Uα. Let ψ̄r be the observer-at-recipient translation of
ψ̄. Then C satisfies ϕ under environment spec ψ (denoted
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C |=ψ ϕ) iff every run ρ of C that satisfies ψ̄r also satisfies
ϕ.

Note that the order of the two translations, first from ψ
to ψ̄ and then from ψ̄ to ψ̄r, is important and cannot be
switched. Indeed, the translation from ψ̄ to ψ̄r introduces
X operators that must not be replaced by Xα.

Towards stating our decidability result for modular veri-
fication, we recall from Section 3 that an LTL-FO formula
allows no temporal operators to appear in the scope of any
quantifier. An LTL-FO sentence relaxes this restriction, be-
ing obtained by universally quantifying the free variables of
an LTL-FO formula. In contrast, we say that an LTL-FO
sentence is strictly input-bounded if no temporal operators
occur in the scope of quantifiers. The environment spec (12)
is strictly input-bounded.

Theorem 5.4. It is decidable whether an input-bounded
open composition C with bounded queues and lossy channels
satisfies property ϕ under environment spec ψ, where ϕ is
an input-bounded LTL-FO sentence and ψ is a strictly input-
bounded LTL-FO sentence over C.Qf

in ∆ C.Qf
out. Moreover,

the problem is pspace-complete for schemas of bounded arity
and expspace otherwise.

As it turns out, the strictness restriction is essential; re-
moving it leads to undecidability.

Theorem 5.5. It is undecidable whether an input-bounded
open composition C with bounded queues and lossy channels
satisfies input-bounded property ϕ under input-bounded yet
non-strict environment specifications.

It is easy to see that strictly input-bounded LTL-FO en-
vironment specs can be expressed by input-bounded conver-
sation protocols. It turns out that the proof of Theorem 5.4
above adapts to obtain decidability when the environment
spec is given instead by an input-bounded conversation pro-
tocol with observer-at-recipient semantics.

6. RELATED WORK
In the finite-state case, it was shown in prior work that

verification of communicating finite-state machines (CFSM)
is undecidable for unbounded, perfect queues [6],and for un-
bounded, lossy queues [2]. The CFSM model is a special case
of ours in which all schemas are propositional and there is
no user input or database.

The body of work on compositions of communicating finite-
state Web Services (sometimes called e-compositions) is sur-
veyed in [22, 23, 24]. We mention a few projects here.
[15] verifies that synchronous finite-state mediated compos-
ite services specified in the standard BPEL language [10]
implement a Message Sequence Chart specification. The
verification is performed by compiling the sequence charts
into the Finite State Process notation (FSP), and invok-
ing a propositional model checker from the LTSA toolkit.
[26] proposes an approach to the verification and automated
composition of finite-state web services specified using the
DAML-S standard [11]. The verified properties are propo-
sitional, abstracting from the data values. They pertain to
safety, liveness and deadlocks, all of which are expressible in
LTL. [25] is concerned with verifying a given finite-state web
service flow specified in the standard WSFL [29] by using

the explicit state model checker SPIN [20]. The properties
are expressed in LTL (abstracting from data content).

The line of work in [18, 16] takes into account the con-
tents of the exchanged messages and thus transcends the
purely propositional composition models described above
(but assumes a pre-defined finite domain for the values,
which reduces the problem to a finite-state setting). Peers
are specified using finite-state automata whose transitions
are guarded by boolean formulas involving the message con-
tents. Properties are expressed in LTL. This is a particular
case of the framework presented in this paper, with finite
domain, no database, no user input and no nested queues
(but perfect bounded flat queues). The emphasis is not on
mapping the verification boundaries, but on developing a
versatile architecture allowing the exchange of XML mes-
sages without being tied to any particular standard, as well
as sufficient conditions to delegate the verification task to
the off-the-shelf finite-state model checker SPIN [20].

Recently,[5] has proposed a model of compositions of peers
with underlying databases. The model corresponds to a
particular case of the one we present here, with no user
input, no nested queues, perfect flat queues, and database
access restricted to key lookup only, so that at most one
tuple is retrieved or updated at any given time. [5] does
not address verification, focusing on automatic synthesis of
a desired Web Service by “gluing together” an existing set
of services.

7. CONCLUSIONS
We have studied the verification properties of composi-

tions of data-driven peers communicating asynchronously
by message exchange. We treat data values as first-class cit-
izens, specifying each peer’s behavior with queries against
its configuration. This leads to infinite-state compositions
(since the database is not fixed in advance), and constitutes
a departure from classical work on verification of communi-
cating finite-state machines or, more recently, verification of
finite-state Web Service compositions.

We delineate the boundaries of verification decidability
by exploring a wide range of communication semantics and
classes of composition and property specifications. We also
consider modular verification of partially specified compo-
sitions when only the input-output behavior of their envi-
ronment is known. We identify a practically appealing and
fairly tight class of specifications for which verification is
decidable in Pspace (for fixed database arity), which is no
worse than LTL verification of finite-state machines. Our
favorable prior experiments on individual peer verification
lead us to expect similar results for compositions.
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APPENDIX

A. SOME PROOFS

Proof. (of Theorem 3.4) The pspace-hardness follows
directly from Theorem 3.5 in [13], which shows pspace-
hardness even for a single peer. We prove the upper bound.
For the sake of presentation simplicity, we first present the
proof for 1-bounded queues, then sketch the extension to
k-bounded queues.

Essentially, we reduce in ptime the verification of input-
bounded compositions with k-bounded queues and lossy chan-
nels to verification of isolated input-bounded Web services
with no message queues and k-lookback. Recall that a peer
has k-lookback if it can refer at every step, for each input
I , to the j-th previous non-empty input to I (denoted by
prev jI), for 1 ≤ j ≤ k. The reduction in conjunction with
Lemma 3.5 establishes decidability of verification and its
complexity.

Specifically, consider an input-bounded composition C with
k-bounded queues and lossy channels, and an input-bounded
property ϕ. We construct an input-bounded Web service
Wc with no message queues and k-lookback, as well as an
input-bounded property ψ such that C |= ϕ iffWc |= ψ. The
reduction features the following key ingredients:

• We need to model the fact that at each step precisely
one non-deterministically chosen peer gets to move. We
do so by havingWc generate as input options the names
of all peers. A dummy user will pick the peer to move
next, and Wc executes the move of the chosen peer.

• We model each nested queue by a state, and the send-
ing/receiving operations as updates of this state. The
state is flushed after each reception. The non-deterministic
decision on whether the message is lost in transition is
made using a propositional input set by a dummy user.

• Notice that the sending of a tuple along a flat queue
is subject to two sources of non-determinism: the first
pertains to picking one among the multiple candidate
messages generated by the rule, the second to deciding
whether the sent message is lost in transmission. We
model the combined non-determinism by turning the
send rule into an input rule. The input rule generates
the message candidates among which at most one is
picked by a dummy user.

• Since a send rule rs may depend on the current input,
the input rule modeling it, ri, must be evaluated af-
ter the current input has been chosen. To deal with
this one-step timing mismatch, we introduce for each
input I another input earlyI whose function is to pro-
vide at each step the value of I at the next step. Then
prevearlyI

can be used in the current step in the eval-
uation of ri.

There are two means available for achieving the above
simulation. One is the definition of Wc itself. However, Wc

may generate some runs that do not correspond to runs of
C and that need to be filtered out. To do this, we use the
definition of the property ψ. Specifically, we define ψ to
be of the form ψ0 → ϕ∗ where ϕ∗ corresponds to ϕ and
ψ0 is an input-bounded LTL-FO sentence satisfied only by
the runs of Wc that correspond to runs of C. For example,
in the use of inputs to simulate the choice of peer for each
move, the dummy user may choose to pick no peer. This
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generates a run ofWc that does not correspond to a run of C.
However, this run can be filtered out by ψ0 by requiring all
choices for this input to be non-empty throughout the run.
Another example concerns the earlyI relations associated to
each input I . In the definition of Wc, the input options for
earlyI consist of the cross product of the active domain, so
earlyI has no connection to I . However, ψ0 can be used to
select only those runs where earlyI contains at each step the
value of I at the next step (as will be seen, the first step
requires special treatment).

Formally, Wc is defined as follows.
Wc.Qin = ∅, Wc.Qout = ∅,
Wc.D contains

• the database relations of all peers, C.D.

• for each W ∈ C, a constant cW .

• for each input I of aritym in C.I, m constants c1I , . . . , c
m
I

and a proposition I∅.

Wc.I contains

• the inputs of all peers, C.I,

• a unary input move,

• for each input I in C.I, an input earlyI of the same arity,

• for each R ∈ C.Qf
out, an input IR of same arity as R.

• for each R ∈ C.Qn
out, a propositional input lostR.

Wc.S contains

• the states of all peers, C.S,

• a state SR of arity m for each m-ary R ∈ C.Qn
out;

• a propositional state fullQ for each queue Q ∈ C.Qin;

• a propositional state empty-earlyI for each input in C.I.

• a propositional state notfirst used to identify the initial
configuration.

We define the rules of Wc next. In the following we use
for any FO formula ϕ the shorthand ϕ∗ to denote the for-
mula obtained by simultaneously substituting in ϕ each oc-
currence of an atom Q(x̄) where Q ∈ W.Qf

in with fullQ ∧
prev IQ(x̄), and each occurrence of a nested in-queue symbol

Q ∈ W.Qn
in with the state SQ.

Wc.R contains:

1. the input rules

Optionsmove(x)←
∨

W∈C

x = cW ,

for each R ∈ C.Qn
out,

Options lostR ← true,

and for each input earlyI of arity m the rule

OptionsearlyI
← ξadomm

where ξadomm stands for an ∃∗FO formula defining the
m-ary cross product of the active domain.

2. for each W ∈ C and each input rule OptionsI(x̄) ←
ϕI(x̄) in W.R, the input rule

OptionsI(x̄)← move(cW ) ∧ ϕ∗
I(x̄);

3. for each peerW ∈ C, each S ∈ W.S and each state rule
(¬)S(x̄)← ϕS(x̄) in W.R, the state rule

(¬)S(x̄)← move(cW ) ∧ ϕ∗
S(x̄);

4. for each input I ∈ C.I the state rules

¬empty-earlyI ← ∃x̄ earlyI(x̄),

empty-earlyI ← ¬∃x̄ earlyI(x̄)

5. the state rule

notfirst ← ¬notfirst

6. for each peerW ∈ C and each action rule A(x̄)← ϕA(x̄)
in W.R, the action rule

A(x̄)← move(cW) ∧ ϕ∗
A(x̄);

7. for each W ∈ C, each Q ∈ W.Qn
out and each send rule

Q(x̄)← ϕQ(x̄) in W.R, the state rules

SQ(x̄)← move(cW ) ∧ ¬ fullQ ∧ ¬ lostQ ∧ ϕ
∗
Q(x̄);

¬ SQ(x̄)← move(cW ) ∧ ¬ fullQ ∧ ¬ lostQ ∧ SQ(x̄);

fullQ ← move(cW) ∧ ¬ lostQ;

8. for each peer W ∈ C and each Q ∈ W.Qin, the state
rules

¬ fullQ ← move(cW ),

emptyQ ← ¬fullQ,

¬emptyQ ← fullQ;

9. for each W ∈ C, each Q ∈ W.Qf
out and each send rule

Q(x̄)← ϕQ(x̄) in W.R, the input rule

OptionsQ(x̄)← move(cW )∧¬ fullQ∧(ϕnotfirst∨ϕfirst)

where

• ϕnotfirst is obtained from ϕQ by substituting each
occurrence of an atom I(x̄) for input I ∈ C.I with
prevearlyI

(x̄) ∧ ¬empty-earlyI , replacing each oc-
currence of a nested in-queue symbol R ∈ W.Qn

in

with the state SR and taking the conjunction with
notfirst,

• ϕfirst is obtained by substituting each occurrence
of an atom I(x1, . . . , xm) for input I ∈ C.I with
x1 = c1I ∧ . . . ∧ xm = cmI ∧ ¬I∅, replacing each
occurrence of a nested in-queue symbol R ∈ W.Qn

in

with the state SR, and taking the conjunction with
¬notfirst.

Additionally, we have the following state rule:

fullQ ← ∃x̄Q(x̄)

Intuitively, the simulation of C byWc works as follows. At
each step, a dummy user picks the peer to move next using
the input move. (rule 1.): if the user picks cW , then peerW
moves next. The definition of Wc cannot require the user
to pick some peer, but this will be ensured by the “filter”
ϕ0 used in defining the property ψ to be verified. The flat-
queue send rules are emulated by input rules (rules 9.) which
generate the message candidates from which a dummy user
picks the one to be actually sent. Note how current inputs I ,
unavailable to these rules, are replaced by the inputs earlyI
(or by database constants c1I , . . . , c

m
I in the first step). The
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dummy user may choose to pick no input, thus modeling the
loss of a message. Wc evaluates the input, state and action
rules of peer W (via rules 2., 3. and 6., respectively), if W
is currently scheduled to move. Wc emulates W’s sending
into nested queues by appropriate state rules (7.). These
overwrite the state SQ modeling queue Q and set the fullQ
flag, unless the input lostQ indicates that the message is lost
in transmission. The fullQ flag is reset upon reception (8.).

Now let us turn to the definition of the formula ψ, which,
as discussed earlier, is of the form ψ0 → ϕ∗. The formula
ψ0 consists of the conjunction of the following:

1. G ∃x move(x),

2. for each input I in C.I of arity m,

∀x1 . . .∀xm(I(x1, . . . , xm)→ x1 = c
1
I ∧ . . . ∧ xm = c

m
I )

∧ I∅ ↔ ¬∃x1 . . .∃xmI(x1, . . . , xm),

XG empty-earlyI ↔ ¬∃x̄I(x̄),

XG ∀x̄((prevearlyI
(x̄) ∧ ¬empty-earlyI)↔ I(x̄));

Note that the sentence ψ0 is input-bounded. In ψ0, the for-
mula (2) ensures the synchronization between earlyI and I

after the first step, and between I and the database con-
stants c1I , . . . , c

m
I at the first step, with empty-earlyI and I∅

flagging empty inputs. This allows flat message rules re-
quiring I to use instead earlyI in the simulation everywhere
except at the first step, where c1, . . . , cm are used instead.
Clearly, each run of Wc that satisfies ψ0 corresponds to a
run of C, where flat and nested queues are simulated by the
corresponding inputs and states. Finally, let ψ = ψo → ϕ∗.
Clearly, Wc and ψ are both input-bounded and C |= ϕ iff
Wc |= ψ.

The above construction can be easily extended to the case
of k-bounded queues for k > 1. Flat messages are repre-
sented as before by inputs, and a flat queue of size k by
the k previous non-empty values of the input (requiring the
k-lookback capability). Nested messages are represented by
states, and a queue of k nested messages by k states corre-
sponding to the up to k messages in the queue. Additionally,
some bookkeeping is needed to keep track of the number of
messages currently in each queue, and to flag empty and full
queues. This can be easily done using additional proposi-
tional states.

Proof. (of Theorem 3.7) We reduce from the Post
Correspondence Problem (PCP). Consider a PCP instance,
i.e. two sequences of length n: {ui}1≤i≤n, {vi}1≤i≤n, where
all ui, vj are non-empty words over the alphabet {0, 1}. A
solution to P is a finite non-empty sequence σ ∈ [1, . . . , n]∗

such that the two strings obtained by concatenating
uσ(1)uσ(2) . . . uσ(k) and vσ(1)vσ(2) . . . vσ(k) are identical (σ(i)
is the element at position i in σ). We say that these strings
are generated by the solution σ. We construct a composition
C and a property ϕ such that P has a solution iff C 6|= ϕ.

The composition simulates the search for a PCP solution
as follows. C contains two peers, a searcherWs and a checker
Wc. The local database of Ws encodes a finite string θ
intended to correspond to the string generated by a solution
of P . Ws non-deterministically picks a sequence of indexes
from [1, . . . , n] (by repeatedly asking an external user to pick
an input among the options [1, . . . , n]). Upon picking some
index i, Ws tries to match the corresponding words ui and

vi in parallel against θ, by maintaining two cursors U and
V on θ, as well as a cursor on ui and a cursor on vi. The
cursors advance in lock-step, being incremented only if they
point to the same character. Initially, U and V start from
the first position in θ. The property ϕ is satisfied only if
for all j, upon finishing to fully match uj and vj , U and V

never meet on θ. It is easy to see that, if the local database
of Ws encodes a string θ, a run of the composition violates
ϕ if and only if the sequence of indexes picked by Ws is a
solution to P , which generates a prefix of θ.
θ is encoded using two binary database relations, chain(s, t)

(intended to contain as a subgraph a chain of directed s→ t
edges) and char(i, c) (intended to label each node i in the
chain with a character c ∈ {0, 1}). We will enforce that
chain(s, t) satisfies the functional dependencies (FDs) s→ t
and t → s and char satisfies the FD i → c. The FDs on
chain ensure that nodes have in-degree and out-degree one,
so chain is a union of disjoint cycles and chains. To en-
sure that the cursors U and V progress along the same path
without revisiting any node, we enforce that they start from
the same position, a special node ’$’, and never return to
’$’. The FD on char will ensure that indexes are labeled
uniquely, and the rules ensure that the labels are in {0, 1}
(the fact that 0 and 1 are distinct constants is stated in the
property).

To detect violations of the FDs, Ws sends a (flat) propo-
sitional message along queue viol to Wc, set to true by FD
violations (if any). Since flat queues are perfect, Wc receives
a message iff the FDs are violated. The property will check
that no violation message is received.

In detail, the schema of Ws consists of

• Ws.D = {chain(s, t), char(i, c), ′$′, 0, 1} as described
above (’$’, 0, and 1 are constants);

• Ws.I = {I(i),U(x),V(x)}. Intuitively, the user provides
his pick of a word index in I, and U and V are the
cursors on θ. The options provided to the user contain
the immediate successors in chain of the cursors at the
previous input prevU, prevV. Of course, there is at
most one successor if the FDs on chain holds.

• Ws.S contains the following propositional states:

– for each 1 ≤ i ≤ n, each 1 ≤ j ≤ |ui| and each
1 ≤ k ≤ |vi|, state Uji and state Vki (these play the
role of cursors in the ui and vi words);

– state doneu, set to true only when a full ui word is
matched; begunu which, when set to false, signals
that the matching of ui words has not yet begun;
similarly, states donev and begunv.

• Ws.A =Ws.Qin =Ws.Q
n
out = ∅;

• Ws.Q
f
out = {viol}, where viol is propositional.

Ws contains
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• the input rules

OptionsI(i) ← (i = 1 ∨ i = 2 ∨ . . . ∨ i = n)

∧ (¬begunu ∧ ¬begunv ∨ doneu ∧ donev)

OptionsU(t) ← (¬begunu ∧ t =′ $′)

∨ begunu ∧ ¬doneu ∧

∃s∃c prevU(s) ∧ chain(s, t) ∧ t 6=′ $′

∧char(t, c)

∧(
∨

i,j

prev I(i) ∧ c = ui(j) ∧Uji )

OptionsV(t) ← (¬begunv ∧ t =′ $′)

∨ begunv ∧ ¬donev ∧

∃s∃c prevV(s) ∧ chain(s, t) ∧ t 6=′ $′

∧char(t, c)

∧(
∨

i,k

prev I(i) ∧ c = vi(k) ∧Vki ))

• the state rules

begunu ← ¬begunu ∧ ∃t U(t)

begunv ← ¬begunv ∧ ∃t V(t)

doneu ← ∃t U(t) ∧ (
n∨

i=1

U
|ui|−1
i )

¬doneu ← doneu ∧ ∃x I(x)

donev ← ∃t V(t) ∧ (

n∨

i=1

V
|vi|−1
i )

¬donev ← donev ∧ ∃x I(x)

Moreover, for 1 ≤ i ≤ n,

U1
i ← I(i)

Uji ← Uj−1
i ∧ ∃t U(t) for 1 < j ≤ |ui|

¬Uji ← Uji ∧ ∃t U(t) for 1 ≤ j ≤ |ui|

V1
i ← I(i)

Vji ← Vj−1
i ∧ ∃t V(t) for 1 < j ≤ |vi|

¬Vji ← Vji ∧ ∃t V(t) for 1 ≤ j ≤ |vi|

• the send rule

!viol() ← ∃x∃y1∃y2 ((chain(x, y1) ∧ chain(x, y2)) ∨

(chain(y1, x) ∧ chain(y2, x)) ∨

(char(x, y1) ∧ char(x, y2))) ∧ y1 6= y2

Finally, the property ϕ is

0 6= 1∧ (13)

∀t G(¬Wc.?viol)→

G¬(Ws.prevU(t) ∧Ws.prevV(t)

∧Ws.doneu ∧Ws.donev)

Proof. (of Theorem 3.8) The proof is by reduction
from the Post Correspondence Problem, and it is a varia-
tion on the proof of Theorem 3.7. As in the proof of Theo-
rem 3.7, we need to enforce the FDs on relations chain and
char. We use the same peers Ws and Wc, but modify the
rule for the flat queue viol by including in the message the

values of x, y1, y2 witnessing a violation. Since each viola-
tion produces at least two tuples, this leads to a violation of
determinism and sets the error state errorviol to true. This
in turn can be detected by the property. The rest of the
reduction is unchanged.

Proof. (of Theorem 3.9) If perfect flat message chan-
nels are allowed, undecidability follows from Theorem 3.7.
So, let us assume the flat message channels are lossy. The
proof is by reduction of the implication problem for func-
tional and inclusion dependencies, known to be undecidable
[8]. Let ∆ be a set of FDs and IDs over a relation S, and f an
FD over the same relation. We construct an input-bounded
composition C and an input-bounded LTL-FO property ϕ
such that ∆ |= f iff C |= ϕ.

The idea is that the satisfaction of a constraint by re-
lation S can be checked by testing emptiness of queries
involving joins or differences of projections of S. For in-
stance, an FD of form X → A is satisfied by S if the join
{(t1.X, t1.A, t2.A) | t1 ∈ ΠX,A(S) ∧ t2 ∈ ΠX,A(S) ∧ t1.X =
t2.X ∧ t1.A 6= t2.A} is empty. Similarly, S satisfies ID
|X| ⊆ |Y | if the difference {t | t ∈ ΠX(S) ∧ t 6∈ ΠY (S)}
is empty.

The composition contains two peers, C = {W1,W2}. W1

has a local database relation R (of same arity as S), from
which at each step it sends one (non-deterministically cho-
sen) tuple to W2 using a flat queue data. W1 also sends a
propositional message along the flat queue done.

As long as the done messages are lost, W2 receives the
incoming data tuples one-by-one and accumulates their cor-
responding projections into local state relations – one state
per required projection. At every step, the states hold the
projection of the subset of R which was received by W2.
Once the done message is received, W2 sends, for each FD
and ID σ ∈ ∆ ∪ {f}, the join, respectively difference of
the corresponding projection states into a nested out-queue
violσ. Clearly, empty(?violσ) holds at every step in a run
only if either done drops all messages, or σ is satisfied.

Suppose first the nested queue channels are perfect. The
property ϕ checks that, if the first message of all nested
queues corresponding to ∆ is empty at every step of the
run, so is the first message of the queue violf :

ϕ := G(
∧

σ∈∆

empty(?violσ))→ G(empty(?violf )).

If the nested channels are lossy, the property uses the built-
in states emptyQ signaling emptiness of the queue Q (not to
be confused with the new emptiness tests empty(Q) on the
contents of the first nested message in the queue Q) to filter
our runs with lost nested messages:

ϕ := G(?done→ X(
∧

σ∈∆∪f

¬empty?violσ
))→

[G(
∧

σ∈∆

empty(?violσ))→ G(empty(?violf ))].

Formally, W1’s schema is given as W1.I =W1.S =W1.A =
∅, W1.D = {R}, W1.Q

f
out = {data,done},

where R,data have the same arity as S, and done is propo-
sitional.

The schema of W2 is the following: W2.I = W2.D =
W2.A = ∅, W2.Q

f
in = {data,done}, and W2.S contains:

• for each ID σ of the form [X] ⊆ [Y ] in ∆, a relation SX
of arity |X| and a relation SY of arity |Y |;
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• for each FD σ of the form X → A in ∆∪{f}, a relation
SσXA of arity |X|+ 1;

Finally, for each σ ∈ ∆ ∪ {f}, W2.Q
n
out contains a relation

violσ.
W1.R contains only two send rules:

!data(x̄) ← R(x̄)
!done() ← true

W2.R consists of:

• for each ID σ of the form [X] ⊆ [Y ] in ∆, assuming
w.l.o.g. that R = R[X,Y,Z], the state rules

SX(x̄)← ¬?done ∧ ∃ȳ∃z̄ ?data(x̄, ȳ, z̄)

and

SY (ȳ)← ¬?done ∧ ∃x̄∃z̄ ?data(x̄, ȳ, z̄)

where x̄, ȳ, z̄ are tuples of variables of arity |X|, |Y |, |Z|,
respectively; also the send rule

!violσ(x̄)← ?done ∧ SX(x̄) ∧ ¬SY (x̄).

• for each FD σ of the form X → A in ∆∪{f}, assuming
w.l.o.g. that R = R[XA,U ], the state rule

S
σ
XA(x̄, a)← ¬?done ∧ ∃ū ?data(x̄, a, ū)

and the send rule

!violσ(x̄, a1, a2)← ?done∧SσXA(x̄, a1)∧S
σ
XA(x̄, a2)∧a1 6= a2

Note that all rules are input-bounded.

Proof. (of Theorems 4.2 and 4.5) The pspace-hardness
is shown in both cases by an easy reduction from Quantified
Boolean Formula, that we omit.

For the upper bounds, note that the proof of Lemma 3.5
(and therefore of Theorem 3.4) actually prove decidability
not just for LTL-FO properties, but for protocols
(Σ,B, {ϕσ}σ∈Σ) in which ϕσ are expressed over the entire
schema of the composition C (as opposed to only C.Qout

as required by conversation protocols). Indeed, the proof
of Lemma 3.5 proceeds by first compiling an LTL-FO prop-
erty to a protocol P and then deciding whether the runs
satisfy P . The compilation involves introducing a propo-
sitional symbol σ for each maximal FO component of the
property ϕσ (a maximal sub-formula containing no tempo-
ral operators). The resulting propositional LTL property is
then compiled to a Büchi automaton B using the algorithm
of [28].

Consider an input-bounded composition C with lossy chan-
nels and bounded queues, and a data-agnostic conversation
protocol (Σ,B) where Σ = C.Qout. Recall the simulation of
C by a single peer in the proof of Theorem 3.4. In the result-
ing peer, the enqueuing of a flat message Q occurs at step i
iff the input-bounded sentence ∃x̄ Q(x̄) holds at step i− 1.
The enqueuing of a nested message Q ∈ W.Qn

out occurs at
step i iff move(cW)∧¬lostQ∧¬fullQ holds at step i−1. Note
that both ∃x̄ Q(x̄) and move(cW ) are input bounded. The
extension of Theorem 3.4 to properties specified using Büchi
automata rather than LTL operators yields the result.

For data-aware conversation protocols, the input-bounded-
ness restriction on the conversation protocol corresponds to
input-boundedness of an FO formula expressed only over
the C.Qout schema. The result follows from the extension
of Theorem 3.4 discussed above.

Proof. (of Theorem 4.3) The proof is an easy modifi-
cation of the proof of Theorem 3.7. Referring to that proof,
recall that the flat message viol is used to detect violations
of the FDs, and the inputs U and V are used as cursors. A
solution to the PCP is found if there is a run in which there
is no violation and ∃t(prevU(t)∧ prevV(t)∧ doneu ∧ donev).
Instead of checking this using the property, we define a new
flat out-queue match in Ws defined by

!match← ∃t(prevU(t) ∧ prevV(t) ∧ doneu ∧ donev).

The conversation protocol states that if no viol message is
ever sent then no match message is ever sent. The com-
position satisfies the protocol under the observer-at-source
semantics iff there is no solution to the instance of the PCP.
Note that the protocol is data-agnostic.

Proof. (of Theorem 4.6) (i) The proof follows from
undecidability results on peers which are communicating
finite-state machines (CFSM) with lossy queues holding propo-
sitional messages (Abdulla and Jonsson [2]) (ii) The proof
is a slight variation of that of Theorem 4.3. Consider the
composition constructed there from a given PCP instance,
but with perfect flat channel semantics. Consider also the
data-agnostic protocol stating that if no viol message is ever
enqueued then no match message is ever enqueued. The
protocol is satisfied by the composition iff the PCP instance
has no solution. (iii) The proof is again an easy modification
of the proof of Theorem 4.3. We replace the flat out-queue
match in Ws by a nested unary queue with the same name
whose rule is

!match(0)← ∃t(prevU(t) ∧ prevV(t) ∧ doneu ∧ donev).

We also add to Ws.Qout a nested unary message error
whose rule is

!error(0)← errorviol

The conversation protocol states that if no message error(0)
is ever sent then no message match(0) is ever sent. Note
that the both the composition and the protocol are input
bounded. (iv) For perfect flat messages, the result follows
from (ii). For lossy flat messages and lossy or perfect nested
messages, the proof is identical to that of Theorem 3.9.

Proof. (of Theorem 5.4) We simulate runs of C using
a single additional input-bounded peer E , that emulates all
possible transitions of the environment. Then we reduce
the modular verification of C to standard verification of the
closed composition C ∪ {E}.

Essentially, E generates all possible sequences of out-messages
from the active domain of its own database. In detail, we
reduce C |=ψ ϕ to C ∪ {E} |= ϕ′, where ϕ′ is input bounded.
E is defined as follows:

• E .Qn
in = C.Qn

out \ C.Q
n
in E .Q

n
out = C.Qn

in \ C.Q
n
out;

• E .Qf
in = C.Qf

out \ C.Q
f
in and E .Qf

out = C.Qf
in \ C.Q

f
out;

• E .I = {IS, buildS | S ∈ E .Q
n
out} where IS has the same

arity as S and buildS is propositional,

• E .S = {QS | S ∈ E .Q
n
out} ∪ {Q

+
S | S ∈ E .Q

n
in}, where

QS and Q+
S have the same arity as S,

• E .A = ∅,

• E .D = {D} where D is a unary relation.

We next describe the rules E .R. The contents of the nested
messages in E .Qn

out is built non-deterministically over mul-
tiple steps, using the inputs IS whose input options are the
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Cartesian product of the active domain of the database,
which are accumulated in the states QS. Each building up
sequence of steps is triggered by the propositional inputs
buildS (whose option rules are buildS ← true) and continue
until all of them are false. At that point, the flat and nested
messages are sent. For each k-ary Q ∈ E .Qf

out, there is a
send rule whose body expresses the k-way Cartesian prod-
uct of the active domain of the database, guarded by the
formula

∧
S∈E.Qn

out

¬buildS (so that no messages are sent in

the building-up phase).
For technical reasons, E .R also contains for each S ∈
E .Qn

in the state rules:

¬Q+
S (x̄)← Q+

S (x̄),

Q+
S (x̄)← ?S(x̄).

Thus, the state Q+
S holds the contents of the nested input

?S at the previous step. Clearly E is input bounded.
The formula ϕ′ is constructed as follows. Let

β =
∧

S∈E.Qn

out

¬buildS.

Thus, β is true iff E is not in the building phase of any
nested message. Consider the formula ψ̄r. Let ψ1 be ob-
tained by replacing in ψ̄r each temporal operator Xα and
Uα with Xα∧β and Uα∧β. Since ψ is strictly input-bounded,
its maximal FO components contain no free variables. In
the translation to ψ̄r and then to ψ1, a maximal FO com-
ponent θ of ψ is translated to an input-bounded formula
θ′ using atoms over schema E .Qin, subformulas of the form
X(receivedQ → Q(x̄)), where Q ∈ E .Qout, and no other
temporal operators. At this point, the formula θ′ may no
longer be strictly input bounded, because X may appear in
the range of some quantifier (see Example 5.2). However,
the temporal operator X can be moved in front of the entire
formula θ′ after replacing each atom S(x̄) where S ∈ E .Qin

by prevS(x̄) if S ∈ E .Qf
in, and by Q+

S (x̄) if S ∈ E .Qn
in. This

results in a formula X θ′′, where θ′′ is an input-bounded FO
formula with no free variables. The same can be done for
every first-order component of ϕ. Let the resulting formula
be ψ2. Clearly, ψ2 is now strictly input bounded. Finally, let
ϕ∗ be obtained from ϕ by replacing each temporal operator
X by Xβ and U by Uβ. Intuitively, ϕ∗ ignores the building-
up steps in moves of E . Let ϕ′ be (G (Fβ)∧ψ2)→ ϕ∗, where
G (Fβ) states that no building-up phase lasts forever. It is
easy to check that ϕ′ is input-bounded over the schema of
C∪{E}, and that C |=ψ ϕ iff C∪{E} satisfies ϕ′. Finally, the
pspace-hardness follows again by an easy reduction from
Quantified Boolean Formula, and the upper bounds follow
from Theorem 3.4.

Proof. (of Theorem 5.5) The proof is a modification
of the proof of Theorem 3.7. The composition now con-
sists of a single peer, {Wsearch}, where Wsearch is a modifi-
cation of Ws from Theorem 3.7, in which there is no more
local database. The chain is instead provided by the envi-
ronment. Given two positions su, sv in the chain, Wsearch

sends a request to the environment for the successors tu, tv
(and characters cu, respectively cv) using a flat message
!next(su, sv). The requested data is received in a flat mes-
sage ?chain(su, tu, cu, sv, tv, cv).

The state rules are the same as for Ws from Theorem 3.7,

with the addition of

match← ∃t(prevU(t) ∧ prevV(t) ∧ doneu ∧ donev)

which sets the propositional state match when a PCP solu-
tion is detected.

The input rules are adapted to read the chain information
from the queue instead of the database:

Options I(i) ← (i = 1 ∨ i = 2 ∨ . . . ∨ i = n)

∧ (¬begunu ∧ ¬begunv ∨ doneu ∧ donev)

OptionsU(tu) ← (¬begunu ∧ tu =′ $′)

∨ begunu ∧ ¬doneu ∧ ∃su∃cu∃sv∃cv prevU(su)

∧?chain(su, tu, cu, sv, tv, cv) ∧ tu 6=
′ $′

∧(
∨

i,j

prev I(i) ∧ cu = ui(j) ∧ Uji )

OptionsV(tv) ← (¬begunv ∧ tv =′ $′)

∨ begunv ∧ ¬donev ∧ ∃su∃cu∃sv∃cv prevV(sv)

∧?chain(su, tu, cu, sv, tv, cv) ∧ tv 6=
′ $′

∧(
∨

i,k

prev I(i) ∧ cv = vi(k) ∧Vki ))

Wsearch contains the send rule (into the environment)

!next(tu, tv)← U(tu) ∧ V(tv).

The property we verify is that state match is never set:

G¬match.

In addition, we specify the environment such that it en-
forces the desired FDs on the chain. Concretely, we require
that the values ti, ci returned for a requested si are the con-
sistently the same throughout the run:

∀su∀tu∀cu∀sv∀tv∀cv∀t
′
u∀c

′
u∀s

′
v∀t

′
v∀c

′
v G(

(F!chain(su, tu, cu, sv, tv, cv)) ∧

(F!chain(su, t
′
u, c

′
u, s

′
v, t

′
v, c

′
v))→ tu = t

′
u ∧ cu = c

′
u)

and symmetrically for sv. Notice that the environment spec-
ification is input-bounded (but non-strict).
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