
Privacy via Pseudorandom Sketches

Nina Mishra∗ Mark Sandler†

December 18, 2005

Abstract

Imagine a collection of individuals who each possess private data that they do not wish to share with
a third party. This paper considers how individuals may represent and publish their own data so as to
simultaneously preserve their privacy and to ensure that it is possible to extract large-scale statistical
behavior from the original unperturbed data. Existing techniques for perturbing data are limited by the
number of users required to obtain approximate answers to queries, the richness of preserved statistical
behavior, the privacy guarantees given and/or the amount of data that each individual must publish.

This paper introduces a new technique to describe parts of an individual’s data that is based on
pseudorandom sketches. The sketches guarantee that each individual’s privacy is provably maintained
assuming one of the strongest definitions of privacy that we are aware of: given unlimited computational
power and arbitrary partial knowledge, the attacker can not learn any additional private information
from the published sketches. However, sketches from multiple users that describe a subset of attributes
can be used to estimate the fraction of users that satisfy any conjunction over the full set of negated
or unnegated attributes. We show that the error of approximation is independent of the number of
attributes involved and only depends on the number of users available. An additional benefit is that the
size of the sketch is minuscule: dlog log O(M)e bits, where M is the number of users. Finally, we show
how sketches can be combined to answer more complex queries.

∗University of Virginia, nmishra@cs.virginia.edu. Part of this work was done at HP Labs and Stanford University and was
supported in part by NSF grant EIA-0137661.

†Cornell University, sandler@cs.cornell.edu. Part of this work was done at HP labs.

1 Introduction

Privacy is a paramount concern in applications where sensitive personal information is used for the purpose
of discovering patterns. This data is often gathered by a central third party either with the assurance
that each individual’s privacy will be maintained or with the goal of selling this information to interested
buyers. In the former case, private data is not necessarily kept private as there have been many instances
where organizations have either accidentally or intentionally violated their privacy agreements in the face of
mergers, bankruptcy or theft [14, 15, 16]. In the latter case, private data is not even intended to be kept
private. For example, Acxiom [17] is a company that sells private data to companies who hope to improve
target marketing, customer retention, etc.

Since it is evident that our data is not private when trusted to another party, this paper develops an idea
suggested in [1] – how can privacy be put back in the hands of individuals? Our view is that individuals
maintain all of their private data and what we investigate are methods by which individuals can release
perturbed versions of their personal data so that privacy is preserved and so that large-scale statistical
patterns present in the original unperturbed data can be approximately recovered from the released perturbed
set.

Some solutions to the non-trusted party problem have been proposed. One solution, known as randomized
response advocated by Warner in the 1960s [24], amounts essentially to flipping bits in the private data. In
this context, when an individual is surveyed about a sensitive matter, such as whether they ever inhaled,
the respondent flips the answer to their question with probability p or answers truthfully with probability
1− p. If p is slightly less than 1/2 then this simple bit-flipping procedure can be shown to preserve privacy
and, with some simple analysis, if there are enough users then one can derive a reasonably good estimate
of the actual fraction of people who answered the question yes. This bit flipping procedure, while powerful,
has the disadvantage that if a user has a relatively sparse private vector then the resulting perturbed vector
may be quite dense, and furthermore, the number of users required to compute more complicated queries
grows very fast.

A more recent solution suggested by Evfimievski et al [10, 11] develops an improved randomized procedure
that has similar privacy guarantees to bit flipping but also produces a compressed version of the dense flipped
vector. However, their result only applies to databases where each user has a small number of items in their
transaction (e.g. only small number of bits is set to one). Further, no analysis is given of the number of
users needed to obtain accurate estimates of the frequency of an itemset as the size of the itemset grows.
It appears (to us) that the number of users needed grows exponentially with the size of the itemset. This
makes the method of only limited utility when users have a large number of bits set to 1, e.g., various poll
data or non-binary data.

A generalization of randomized response to non-binary attributes was undertaken by Agrawal et al [3]. In
this work, bit flipping was generalized to non-binary attributes via retention replacement – each user keeps
their true value with fixed probability, or replaces their true value with noise. Arbitrary queries involving a
fixed number of attributes can be answered with this technique. However, it has the disadvantage that an
attacker with prior knowledge could learn a lot of information about a user. For example, if an attacker knows
that someone’s private value is either 〈1, 1, 2, 2, 3, 3〉 or 〈4, 4, 5, 5, 6, 6〉 then seeing the perturbed sequence
〈1, 9, 8, 2, 3, 5〉 virtually reveals to the attacker the exact private data of the individual with high probability.

In this paper, we introduce a novel method where each user publishes a succinct representation of their
data that we call a sketch. The sketch is derived using the theory of pseudorandom functions. Each sketch
describes a subset of attributes over the user’s profile. We show that sketches preserve privacy in a very
strong sense. However if such a sketch is collected from enough users then good estimates of the fraction
of users that satisfy any conjunction over the full set of both negated and unnegated attributes can be
obtained. The key difference from [10] is that the approximation error is independent of the number of
attributes involved (as opposed to what seems to be exponential in the number of attributes in [10]).

Our Contributions To understand our contributions, we begin by defining privacy. If a user holds some
private data and wishes to release a sketch s then we say that a user’s privacy is preserved if for any two
possible private values d′ and d′′, the attacker cannot distinguish between whether the original private data

1

was d′ or d′′, i.e., Pr(s|d′) ≈ Pr(s|d′′). A more formal definition and discussion can be found in Section 2.1

With regard to utility, the basic query that we strive to accurately answer is a conjunctive query : Suppose
that each user holds a bit vector in d ∈ {0, 1}q over the variables x1, . . . , xq. Given a subset of literals, where
each element is either an attribute xi or its negation xi, the output is the fraction of users that satisfy the
conjunction. One example of a query is what fraction of individuals are HIV+ and do not have AIDS.

Our main contribution is a novel method where users may “publish” their data using succinct represen-
tations - sketches. Each sketch describes a subset of a user’s attributes which when collected from multiple
users can be combined in order to approximate the fraction of users who satisfy an arbitrary conjunction.
The key difference from [10] and [24] is that the error in estimating the answer to a conjunctive query is
independent of the number of attributes involved. (This is in contrast to previous work, where the error
appears to grow exponentially in the number of attributes in the query.) The size of the sketch is tiny:
dlog log O(M)e where M is the number of users. We prove that sketches preserve privacy in the sense just
described.

While we limit our analysis to only conjunctive queries, we demonstrate that these queries are quite
powerful in the sense that many other queries (such as means, higher moments and interval queries) can be
expressed as a collection of a small number of conjunctive queries.

Related Work In recent years several different approaches to privacy have emerged. They can be roughly
divided into three categories by the extent to which the trusted third party is used in maintaining privacy.
More specifically, they can be partitioned based on whether the trusted third party is (a) used to answer
queries about the private data or (b) used only to create an initial sanitization of the private data or (c) not
needed at all.

In the first approach, the idea is to perturb the answer to every query [5, 7, 9], or to precisely answer
some queries but deny the answer to others [18, 19, 8] so as to ensure privacy. The second kind of work (that
assumes a centralized third party who publishes a sanitized version of the data) includes different flavors
of anonymity [20, 2, 23, 22] and data perturbation [6]. Note that in this case, the trusted server is needed
only during the initial stage. After the data is released it immediately becomes public and no third party is
needed to answer queries.

The most general approach, which is most relevant to our work does not assume the existence of a trusted
party at all. Information provided by the user immediately becomes public and available for everybody’s
use. The main idea here is to randomize or clean the user’s data [10, 11, 3] so that personal data is virtually
hidden and yet it is possible to gather relevant statistics from the data of many individuals. To the best of
our knowledge, no previous results could both operate on non-binary data and guarantee strong privacy.

Note that any result in the last two categories immediately implies a similar result in the first one.
In particular, we believe that this paper provides useful insights for the framework described in [5]. We
elaborate more on this in the Appendix A.

2 Preliminaries

Let d denote a user’s private data which we sometimes refer to as a user’s profile. In addition we assume that
each user holds a unique public identifier id - which does not contain any private information (for example
it could be a timestamp of user registration in the system). The pair (id,d) fully describe an individual. We
denote the set of all pairs (id,d) by D.

Our goal is to provide the user with some mechanism for generating a sketch s about their profile so
that user’s privacy is preserved. Informally, we say that the sanitized information preserves privacy if for
the private data d′ and d′′ of any two individuals, Pr [s|d′] ≈ Pr [s|d′′]. Thus the sanitized data s does not
help the attacker distinguish between the case when the user’s private data is d′ and d′′. This definition is
identical to [10]’s notion of γ-amplification.

Definition 1 The sanitization s is ε-private if for any two values of private data d′ and d′′

Pr [User’s sanitized value is s|User’s private value is d′]
Pr [User’s sanitized value is s|User’s private value is d′′]

≤ (1 + ε) (1)

1In [10], this definition is known as γ-amplification.

2

Note that this definition is extremely strong since it says that the sanitized data is almost equally likely to
be generated from any possible value of the underlying user data. Thus, no matter how much the attacker
knows about a user in advance, after the sanitized sketch is released, very little new information can be
learned. There are also other definitions of privacy, we present a brief comparison of them in Appendix C.

To better understand the definition of ε-privacy we give a simple example. Consider the situation where
each user holds a single bit that is either 0 or 1. Then for v ∈ {0, 1}, we want

Pr(x̃i = v|xi = 0)
Pr(x̃i = v|xi = 1)

≤ (1 + ε) (2)

Observe that if each individual flips their bit with probability exactly 1/2 then we have absolute privacy, but
absolutely no utility. To understand why, observe that each user publishes 1 with probability 1/2 and 0 with
probability 1/2 independent of their original unperturbed value. We do not even need a user to exhibit this
kind of random behavior – all we need is a fair coin. Consequently, flipping with probability 1/2 does not
provide any utility. However, if each individual flips their bit with probability p just a tinge under 1/2, i.e.,
p = 1/2− ε then we can simultaneously ensure privacy and estimate the fraction of ‘1’s in the unperturbed
data. The privacy proof is folklore so we have included it in Appendix B. Furthermore, the fraction of ones
r can be estimated by solving for r in the following equation where r̃ is the fraction of ones in the perturbed
data: E(r̃) = (1− p)r + p(1− r). (And, E(r̃) can be estimated using the Chernoff bound – refer to the proof
of Lemma 4.1 for details.)

Conjunctive queries Conjunctive queries are a natural generalization of frequent item-set mining [10].
Given a subset of bits B = {b1, . . . , bk}, and their values (v1 . . .vk) a conjunctive query returns the fraction
of users that satisfy a query of the form

∧
(dbi

= vi), In other words, given a set B and a binary string
v = {v1, . . . ,vk}, we want to estimate how many users satisfy dB = v, where dB denotes a substring induced
by set B. This generalization (from the monotone version considered in frequent itemset mining) enables
efficient computation of a broad range of other queries - not necessarily on binary data. We let I(B,v) denote
the total number of users whose profile d satisfies the constraint dB = v. One way to compute answers to
conjunctive queries, is via a system of linear equations similar to the one introduced in [10]. However the
error introduced seems to grow exponentially in the number of bits involved and thus only appears to be
useful for answering short, monotone conjunctive queries.

3 Sketches

In this section we develop an approach that will allow us to answer conjunctive queries defined on a large
(or really, any size) subset of bits. The idea is that any subset of interest B can be sketched, so that we can
answer the query |I(B,v)| for an arbitrary value v. In other words, each sketch over a set of k attributes
gives us the ability to answer 2k conjunctive queries (over the full set of k attributes, where each attribute
appears either negated or unnegated). The sketching technique turns out to be very useful in mining non-
binary data where for each attribute there are only a few subsets that need to be sketched. Sketches can
also be combined together to produce answers to more complex queries.

Sketching can be viewed as an analog of hashing but with better privacy protection. Indeed, if each user
hashes their value on a subset of bits B, then the hash value can be used to answer the query I(B,v), by
computing the number of users who hold the hash value of vector v. However, even though the hash function
is non-reversible, it might violate privacy. Indeed, if Bob knows that Alice’s private value can be only one
out of 100 known possible values, then once he sees the hash value, by applying the hash function to each
potential value, he can deduce the original value (with very high probability). Sketches are devoid of this
property – seeing a sketch tells almost nothing (in a precise mathematical sense) about the private value
which generated it.

Intuition Consider a subset of bits B. We want to be able to estimate the fraction of users who have their
subset of bits B equal to a particular value v. Suppose for a second that we are not concerned about the
efficiency of our representation. How can we estimate this fraction while hiding the real values? Consider a

3

All Possible Private Values: 000 001 010 011 100 101 110 111
User Indicator Vector 0 0 0 0 1 0 0 0
User Published Vector 1 0 1 1 1 0 1 0

Figure 1: A very private (but very inefficient) publishing method. The user holds a private 3-bit value=’100’
which is first represented as 23 = 8-bit indicator vector (with a ’1’ in the position corresponding to ’100’).
This vector is then perturbed and published.

user u and imagine that for each possible value v he publishes a p-perturbed indicator whether the user’s
real value is equal to v or not. In other words, for k bit long subset B, we represent the user’s data by a
2k bit long vector, which contains zeros everywhere, except at the position v – the bit corresponding to the
user’s true value. At the end we perturb each bit with probability p and publish this perturbed vector. An
example of this procedure is presented in the Figure 3.

Note that the published sequence is almost equiprobable to be generated from any possible underlying
value, since for any possible user values v′ the original 2k indicator vector differs in only 2 bits (corresponding
to v′ and v′′).

Now, if we want to learn how often the value v occurs in the database, we just look up the column
corresponding to the value v, and there for each user we have a perturbed indicator of whether the value is
v or 0. To obtain an estimate, we use the analysis for single bits discussed in section 2.

Evidently, publishing 2k bits for each subset S is not very practical. Fortunately this can be avoided.
Notice that the process used to generate these 2k bits is extremely simple – all bits except one are generated
using a p-biased coin, and the bit corresponding to the actual value is generated using a (1− p)-biased coin.
This sequence can be simulated using pseudorandom functions which we only define intuitively. A precise
formal definition is beyond the scope of this paper, however a very nice introduction to them can be found
in [13].

To develop intuition, assume that we have an oracle which, when provided a key s, generates a random
function fs, such that for random key and for any value v, Pr [fs(v) = 1] = p with all values being mutually
independent. We emphasize here that each value is chosen only once for each key and each value. Thus for
a fixed key s the function fs is entirely deterministic. However before we evaluate fs(v) we have no way of
knowing what the value is going to be. Suppose now, that a user holds value u. Then, we want to modify
the process of key selection so that the value of fs(u) would be more biased towards 1. E.g. if we just output
random s then fs(u) = 1 with probability p, whereas we want it to be 1− p.

Intuitively, a user can seek out the necessary bias by skewing the distribution of keys. More specifically,
a user selects a random key and then rejects it with non-zero probability if fs(u) = 0, and accepts it with
probability 1 if fs(u) = 1. We call the key generated by this process a sketch (of a subset B). We emphasize
here, that the outcome of this process is no longer a key chosen uniformly at random - but is skewed so that
fs(u) = 1 is more likely.

Note that in order to keep independence, the oracle must generate functions independently for each user
and each bit subset. To achieve this, we use a single random function which takes these values as input
parameters. Indeed, suppose the function H takes as input a unique user identifier id, a bit subset B, a
value v and a key s (the one used as input to the oracle above). The value of such a function at a given
input is chosen to be 1 or 0 using a p-biased coin. Different user identifiers will ensure that each user receives
a random function that is independent of everybody else’s function. Of course, we still need an efficient way
to represent such a function. Fortunately there are standard algorithms for doing this. For example, any
collision free secure hash (such as MD5 [21] or WHIRLPOOL [4]) is an example of such a function2.

Observe that a function which returns a uniform value can be transformed to mimic a p-biased coin
flips using a simple algorithm. Indeed, suppose we have a collision free function H : {0, 1}∗ → {0, 1}λ, and
we would like to obtain a binary function H : {0, 1}∗ → {0, 1} such that for random x, H(x) = 1 with
probability p. To achieve this, we write p in binary form, p =

∑t
i=1 pi2−i. We assume that p can be written

using only λ bits3. Then for a given input x let H(x) = v1 . . . vλ. We report 1 if
∑λ

i=1 vi2−i ≤
∑λ

i=1 pi2−i

2It is also possible to generate a new function for each database individually using standard constructions of [13]
3Standard hash functions have length 128-512 bits, which is much larger than the typical precision used to represent real

4

and 0 otherwise. We now present our sketching algorithm.

Algorithm 1 The Sketching Algorithm: Sketch(id,d, B)
Input: Pseudorandom p-biased function H, security parameter p, user data (id, d), subset B ⊆ [1..|d|].
Output: A sketch s for dB .
1: Choose s uniformly at random without replacement.
2: if H(id,B,dB , s) = 1 then
3: Publish s and stop.
4: else
5: With probability p2

(1−p)2 publish s and stop. With probability 1− p2

(1−p)2 continue to step 1.
6: end if
7: If all values of s are exhausted then report failure and stop.

The Sketching Algorithm Note that the original randomized response is a special case of our technique
where we sketch each bit individually. However the main advantage of our approach is in sketching large
subsets of bits.

Analysis of the algorithm There are several questions that need to be addressed. First, we need to
estimate the required length of a sketch and the running time of Algorithm 2. Second, we prove that the
sketch preserves privacy. And the last question, that we defer until the next section, is what queries can be
approximately answered with the sketch.

Let us begin with a more formal introduction to pseudorandom functions. Imagine the space of all
functions that map n bit strings to n bit strings. Now imagine a uniform distribution over this space of
functions – this is a truly random function ensemble. Pseudorandom function ensembles are ensembles that
cannot be distinguished from truly random function ensembles by any efficient algorithm that can probe
values of the functions at arguments it selects. Put another way, there is no algorithm that can distinguish
between a function drawn from a pseudorandom ensemble and a truly random ensemble when given the
ability to examine the function at various points.

While it is widely believed that pseudorandom functions do exist, there existence has not been proven.
In our approach, as we show, the existence of pseudorandom functions is somewhat less crucial since privacy
is unaffected by their existence, and furthermore it is unlikely that non-adversarially chosen queries will ever
expose their non-randomness. Indeed, if such queries did exist, then we would be able to differentiate between
a ‘currently-thought-to-be’ pseudorandom function and a random one – and that would be a breakthrough
for modern cryptography. As for the current state of the art, if the length of the generator key is at least
300 bits4, it is unfeasible to build an algorithm whose answers on a pseudorandom function will differ from
those it would produce on a truly random function. Thus without loss of generality we can assume that all
values of our function H were chosen uniformly at random.

We assume that there is a public pseudorandom function H, which upon receiving a random binary
string returns 1 with probability p and 0 otherwise. It is useful to think about a pseudorandom function
as a black box such that for every set of parameters for which we have not yet evaluated our function,
the value is generated randomly on the fly. Indeed, such an interpretation is possible since from the point
of view of a user the values are computationally indistinguishable from those that are chosen at random.
This substitution allows us to compute probability distributions and prove tail bounds over outcomes of
pseudorandom functions even though the actual answer is of course entirely deterministic.

The first question we address is how many bits a user needs to represent a sketch so that Algorithm 1
fails with very small probability. It turns out that the number of bits we need is doubly logarithmic in the
number users and the failure probability.

values. Furthermore if the need arises, the length of the output of a hash function can be increased [13].
4Here we are talking about the key used to define the global pseudorandom function for the entire database, not the short

keys used to generate sketches

5

Lemma 3.1 (Minimal length of the sketch) If the length of a sketch is at least ` = dlog log M
τ

| log 1−p2|e, and
there are at most M users in the system then probability that publishing algorithm fails for any user is less
than τ .

Proof.Consider a user with identifer id, a subset B, and suppose that the user’s value on B is v. For each
key value we’ve considered, the algorithm stops with probability at least p2. Now, in order for our algorithm
to fail, it should be the case that it did not stop on any of them. Thus the probability of failure is at most

(1− p2)2
`

≤ (1− p2)|
log τ

M
log 1−p2 | ≤ τ

M
.

where we use the fact that a `-bit long binary value encodes 2` different values. Using the union bound, we
get the desired result.

Note that the length of the sketch grows very slowly compared to the number of users and τ and grows
independently of the length of the data we are sketching. For example if p > 1/4, then a 10 bit sketch is
sufficient for any foreseeable practical use.

In terms of the algorithm’s running time, note that the double logarithmic bound on the sketch length
implies a logarithmic bound on the number of iterations. Since the algorithm only tries every sketch at most
once, there will be at most log M/tau

log(1−p2)) iterations in the worst case. Furthermore it can be easily shown that
since the algorithm terminates on each iteration with probability p

(1−p)2 the expected running time is much

less – and in fact is less than (1−p)2

p2 iterations.
In what follows, for clarity purposes all of our results will be conditioned on the fact that our algorithm

does not fail. We start with a simple lemma which shows that the sketch published by Algorithm 1 indeed
defines a function which is p− biased towards 1 on the user’s real value, and p-biased towards 0 on all other
values. The proof appears in Appendix D.

Lemma 3.2 (Correctness of the algorithm) For a user (id,d), if the algorithm does not fail on a subset
of bits B, it outputs a sketch s such that

Pr [H(id,B,dB , s) = 0] = p

and for all v 6= dB,
Pr [H(id,B,v, s) = 0] = 1− p,

where the probability is taken over all possible outcomes of the algorithm and all evaluations of H.

Now we prove our first privacy result that any sketch is almost equally likely to be generated from any
private profile. As we mentioned before, our privacy guarantees are independent of the quality of the public
pseudorandom generator, e.g. even an adversarial choice of the values of H would not compromise a user’s
privacy.

Lemma 3.3 (Privacy with a single sketch released) For a subset B, if a user u releases a sketch s
according to Algorithm 1 then for any possible values of their profile d′ and d′′ we have

Pr [User publishes sketch s|User profile is d′]
Pr [User publishes sketch s|User profile is d′′]

≤
(1− p

p

)4

where the probability is taken only over the outcomes of the user’s private coin flips and not over the
outcomes of a public pseudorandom function.

Proof. Let r =
(

p
1−p

)2

. Since we will only be considering a sketch of a single subset for B and for a single
user with identifier id, we use f(d, s) as shorthand for H(id,B,dB , s). We investigate how the algorithm
runs given that the user profile is d. In particular, we say that the key s evaluates to z (on user profile d)
if f(d, s) = z. As in the previous result we assume that the sketch has length ` bits thus taking L = 2`

possible values.

6

We say that the algorithm considers a key s, if it samples s during its execution process. Let Yds denote
the probability that the algorithm given a profile d considers a key s. Note that if the key s evaluates to 1,
then considering it is equivalent to publishing it. The probability Xds that the user publishes key s is then
bounded by

rYds ≤ Xds ≤ Yds,

since the algorithm publishes a considered key with probability at least r, and it never publishes a non-
considered key. Now we show that there exists Ymin and Ymax such that Ymin/Ymax ≥ r and for any possible
user profile d and s:

Ymin ≤ Yds ≤ Ymax.

If we could show that then we have

rYmin ≤ Pr [User (id,d) publishes sketch s] ≤ Ymax ≤ Ymin/r (3)

independent of the actual value of d, and the lemma would follow.
Let’s prove those bounds. Notice that the behavior of the algorithm is invariant with respect to per-

mutations of the key evaluations. Thus for any two profiles d′ and d′′ that have the same number of keys
that evaluate to 1, we have Yd′s = Yd′′s. Analogously, if for a given profile, two given keys evaluate to the
same value then they have exactly the same probability of being considered. Denote by Q(d) - a number
of different keys s which evaluate to 1 on d. Then we can write Yds = Z

Q(d)
f(d,s), where Z

(q)
w denotes the

probability of a particular key which evaluates to w ∈ {0, 1} to be considered, in the case when exactly q
keys evaluate to 1. Now we abstract from the underlying profile, and just concentrate on how the algorithm
behaves as a function of how many keys evaluate to “1” or “0”. This includes all possible profiles as well.

Since there are L = 2` possible keys, the values of Z
(L)
0 and Z

(0)
1 are undefined, and for the remaining

values 0 ≤ q < 2`−1 we have Z
(q)
0 = Z

(q+1)
1 . Indeed, we consider every key before we evaluate its value,

therefore the probability that the algorithm considers a key which evaluates to 0 is equal to the probability
of considering a key which evaluates to 1 – where the rest of the evaluations stay the same (but an extra key
has evaluated to 1). Thus it is sufficient to only consider Z

(q)
1 . We are going to omit the lower index and

use simply Z(q).
Now, if all keys evaluate to one, then the algorithm always terminates on the first iteration, therefore

each key has equal probability of being considered. Thus Z(L) = 1
L . It is also easy to see that Z(q) ≥ Z(q+1)

since changing the evaluation of a single key to “0” increases the probability of having one more iteration
(and hence each key which evaluates to “1” is more likely to be considered). Therefore Ymax = Z(1) and
Ymin = 1

L . Now we only need to compute Z(1) - the probability that the algorithm chooses “1”, if all hash
values but one are evaluated to zero. Let’s compute the probability Vi that the algorithm chooses the key
which evaluates to “1” at the iteration i. We have:

Vi =

i−1∏
j=0

(1− 1
L − j

)(1− r)

× 1
L − i

=
(1− r)i

L − i
×

[
L − i

L − i + 1
× L− i + 1
L − i + 2

× . . .× L− 1
L

]
=

(1− r)i

L

where the first term is the probability that the algorithm does not terminate on the first i − 1 iterations,
and the second term is the probability that it chooses the key which evaluates to one. Therefore we have

Z(1) =
L∑

i=0

Vi =
1
L

L∑
i=0

(1− r)i ≤ 1
rL

The result follows.

Corollary 3.4 (Privacy with many sketches) If a user u releases l sketches according to Algorithm 1
then for any possible values of their entire profile d′ and d′′ we have

(
1− p

p
)4l ≤ Pr [User publishes sketches s1 . . . sl| User profile is d′]

Pr [User publishes sketches s1 . . . sl| User profile is d′′]
≤ (

p

1− p
)4l

7

In particular, if p ≥ 1/2− ε
16l , then

1− ε ≤ Pr [s|d′]
Pr [s|d′′]

≤ 1 + ε

.

Proof.Since conditioned on a profile, each sketch is generated independently, the first part follows. The
second part follows from the behavior of the exponent of the form (1 + ε/q)q ≈ (1 + ε).

4 Utility

In this section we show that if we sketch a subset B, then we can answer an arbitrary query of the form
I(B,v) and bound the amount of noise introduced. Note that since we now operate with pseudorandom
functions (instead of the truly random ones), the analysis of utility is slightly subtle. In particular, no result
can be proven unless we assume the existence of pseudorandom functions. To simplify the exposition we
prove our utility guarantees assuming that values of H(.) are chosen at random each time the function is
computed on a new set of parameters. Then, assuming pseudorandomness of chosen H(.), we conclude that
if the generating key of H(.) is long enough5, then the querying algorithm will produce the same result
with probability only negligibly different from the one for a purely random function. (If not, then we have
constructed an algorithm that can differentiate between a random and a pseudorandom function – which is
unlikely.)

We begin by giving an algorithm that can be used to answer conjunctive queries over sketched subsets.

Algorithm 2 Conjunctive Query

Input: Pseudorandom function H, database of sketches S(id,B), subset of bits involved in the query B and
querying value v

Output: Approximate fraction of users who satisfy the query dB = v
1: Compute fraction r̃ of users who satisfy H(id,B,v,S(id,B)) = 1.
2: Report r′ = r̃−p

1−2p .

Now we show that this algorithm produces an answer which is not too far away from the true answer.

Lemma 4.1 (Quality guarantee for algorithm 2) Assuming that H is a pseudorandom function, the
answer r′ produced by the algorithm 2, is different from the true answer r by more than ε with probability at
most exp[− ε2(1−2p)2M

4].
Equivalently, if p is bounded away from 1/2, then for any δ with probability 1 − δ, the error introduced

into an answer is at most O(
√

log 1/δ
M)

Proof.By lemma 3.2 we have
E [r̃] = (1− p)r + p(1− r),

thus r = E[r̃]−p
1−2p , hence it is sufficient to show that with probability exp[− ε2(1−2p)2M

4], r̃ differs from its
expectation by a factor of ε(1− 2p). This immediately follows from the Chernoff inequality. Without loss of
generality we can assume that E [r̃] ≥ 1

2 since we can always count the number of ’0’ entries instead. Thus,
by the Chernoff inequality we have:

Pr
[∣∣r̃ − E [r̃]

∣∣ ≥ γE [r̃]
]
≤ exp[−γ2E [r̃]M

2
] ≤ exp[−γ2M

4
]

substituting γ = ε(1− 2p) we have the desired result. The second part follows.

5Here we are talking about the global key which defines the function for the entire database – not the keys that each user
selects when publishing sketches. With the current state of the art 300 bit is more than sufficient

8

Given multiple sketches, we can also answer queries which involve unions of the subsets that those sketches
describe. For example suppose that each user sketches subsets B1, . . . Bq. We can estimate how many users
satisfy an arbitrary conjunctive query defined on the union B = B1 ∪ . . . ∪Bq and a value v ∈ {0, 1}|B|.

This can be solved by solving a system of linear equations similar to the one introduced in [10]. The
crucial difference from [10], is that now we can count frequencies of large itemsets - and these can be
combined together using their technique for single bits. Due to space limitations, we overview this technique
in Appendix F.

4.1 Computable queries

In this section we describe several types of queries which can be computed using only a constant number
of conjunctive queries. Our description has an empirical character - we do not provide a formal notion of
what kind of queries we can compute but rather show how to compute different queries. We believe that
these empirical observations are an important first step towards understanding the full power of conjunctive
queries. Also, in the appendix we present an example of a query which is not immediately expressible with
a constant number of conjunctive queries, and yet is efficiently computable. Thus there is the potential that
sketches support a richer query language.

Boolean queries As we already mentioned bit queries correspond to the easiest type of boolean query. For
example, if each user holds boolean values d1 . . .dt then the conjunctive query on bits i1 . . . ik corresponds
estimating the fraction of users that satisfy di1∧d̄i2∧. . .∧dik

where each term is either dil
or d̄il

. Additionally
using the system of equations similar to the one in Appendix F, one can estimate the fraction of users that
satisfy exactly l out of k bits in the query.

More generally, one can estimate the fraction of users that satisfy a given decision tree. Each path in
the decision tree corresponds to a single conjunctive query and any user satisfies at most one path of the
decision tree. Thus the total fraction of users who satisfy a decision tree is simply the sum of the fraction of
users that satisfy each path (conjunctive query).

Computing Means/averages For the rest of this section, we assume that each profile holds several k-bit
integer attributes a, b, c, etc, that are stored in binary form in the user’s profile d. The value of an attribute
for user u is denoted by au. Let A denote the subset of bits used to store the value of attribute a in the
user profile. Furthermore, let Ai denote the subset which contains the i highest bits of a. Let Ai denote the
index of the ith highest bit. If user u has profile d then dA is au written in binary notation and dAi

is the
value of the i-th highest bit. Also to avoid multiple subscripts we will denote dAi

by aui.
We begin with the simplest type of query: computing the sum (or average) S =

∑
u∈U au. We expand

the binary representation of au

au =
k−i∑
i=1

aui2k−i. (4)

Then we have:

S =
∑
u∈U

k−1∑
i=0

aui2k−i =
k∑

i=1

2k−i
∑
u∈U

aui =
k∑

i=1

2k−iI(Ai, 1)

Note that after we rearrange the sum order the inner sum becomes a single-bit query on bit Ai. Thus if each
bit gets released, it is sufficient to release the sketch of each bit in the underlying binary representation.

Similarly we can compute the inner product of two non-integer attributes a1 and b:

S =
∑
i∈U

aubi =
∑

u

∑
i

∑
j

22k−i−jauibuj =
∑

i

∑
j

22k−(i+j)
∑
u∈U

auibuj =
∑

i

∑
j

22k−(i+j)I(Ai ∪ Bj , 11)

where the last transition follows from the fact that auibij is ’1’ if and only if both aui and bij are both ’1’.
Therefore

∑
u auibuj corresponds to a bit query ”how many users have their bits ai and j set to one”. That

is, the inner product can be written as k2 2-bit queries.6 Notice that here we do not have to sketch each
6The number of queries can be reduced if we ignore terms which contribute much less than the expected noise in the answer.

9

pair AiBj , but we can just use individual sketches and then use the technique from Section F to “glue” them
together.

Interval queries We now consider queries of the form “how many users satisfy au ≤ c?” for constant c.
In the case when a denotes the user’s salary, this corresponds to a query of the form ”How many users have
salary less than c?”. As usual, we consider c in binary notation: c = c1c2 . . . ck. How do we say that number
x = x1x2 . . . xk is less or equal than c? x ≤ c if and only if there exists i, such that for j < i xj = cj and
xi < ci. For any x, at most one such i exists. Note that since xi and ci are either 0 or 1, in order to satisfy
the last inequality we must have xi = 0; ci = 1. But then, for each i, this is a single bit query. Thus in order
to count all possible au ≤ c, for every i, such that ci = 1, we need to pose a query about the first k − i bits,
such that au1au2 . . . aui = c1 . . . ci−10, or reusing our I notation we have

|{u : au ≤ c}| =
k−1∑
i=0

ciI(Ai, c1 . . . ci−10).

Notice that the number of queries we need to ask is equal to how many ’1’s are in the binary representation
of c, with the upper bound being the length of the integer.

However if we try to use a similar approach to answer the query au + bu < c, it turns out that it
requires exponential (in k) number of conjunctive queries. By using a slightly different approach, presented
in Appendix E, we can express the query with a smaller number of conjunctive queries.

Combining queries together Suppose we are interested in estimating the number of users who for two
constants c and d satisfy au = c and bu < d. The number of users who satisfy au = c, can be estimated by
a single conjunctive query: I(A, c1 . . . ck). The number of users who satisfy the second constraint can be
estimated by posing k bit queries I(Bi, d1 . . . di), for each 1 ≤ i ≤ k. Now, to compute the number of users
that satisfy both conditions we just need to compute k queries of the form: I(A ∪ Bi, c1 . . . ckd1 . . . di).

Analogously, we show how to compute the average value of bu such that au ≤ c:

k∑
j=1,k,cj=1

k∑
i=1

2k−iI(Aj ∪ Bi, c1 . . . cj−101)

Similarly one can combine constraints on different variables into queries about users who satisfy all those
constraints.

5 Conclusions and open problems

We presented a technique that enables approximate computation of various queries on private user data
which has very strong privacy guarantees. Our results are based on sketching - a novel technique that allows
every user to publish a sketch of their data in such a way that it is impossible to gain significant confidence
about the true value – even for an attacker with arbitrary knowledge. There are still many open questions.
First, is it possible to formally describe what kind of queries can be formulated using only a limited number
of conjunctive queries? An ideal solution would be a query language, such that any query in this language
would require only linear, (or polynomial) in the length of the query, number of conjunctive queries.

Also a natural generalization of sketching bit subsets is sketching arbitrary functions of a user profile.
The same privacy guarantees apply, but the main question is whether we can significantly expand the range
of queries we can answer.

We presented a worst cases analysis of the privacy if the user publishes a fixed number of sketches. It
would also be interesting to see if these results could be improved by taking into account independence
between different parts of the data, and/or relaxing the privacy definition. In particular, if one is willing
to relax privacy guarantees from deterministic to negligibly small probability of leak then the result of
Theorem 3.4 can be improved to allow quadratically more sketches while giving essentially same privacy
guarantees.

10

6 Acknowledgments

The authors would like to thank Kobbi Nissim for fruitful discussions.

References

[1] G Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K Kenthapadi, Nina Mishra, R. Motwani, U. Sri-
vastava, J. Widom D. Thomas, and Y. Xu. Enabling privacy for the paranoids (vision paper). In Proc.
of VLDB, 2004.

[2] G. Aggarwal, T. Feder, K.Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and An Zhu. Anonimizing
tables. In ICDT, 2005.

[3] Rakesh Agrawal, Ramakrishnan Srikant, and Dilys Thomas. Privacy preserving olap. In SIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages
251–262, New York, NY, USA, 2005. ACM Press.

[4] P.S.L.M. Barreto and V. Rijmen. The whirlpool hashing function. In NESSIE Workshop, 2000.

[5] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the sulq frame-
work. In PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 128–138, New York, NY, USA, 2005. ACM Press.

[6] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in public databases. In
Theory of Cryptography Conference, 2005.

[7] I. Dinur and K. Nissim. Revealing information while preserving privacy. In PODS, pages 202–210, 2003.

[8] D. Dobkin, A. Jones, and R. Lipton. Secure databases: protection against user influence. ACM Trans.
Database Syst., 4(1):97–106, 1979.

[9] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned databases. In
CRYPTO, 2004.

[10] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserving data mining.
In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 211–222. ACM Press, 2003.

[11] Alexandre Evfimievski, Ramakrishnan Srikant, Rakesh Agarwal, and Johannes Gehrke. Privacy pre-
serving mining of association rules. Inf. Syst., 29(4):343–364, 2004.

[12] O. Goldreich. Foundations of Cryptography, Basic Tools. Cambridge University Press, 2001.

[13] O. Goldreich. Foundations of Cryptography, Volume II. Cambridge University Press, 2004.

[14] http://www.macworld.com. Hackers breach lexisnexis, graph info on 32,000 people. 2005.

[15] http://www.msnbc.msn.com. Data theft affects 145,000 nationwide. suspect arrested in choicepoint
case agrees to plea deal. 2005.

[16] http://www.washingtonpost.com. Northwest airlines faces privacy suits. 2004.

[17] http://www.wired.com. Acxiom opts out of opt-out. 2003.

[18] Krishnaram Kenthapadi, Nina Mishra, and Kobbi Nissim. Simulatable auditing. In Proc. of PODS,
pages 118–127, New York, NY, USA, 2005. ACM Press.

[19] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing boolean attributes. Journal of Computer
and System Sciences, 6:244–253, 2003.

11

[20] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. In Proc. of ICDE, 2006.

[21] Ronald Rivest. The md5 message-digest algorithm. In RFC 1321. MIT LCS & RSA Data Security Inc,
1992.

[22] P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-anonymity and its
enforcement through generalization and suppression. In Proc. of the IEEE Symposium on Research in
Security and Privacy, 1998.

[23] L. Sweeney. k-anonymity: a model for protecting privacy. Int. J. on Uncertainty, Fuzziness and
Knowledge-Based Systems, 2002.

[24] S. Warner. Randomized response: A survey technique for eliminating error answer bias. J. of American
Statistical Association, 1965.

A Trusted third party

In this section, we give some useful insight into how our input perturbation technique can be used to solve
the output perturbation problem with better privacy guarantees, albeit less utility.

We consider a system that contains a database with private information and that answers queries about
the content of this database. The goal is to perturb answers in such a way that it is impossible to gather any
personal information about any individual user data stored in the database. To use our scheme, the system
administrator devises the set of bit subsets that need to be sketched and computes the sketches on each row
of the database. Then, for each query, the system computes the answer using only the sketches (and not the
actual user data). The only thing the attacker can potentially learn are the sketches themselves. And we
already known that the sketches do not leak information about the user’s real data.7

With this simple approach, we can overcome a negative result of Dinur and Nissim[7] and Blum et al
[5] which suggests that linear noise must be added in order to protect from an attacker with unlimited
computational power. In our case we only add8 O(

√
M) in all except a negligible fraction of the queries. So

while technically in the worst case, the added noise could be linear, the chance that the worst case happens
decrease exponentially as the size of the database increases. For example, in a system with M users, the
chance we encounter such a bad query is 2−ω(M]. This result is tight in the following sense. It is impossible
to devise a system that would have noise smaller than O(

√
M) in all but a negligibly small number of queries.

This follows from one of the results of the same paper[7].
From a practical point of view, one might want to implement both input and output perturbation in their

system, and then offer two types of access (for example paid and free). The paid mode would correspond
to output perturbation (for example SULQ framework [5]) and would only add a small noise E ≤

√
M to

the system. However, the total number of queries answered in this mode is limited (by the minimum of E2

and the total number of users in the database). Once the limit of queries is exhausted the system will stop
answering those queries. Even before the system exhausts paid queries, it can be used in the second mode,
where it adds noise O(

√
M)), but the database can answer an unlimited number of queries. Note that the

amount of noise that the system adds is about the same, as SULQ adds in the situation where it is tuned to
answer as many queries as possible. In a way, our scheme closes the gap between how much noise should be
added in the case when we only allow a finite or infinite number of queries.

B Single Bit Flipping is ε-private

Lemma B.1 In a single column database, the bit-flipping procedure is ε-private provided that p = 1/2− cε
and c ≤ 1/4.

7Even learning the values of sketches is challenging in the case of a trusted party since the only information the attacker
can infer explicitly is the evaluations of the pseudorandom function. This fact simplifies the proof of lemma 3.3 and slightly
improves the privacy guarantee.

8Here and elsewhere in this section we follow [5] and assume that each user contributes at most 1 to the answer - of course
the result could be scaled to any arbitrary value

12

Proof. For v = 1,
Pr(x̃i = 1|xi = 0)
Pr(x̃i = 1|xi = 1)

=
p

1− p

and for v = 0,
Pr(x̃i = 0|xi = 0)
Pr(x̃i = 0|xi = 1)

=
1− p

p

Thus it suffices to determine for what p, we simultaneously have that

p

1− p
≤ 1 + ε

and
1− p

p
≤ 1 + ε

For p = 1/2− cε, it can be shown that the bit flipping procedure is ε-private provided that c ≤ 1/4.

C Different privacy definitions

The definition of privacy that is most similar to ours is (ε, δ, T)-privacy introduced in [7, 5]. Essentially, a
perturbation satisfies this definition if each user is guaranteed to have ε-privacy with probability at least
1 − δ given that the attacker answers at most T queries. ε-privacy is equivalent to (ε, 0,∞)-privacy of [5].
Note that even though ε-privacy is a stronger definition, the (ε, δ, T)-privacy was used in a much less general
context than ours (that is, the third party answers queries and data is never released). But the benefit is
that it answered a much richer set of queries .

Other definitions include ρ1-to-ρ2 privacy breach[10, 11] which occurs when the prior probability of any
predicate of a user’s data d is at most ρ1 while the posterior probability of Q(d) given sanitized information
s is at least ρ2. Typical values for ρ1 and ρ2 are in the range 10− 90%. It can be shown [10] that ε-privacy
implies ρ1-to-ρ2 privacy, but not vice versa. In fact, ε-privacy is a much stronger definition. In particular, it
bounds the relative change of the posterior to prior probability, but not the absolute change. For example,
let ρ2 = 50% and let the prior probability that a user is HIV+ be 0.001%. Then if an attacker learns that
the posterior probability that a user is HIV + is 49%, it is not considered a privacy breach – even though
the attacker learned an enormous amount about the user.

We emphasize here that this problem is not alleviated by any single choice of ρ1 and ρ2. Note, however,
that the perturbation scheme described in [10, 11] does actually satisfy our privacy definition.

A similar but even weaker definition called (s, ρ1, ρ2)-privacy is suggested in [3]. In particular ρ1 to
ρ2-privacy implies (s, ρ1, ρ2)-privacy, but not vice versa. Furthermore in contrast with [10], the method
described in [3] can not be extended to our stronger privacy definition. The main idea in [3] is to keep each
attribute with relatively high probability, and replace it with noise otherwise. Unfortunately, this method is
susceptible to partial knowledge attack as explained in the introduction.

In the case when the database is perturbed by a third party, there are other notions of privacy, such
as as k-anonymity where the guarantee is that each user profile is indistinguishable from at least k − 1
others. While this is a very nice and appealing framework – since no data is changed, only supressed – it
has been shown that it might lead to privacy breaches in some applications. For more details we refer to
Machanavajjhala et al[20] where an interesting notion of l − diversity is introduced.

D Proof of Lemma 3.2

Proof of Lemma 3.2 To prove the second part it is sufficient to notice that our choice of s is independent
from any B′ 6= dB , thus Pr [H(id,B,v, s) = 1] = p. For the first part, let Tt denote the event that the
algorithm terminates on iteration t. Since the algorithm did not fail,

∑2`

i=1 Pr [Tt] = 1. Recall that we
sample our key values without replacement, thus on each cycle H is evaluated on different values. Therefore,
we can use the trick where all values of H are assumed to be generated on the fly. Consider what happens

13

at timestep t. Let st denote our key value at iteration t (if we have reached it). Recall that if f(st) = 1 then
the algorithm deterministically terminates, and if f(st) = 0 it terminates with probability p2

(1−p)2 . Therefore

Pr [Tt] = p + p2

1−p . Hence we have:

Pr [f(st) = 1|Tt] =
p

p + p2

1−p

= 1− p, and Pr [f(st) = 0|Tt] =
p2

1−p

p + p2

1−p

= p.

Therefore

Pr [algorithm publishes s s.t. f(s) = 1] =
2`∑

t=1

(Pr [f(st) = 1|Tt]Pr [Tt]) = (1− p)
2`∑

t=1

Pr [Tt] = 1− p

E Example of a query not directly expressible as a few bit queries

In this section we present an example of a query that cannot be easily translated into a small number of
conjunctive queries. Yet via variable substitution we can efficiently answer the query. For the purpose of
this section, we assume that each bit of the database is simply p-perturbed – or equivalently we sketch every
single bit.

We wish to determine “How many users satisfy: au+bu < 2r?” where we assume that au = au1au2 . . . auk

and bu = bu1bu2 . . . buk are k-bit integers. As per our assumption, we have ãui and b̃ui which are p-
perturbations of each bit of au and bu respectively. In order to satisfy the constraint we must have

aui = bui = 0, for all i ≥ r.

Now, if au(r−1) = bu(r−1) = 0, then the constraint is automatically satisfied - no matter what the other bits
are au + bu < 2t. If on the contrary au(r−1) = bu(r−1) = 1 then the constraint is automatically violated.
Finally if au(r−1) + bu(r−1) = 1, then we have to check the r − 2 bit, where the same rule applies. Thus, for
each j ≤ r − 1, we need to compute how many users satisfy:

aui + bui = 1, for i > j and auj = buj = 0; (5)

So we need to ask all bit queries where for each i, exactly one aui and bui is ’1’ and another is ’0’ – thus
asking an exponential number of them. To avoid this, we introduce a binary variable qui = [(aui + bui) = 1].
Given a p-perturbed version ãui and b̃ui, it is easy to see that q̃ui = ãui⊕ b̃ui are 2p(1−p)-perturbed variants
of qui - since the evaluation changes if and only if exactly one of aui and bui get perturbed. But now we can
use all our machinery on the “virtual” bits as well. In particular we can compute how many users satisfy
qui = 1 for all i > j. Thus for any i, the number of users satisfying (5) can now be efficiently computed.

With some extra effort the query can be generalized to au + bu < c, where c is arbitrary constant, but
we omit that discussion.

F Combining sketches together

In this section we describe how, given sketches for subsets B1 . . . Bq, we can estimate how many users satisfy
an arbitrary conjunctive query defined on the union B = B1 ∪ . . . ∪ Bq and the value v ∈ {0, 1}|B|. Let
v1 . . .vq denote the projection of v into subsets B1 . . . Bq. Let a sketch for user u of a subset i be denoted
sui. Then for each user (id,d) and index i, we have a perturbed virtual bit (as defined by a function
H(id,B,vi, sui)) indicating whether their true profile matches the query (Bi,vi). Thus, to answer the query
about (B,v) we just need to estimate how many users have all unperturbed bits equal to “1”. Analogously,
by estimating how many users have these bits equal to “0”, we learn how many users do not satisfy any query
of the form I(vi, Bi) – which could be used to estimate how many users satisfy a disjunction of conjunctions.

14

To simplify our exposition, we now abstract from sketches. Instead, we solve the following problem.
Given k bits from each user, where each is changed with probability p, estimate how many users originally
have all k bits set to one. This would solve the problem with sketches (where we use the values of the
pseudorandom function as perturbed bits).

Without loss of generality assume that the user profile d has k bits. Now, each original value d, has a
fixed probability of being perturbed into any other profile d̃.

w[d → d̃] = p‖d−d̃‖1(1− p)k−‖d−d̃‖1

where ‖d−d̃‖1 is the standard Hamming distance between boolean vectors. Since we observe the frequencies
of all perturbed profiles, at least theoretically we can write a system of linear equations to solve for the
frequencies of the actual values. But the system has size 2k and is not feasible to solve in most cases. A
similar approach was employed in Agrawal et al [3]. There however they considered non-binary data and
justifiably argued that in most applications k is very small.

However, in our case, a better solution exists9. Since each bit is perturbed with the same probability,
the system is very homogenous and one can reduce the size of the system of equations from 2k to k.

Suppose B is a subset of bits, and without loss of generality suppose we are interested in how many users
have all these bits equal to one (since our perturbation is symmetric, we can immediately generalize it to
any other value). Let v[l → l′] denote the probability that users who originally had l bits in B set to 1 will
have pbn bits set to 1, after each bit was perturbed. We evaluate all the different ways that we can obtain
l′ bits set to one if we originally had l bits set to one. If we switch h bits which were set to 1, then in order
to obtain l′ bit in the resulting value, we need to switch l′ − (l − h) bits which were originally set to 0. In
order to avoid switching negative number of bits we must have max(0, l− l′) ≤ h ≤ min(l, k− l′ For each h,
there are (

l

h

) (
k − l

l′ − l + h

)
different ways to achieve this, and the probability of each choice happening is

phpl′−l+h(1− p)k−(l′−l+2h) = pl′−l(1− p)k−(l′−l)(
p

1− p
)2h

Thus we have:

v[l → l′] = pl′−l(1− p)k−(l′−l)

min(k−l′,l′)∑
h=max(l−l′,0)

(
p

1− p
)2h

(
l

h

) (
k − l

l′ − l + h

)
, (6)

Let xl denote the number of users whose original profile matches l bits. We are interested in estimating xk.
Similarly let y′l denote the fraction of users whose perturbed profile matched l′ bits. Then we have

E [y] = V x

where Vl′l = v[l → l′], and y, x denotes a vector comprised of y0 . . . yl and x0 . . . xl respectively. Then we
have:

x = V −1E [y]

and in particular xk = V −1
l E [y]. E [y] is hidden, however we can use an observed value of y as an ap-

proximation for E [y]. If the condition number of V is a constant C, and the system has ν users, then
with high probability the error of estimation of x would be O(C√

ν
). However, an empirical analysis of the

conditioning number of the matrix V , suggests that it decreases exponentially in k, with the base of the
exponent proportional to 1/(p− 1/2).

9Similar solution was proposed by Evfimievski et al [10], for slightly difference perturbation scheme

15

