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ABSTRACT 
Unicode is becoming a dominant character representation format 
for information processing. This presents a very dangerous 
usability and security problem for many applications. The 
problem arises because many characters in the UCS (Universal 
Character Set) are visually and/or semantically similar to each 
other. This presents a mechanism for malicious people to carry 
out Unicode Attacks, which include spam attacks, phishing 
attacks, and web identity attacks. In this paper, we address the 
potential attacks, and propose a methodology for countering them. 
To evaluate the feasibility of our methodology, we construct a 
Unicode Character Similarity List (UC-SimList). We then 
implement a visual and semantic based edit distance (VSED), as 
well as a visual and semantic based Knuth-Morris-Pratt algorithm 
(VSKMP), to detect Unicode attacks. We develop a prototype 
Unicode attack detection tool, IDN-SecuChecker, which detects 
phishing weblinks and fake user name (account) attacks. We also 
introduce the possible practical use of Unicode attack detectors. 
 

Categories and Subject Descriptors 
C.2.0 [Computer-Communication Networks]: General – 
Security and protection 
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1. INTRODUCTION 
The globalization of information processing systems pushes for 
greater use of Unicode, which allows people of different 
nationalities to represent character based information in their 
native tongue. Unicode is convenient for many people, but brings 
with it potential security risks. Many visually or semantically 
similar characters coexist in the UCS. UCS has a large set of 
characters. It covers the symbols of almost all languages in the 
world. Figure 1 shows a set of samples that are similar to the four 
characters “s”, “o”, “u”, and “p” in Arial Unicode MS font (where 
the hexadecimal number under each character is the character 
code of that character). We see that there are at least two other 
characters in UCS that look exactly the same as the character "s", 
"o" and "p". There are even more if we include semantically 
similar characters, e.g., "a" and "A". 
People do not usually look into the code of every Unicode string 
they see to evaluate its validity. This opens a door for malicious 

people to spoof characters by replacing them with visually or 
semantically similar (or even visually identical) characters from 
the UCS. We call this a “Unicode attack”. 
We classify Unicode attacks into three categories: (1) Spam 
attacks: Many machine learning techniques used in anti-spam 
filters view an email as a sequence of characters, and look for 
patterns commonly associated with spam. If spammers replace 
characters in these common patterns with similar characters from 
UCS, they may bypass some of these filters. (2) Phishing attacks: 
Malicious people can use similar characters as replacements in 
IRI/IDN[8] to create visually similar domain names. Ordinary 
users may not look into the code under the domain name strings 
to verify their validity. User studies in [6] show that almost all 
users judge the validity of a website by the domain name, which 
makes this attack particularly hazardous. (3) Web identity attack: 
There are countless systems in the world using Unicode strings to 
represent user names (or accounts). Here again, people tend to 
identify each other through the appearance of their user names, 
and not through the underlying Unicode representation of their 
user names. This allows malicious people to imitate other people 
by registering a user name that looks like the username of 
somebody else. 
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Figure 1. Characters similar to “s”, “o”, “u”, and “p” (in Arial 
Unicode MS Font). 
Unicode provides many possible mutations for strings. For 
example, the simple Unicode string "citibank" has 24(c) * 58(i) * 
21(t) * 58(i) * 24(b) * 22(a) * 21(n) * 14(k) -1=263,189,025,791 
potential mutations. It may not be surprising that we have found 
no registration systems (including domain name registrars, 
chatting applications, BBSes, etc.) which attempt to detect 
Unicode attacks. As a matter of fact, we have easily registered 
domain names which are visually similar to several prominent 
web sites. For instance, we registered, “www.中囯银行.com” (“
中囯银行” is Chinese for “bank of China”, and “囯” is a very 
similar character to “国”), “www.中国銀行.com” (“中国銀行” is 
Japanese for “bank of China”), which is similar to “www.中国银
行 .com”. We also registered “www.和記黄埔 .com” which is 
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similar to “www.和记黄埔.com” (“和記黄埔” is Japanese for 
“Hutchison”, a company in Hong Kong). We were able to link 
these domain names to our Anti-Phishing Group website [3]. 
Hence there is nothing preventing a malicious person from linking 
such a domain to a phishing site. This makes the detection of 
Unicode attacks an important direction for researchers in user 
interface design, and computer security & privacy to look into. 
The concept underlying Unicode attacks is not limited to 
straightforward character replacement. It can be more 
complicated. For instance, spammers can add noisy symbols to 
spam content, as well as replace words with semantically similar 
words in order to throw off spam filters. In general, the problem 
of detecting Unicode attacks may require layers beneath and 
above the character similarly level, including preprocessing to 
denoise the data in order to know which characters to compare, 
and higher level language processing to detect similarities at a 
word or semantic level. 
In this paper, we propose a methodology for detecting Unicode 
attacks. We analyze both the character-character similarity and 
word-word similarity, use string similarity algorithms to evaluate 
the similarity of two given Unicode strings, and follow the 
methodology to carry out experiments in a demo implementation. 
In the implementation part, we first build a Unicode Character 
Similarity List (UC-SimList) which can easily retrieve the visual 
and semantic similarity of any given pair of characters in UCS. 
We implemented a tool, IRI/IDN SecuChecker, to detect 
similar/fake IRI/IDN, and demonstrate several possible uses to 
domain name registrars, user name (account) registrars, and web 
browser based phishing detection add-ins. 
The rest of this paper is organized as follows. Section 2 
introduces the related work and background of this research. In 
Section 3, we address the methodology for Unicode attack 
detection. In Section 4, we provide a case study of the 
methodology and discuss the experiments based on a demo 
implementation to show the effect of Unicode attack detection as 
well as the associated computation time. In Section 5 we 
introduce a tool, IRI/IDN SecuChecker, which can be used to 
detect IRI/IDN based Unicode attacks. We also discuss Web Link 
Illustrator, a possible improvement for the address bars of web 
browsers. In Section 6, we discuss problems related to using and 
deploying these systems. Finally, we present concluding remarks 
and future work in Section 7. 

2. RELATED WORK AND BACKGROUND 
We use symbols to record and represent languages for 
information processing. We used illusive 0/1 strings to represent 
data in computers at the very beginning. Later, people invented 
ASCII [1] to encode textual information. This made it easier for 
people to interact with computers, but it only includes the 
necessary Latin character symbols. People who use other 
languages need to install additional character sets to satisfy their 
requirements, such as GB2312 and HZ for simplified Chinese, 
BIG5 for traditional Chinese, EUC and Shift-JIS for Japanese, etc. 
With the development of symbol technology and the requirement 
of information exchange, people wanted a unified character 
system to represent all of these characters—hence, Unicode. The 
most popular version of Unicode (Ver. 2.1 [26]) uses 16 bits and 
can represent up to 216=65,536 characters (the most updated 
version uses 32 bits to represent a character) and can represent 
almost all standard characters/symbols in the world. Unicode is 
widely used all over the world. We see it in emails, webpages, 

resource identifiers, various user (account) registration systems, 
etc… However, there are too many similar characters in the UCS 
and it is quite easy to generate numerous similar/fake Unicode 
strings from a given one to carry out Unicode attacks. Some fake 
Unicode strings look exactly the same as the original one. We 
consider this a very dangerous usability and security problem 
because the computer screen can hide its users from the fact that a 
string they see may not be exactly what it appears to be. Even 
before Unicode IRIs, there was a real case involving the website 
of Industrial and Commercial Bank of China, 
“WWW.ICBC.COM”, which was mimicked by a phisher using a 
very similar domain name, “WWW.1CBC.COM” (“1” is the 
number “one” rather than uppercase the letter “i”), to trick people. 
Similar attacks are also reported in [12], which are called 
“homograph attack”. The potential for abuse increases as Unicode 
becomes a trend in modern information processing and we call 
such abuses “Unicode attacks”. We classify Unicode attacks into 
spam attacks, phishing attacks, and web identity attacks, among 
which phishing attacks turn out to be the most typical and 
motivating research aspect to fight against. 
Phishing is a kind of criminal activity in our modern Internet 
society where someone forges the webpage of a real company or 
organization to trick their clientele into divulging sensitive 
information. Unwary Internet users may be deceived by their 
scams and follow their instructions to leak private information, 
such as bank account numbers, passwords, and credit card 
numbers. Phishing attacks appear to be increasingly common. In 
the phishing attack prospering period, it was reported that the 
number of phishing attacks increased 50% each month and 5% of 
the phishing email receivers respond to them (Anti-Phishing 
Working Group[3] Phishing Attack Report of July 2004). People 
are progressively notified or alerted to such scams, however 
phishers are always trying to use more sophisticated techniques to 
circumvent detection. This includes making the appearance of 
their web links and the content of their webpages increasingly 
similar to the real ones. 
Many anti-phishing measures have been carried out. Some 
address the more general problem of document duplication 
detection. Along these lines, the collection statistics based 
approach is proposed by Chowdhury et al. in [5], structure based 
repetition detection by Nanno et al. in [23], and a general 
evaluation of different plagiary detection measures is discussed 
by Hoad et al. in [14], etc. These works focus on plain text 
documents and use text level features as similarity measurements. 
Nevertheless, a more effective strategy for phishing detection is 
proposed by Liu et al. in [20] based on visual comparison of the 
DOM [27] generated from HTML. Another vision based phishing 
detection approach is proposed by Fu et al. in [11], where the 
visual similarity is detected at the image level. Researchers have 
also sought solutions along different lines. Garfinkel et al [13] and 
Wu et al [28] have worked on anti-phishing through improving 
software usability. People also proposed methodologies for anti-
phishing from the cryptography view [7] [16], and SSL [25] is 
now a widely used technology in security critical websites. 
However, the investigation of web links themselves has been 
neglected. A survey of similar characters in UCS and the problem 
of IRI/IDN based phishing was introduced in [10], however no 
IRI/IDN oriented anti-phishing technique have ever been formally 
discussed. However, IRI/IDN based phishing attacks could be a 
critically severe problem for the Internet in the near future. It 
could be disasterous to delay solving this problem until the usage 



of IRI/IDN becomes popular and phishers start using similar 
characters in UCS to carry out attacks. 
In the past, people used IP addresses to access different hosts and 
resources. Nowadays, most internet resources are identified by 
ASCII based Uniform Resource Identifiers (URIs) [4]. However, 
URIs are cumbersome and inefficient for people speaking 
languages other than English. These people would who would like 
more familiar character scripts to identify their web resources. 
Another problem with using ASCII based URIs is that of 
conflicting URIs when different languages are converted to Latin 
character representations. Most non-Latin language scripts have a 
mapping from their characters to Latin characters, such as 
Chinese Pinyin and Japanese Romaji. People are using these 
methods to represent URIs in their languages. However, it can 
happen that  different companies or organizations want the same 
domain name, while they want it for different semantic meanings. 
This is called URI confliction and semantic ambiguity. 
Nevertheless, with globalization of information technology, 
people are using localized operating systems, applications, etc. 
People are eager to use these systems with their native scripts, 
including the activity of locating universal resources. IRI/IDN is 
proposed as a complement to URI. It is a sequence of characters 
from a subset of UCS. UCS uses 16 bits to represent a character 
and allows up to 65,536 characters to be represented. This permits 
most non-Latin scripts to be freely represented in IRI/IDN. This 
allows Chinese people unfamiliar with English to input “花旗银
行.公司” (“花旗银行” is pronounced “Hua Qi Yin Hang” and 
stands for “Citibank”; “ 公 司 ” is pronounced “Gong Si” and 
stands for “Company”) rather than “citibank.com”. Whereas 
Japanese people may enter “シテイバンク.会社” (“シテイバン
ク” is pronounced “Shi Tei Ban Ku”, and stands for “Citibank”; “
会社” is pronounced “Kai Shya” and stands for “Company”) to 
access the webpage of CitiBank.  
These developments make the Internet more accessible as a global 
resource, but we must address the potential threats in terms of 
Unicode attacks. These same issues also arise as systems allow 
Unicode string based web identities, e.g., if email systems allow 
Unicode accounts, then someone might be able to register an 
account and pretend to be Bill Gates (such as 
billg@microsoft.com for MSN Messenger) and send a message to 
his CEO, “Hi, Steve, I finally decided to open the source code of 
Vista and give Google a billion dollars. Please do it asap!”  

3. METHODOLOGY OF UNICODE 
ATTACK DETECTION 
We propose a general methodology to assess the similarity of a 
pair of given Unicode strings. We also present a demo tool that 
can be used by people in academic and industrial areas to do 
research and develop systems to fight against Unicode attacks. 
We organize the methodology from views of string similarity on 
several levels. The lowest level is character similarity, which 
includes visual similarity and semantic similarity between two 
characters. The second level is semantic similarity between 
words. The highest level is string similarity, and it is based on 
either of the previous two levels or both. We also note that 
spammers can add noise characters into the similar/fake Unicode 
strings; hence, we do string preprocessing to reduce or eliminate 
noise symbols.  

3.1 Preprocessing 
UCS contains many so-called symbol characters (e.g., ‘|’ and ‘\’ 
in the string “y0U|HaVE/A |FrEe \G|fT ++”). We consider these 

to be noise, which make it difficult for us to detect similar/fake 
Unicode strings. Hence, we have to do preprocessing to replace 
the symbol characters with empty strings or space characters 
(depending on the string similarity evaluation requirements). The 
symbol character list can be constructed by referencing the 
specification of Unicode [26] manually. Unicode string 
preprocessing is quite useful for phishing IRI/URI detection, 
especially for detecting spam emails, erotic content, and dirty 
words. Phishers will generally not add noise characters to their 
fake IRI/IDNs since they want to make them as visually similar as 
possible, so the preprocessing step is primarily aimed at spam 
attack detection. 
However, preprocessing for general Unicode text strings is not 
simple work. First of all, we do not have a complete list of symbol 
characters. The UCS is a big, complicated and growing list. Also, 
we cannot conclude that all symbols are noise; for instance, “|” 
can be used by malicious people to replace “I” in the word “GIfT” 
(changing it to “G|fT”). Therefore, potential future work can 
concentrate on Unicode preprocessing alone. 

3.2 Character Level Similarity 
The basic trick of a Unicode attack is to replace some characters 
with similar ones. We address character similarity in two 
dimensions: visual similarity and semantic similarity.  
A visual similarity list can be constructed automatically by 
comparing the glyphs in UCS. If necessary, we can optimize it 
manually. However, we are expecting to have an algorithm to 
construct the list completely automatically without additional 
manual work, since UCS is a huge database and the manual work 
could be overwhelming. 
A semantic similarity list can only be constructed manually by 
referencing the specification of the Unicode repertoire because we 
cannot find an algorithm or a tool with the necessary knowledge 
to do it. We still do not have a complete semantic similarity list, 
and we list it as future work. 
The overall character-character similarity matrix can be 
constructed by combining the visual and semantic similarity lists. 
We consider multiplication as a good combination method. That 
is, if the visual similarity of “ạ” (1EA1) and “a” (0061) is 0.9 and 
the semantic similarity of “a” (0061) and “A” (0081) is 1, we can 
calculate the overall similarity between “ạ” (1EA1) and “A” 
(0041) as 0.9×1=0.9. We also use this method in Section 4.1 to 
calculate the character level similarity. Other combination 
methods can also be attempted based on more investigation.  
The character-character similarity matrix is a good resource for 
assessing the similarity of Unicode stings and recovering an 
original string from its noisy versions, or other similar tasks. For 
instance, we can do noise reduction to the example string in 
Section 3.1 and retrieve the intended message: “you have a free 
gift”. We can then use the denoised string to perform word level 
similarity assessments with any candidate strings as addressed in 
Section 3.3. 

3.3 Word Level Similarity 
Unicode attacks can be carried out by replacing words with other 
semantically similar ones (e.g. synonyms). The following four 
types of semantic substitutions are most likely to occur in the near 
future: 

3.3.1 Phonetic Substitution: 
A malicious person may change some part of the string but still 



keep the original pronunciation, e.g., “BankForYou” can be 
changed to “Bank4U”, “中国银行” to “ZhongGuoYinHang”, “日
本銀行” to “にほんぎんこう” or “NiHonGinKou”. 
3.3.2 Acronym Substitution: 
A malicious person may use the acronyms of the keywords of the 
original Unicode strings to carry out attacks, e.g., “BankOfChina” 
to “BOC”, “中国银行” (Bank of China) to “中银”, and “とうき
ょうだいがく” (the University of Tokyo) to “とうだい”, etc. 
3.3.3 Tongue Shifting Substitution: 
A malicious person may translate some words in the original 
Unicode string to another language to carry out attacks. E.g., 
“BankOfChina” to “中国银行” or “中国バンク” 
3.3.4 Synonym Substitution:  
The words in a Unicode string could be replaced with their 
synonyms, e.g., “this is spam” to “this is junk mail”, or “Hi, 
buddy” to “Hello, friend”, etc. 
These four types of word level obfuscations could be used 
together in many ways to make a single string even more 
complicated and difficult to detect, while still allowing humans to 
understand it. 
The solution to detect word level obfuscations is to establish a 
word-word semantic similarity matrix to assess the similarity of 
strings. However, the matrix could be very complicated and large. 
We have constructed one based on word-word semantic similarity 
assessment algorithms. However we are still on the way toward 
constructing a complete one. It turns out that we need to use 
excellent word-word similarity algorithms and a lot of human 
intervention. It is also a growing matrix since new words are 
invented continuously. The matrix data structure should be well 
constructed because it quite large. 

3.4 String Similarity Algorithms 
We propose the methodology of using character-character 
similarity, as addressed in Section 3.2, and word-word similarity, 
as addressed in Section 3.3, to calculate the similarity of Unicode 
strings (which can be domain names, user names (accounts), 
sentences, passages, or even documents).  
There are many standard string similarity evaluation algorithms 
from information retrieval (IR), natural language processing 
(NLP), and even bioinformatics which can be applied, such as 
edit distance [19], KMP[18], Needleman-Wunch distance [24], 
and n-gram etc. Many of them are based on character level 
similarity. Hence, we can apply them directly to evaluating the 
character level similarity. Since we have the word-word 
similarity, we could simply consider each word as a character, 
and then use character level similarity algorithms to calculate 
string similarity. We need to consider time complexity when we 
choose specific algorithms to calculate the string similarity. We 
provide an application based on implementing VSED and 
VSKMP at the character level as an example in Section 4 for 
demonstration. 

4. A DEMO IMPLEMENTATION STUDY 
ON THE METHODOLOGY 
The methodology in Section 3 turns out to be abstractive. Here we 
carry out a case study by applying part of the methodology. We 
organize this section in three subsections. In Section 4.1, we 
introduce our method of generating a Unicode similarity list (UC-

SimList). The word-word similarity matrix is an ongoing study 
and we would rather omit this part since it does not affect the 
discussion here. In Section 4.2, we present a possible string 
similarity algorithm; this is implemented as the algorithm for use 
in our experiments. In Section 4.3, we address the problem of 
associating relatively long similar/fake Unicode strings with the 
genuine ones. We use the strings to imitate spam attacks. In 
Section Error! Reference source not found., we address the 
problem of detecting phishing IRI/IDNs in a set of protected ones. 
It is a special and critical issue, so it should be considered 
specifically. In Section 4.3 and Error! Reference source not 
found., we discuss aspects of experimental data generation, 
classification effects and time performance evaluation. 

4.1 Unicode Character Similarity List (UC-
SimList) Generation 
Since online calculation of character similarity is expensive, a 
lookup table (character-character similarity matrix) can be pre-
constructed offline, which consists of a list of similar characters 
for each individual character in Unicode. We refer to the lookup 
table as UC-SimList in this paper. The construction of UC-
SimList is based on Arial MS Unicode [21] [22] simply because it 
covers more character glyphs than any other existing font. The 
visual similarity is calculated by calculating the similarity of each 
pair of characters. We denote the visual similarity of character c1 
and c2 with vs(c1,c2), which can be calculated using Eq. 1.  
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where |OverlapPix(c1,c2)| is the number of overlapping pixels of 
the bitmaps of c1 and c2, |Pix(c)| is the number of pixels of 
character c, and p∈[0,1] is the factor for tuning the similarity 
computation validity. Experiments show that p performs the best 
when it is defined as Eq. 2. 
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Semantic similarity of two characters is the measurement of 
character similarity in terms of meaning. It is common that one 
character has more corresponding representations in the same or 
different languages. In our approach, we define the semantic 
similarity of two characters as a binary value, i.e. either 1 or 0. 
E.g., ss(“a”, “A”)=1, and ss(“a”, “b”)=0, where ss(c1,c2) is the 
semantic similarity of character c1 and c2. UC-SimList is 
generated by first considering the semantically similar characters 
for each character in UCS, finding all visually similar characters 
of each semantically similar character, and finally ranking all 
these characters with their visual similarities for each character. 
That is, UC-SimList(c)=UC-SimListv(UC-SimLists(c)), where c is 
a given character, UC-SimLists(c) denotes the semantically 
similar character set of c, UC-SimListv(·) denotes the visually 
similar character set of character set · , and UC-SimList(c) 
denotes the similar character set of character c.  We denote UC-
SimListT as the Unicode Character Similarity List that only 
contains the characters with similarities larger than T (the 
similarity threshold), e.g., UC-SimList0.8 is a subset of UC-
SimList that only contains the characters with similarities larger 
than 0.8. We also define the notation UC-SimListvT in a similar 
way. We provide the UC-SimList and UC-SimListv online for free 
on our Anti-Phishing Group website. People can download them 
from www.mit.edu/~ayf/IRI.  



4.2 Unicode String Similarity Algorithm for 
Experiments 
We use edit distance [19] to calculate the dissimilarity of the pair 
of Unicode strings under evaluation. Edit distance represents the 
minimum editing operations needed to transform one string into 
another, where the only operations are insertion, deletion, and 
substitution. We define the cost (cost function) of insertion and 
deletion to be 1 and the cost (cost function) of substitution to be 1 
minus the similarity in UC-SimList0.8. We use a standard 
dynamic programming algorithm to calculate edit distance for 
better efficiency and performance. Its time complexity is Θ(mn), 
where m and n are the respective lengths of the two Unicode 
strings. Experiments in Section 4.3 and Error! Reference source 
not found. show that this is sufficient for online similar/fake 
Unicode string detection. The edit distances are normalized by 
dividing by Max(m,n), such that we can define a threshold to 
classify whether a given suspected Unicode string is too similar to 
a string in a set of protected Unicode strings.  
 

4.3 Experiments with Normal Text Strings 
We begin our experiments with three Unicode strings extracted 
from three webpages, namely the English, Chinese and Japanese 
versions of CitiBank, as shown in  

Figure 2. We denote these strings as USE, USC, and USJ, 
respectively. We then generate similar/fake strings based on each 
of these strings by substituting some characters with visually or 
semantically similar ones from UC-SimListv or UC-SimList. For 
each original string, we generate 5 sets of similar/fake ones using 
each of UC-SimListT and UC-SimListvT, where T∈{0.8, 0.85, 
0.9, 0.95, and 1}. Each of the original Unicode strings 
corresponds to 10 sets of similar/fake ones and each set contains 
at most 100 similar/fake Unicode strings. We denote the 10 sets of 
similar/fake Unicode strings of USE as SUSE(X), the 10 sets of 
USC as SUSC(X), and the 10 sets of USJ as SUSJ(X), where 
X∈{0.8, 0.85, 0.9, 0.95, 1, V0.8, V0.85, V0.9, V0.95, and V1}. 
SUSE(0.8) is the similar/fake Unicode string set generated using 
UC-SimList0.8, and SUSE(V0.8) is the similar/fake Unicode 
string set generated using UC-SimListv0.8, and so on. We use the 
83,198 Unicode strings in TREC-5 Confusion Track (part 
original-01) [17] as noise data and denote this set as RUS. We 
combine SUSE(X) with RUS to form the set of suspected Unicode 
strings for USE and calculate the precision and recall value of our 
similar/fake Unicode string detection algorithm for USE with 
varying thresholds (from 0 to 1, with a step of 0.01). A partial 
result is shown in Figure 3 and the complete results are available 
in [2].  
 
We also perform the same experiments on USC and USJ, as shown 
in Figure 4 and Figure 5 respectively, and the complete results are 
also available in [2]. We calculate the precision value using Eq. 3 
and the recall value using Eq. 4 respectively, where TN denotes 
the total detection number, CN denotes the correct detection 
number and TF denotes the total ground truth number of fake 
ones (phishing) in the corresponding test set. 

100%CNprecision
TN

= ×                            (3) 

100%CNrecall
TF

= ×                              (4) 

It is obvious that in a certain threshold range, we can achieve very 
good precision and recall values (both are approximately 100%) 
at the same time, i.e., 0.25~0.75 for USE, 0.05~0.95 for USC, and 
0.05~0.97 for USJ. The wider the range is, the easier the 
classification of similar/fake Unicode strings is. Intuitively, 
similar/fake Unicode strings of Chinese and Japanese are easier to 
detect than those of English, and the reason is that English has far 
more similar characters in UCS than Chinese and Japanese do. 
We can observe two phenomena from the precision and recall 
figures. First, the threshold range is wider when the similar/fake 
Unicode strings are generated using UC-SimListT or UC-
SimListvT with higher T (similarity threshold) values. Second, the 
threshold range is wider when similar/fake Unicode strings are 
generated using UC-SimListvT rather than UC-SimListT with the 
same T. However the second phenomenon is not very obvious in 
our experiments when we used UC-SimList0.8 as the cost 
function in Section 4.2. These phenomena also adapt to the 
experiment in Section Error! Reference source not found.. It 
takes 0.15 seconds to calculate the similarity of a Unicode string 
to USE, 0.035 second to USC, and 0.045 second to USJ on average 
(using a PC with P4 2.4G CPU and 512M RAM). The proportion 
of computation time, 0.15:0.035:0.045=1:0.23:0.3 is roughly 
equivalent to the character number proportion of the three original 
Unicode strings, 313:79:102=1:0.25:0.33, which verifies that the 
computational complexity grows linearly with the target string 
length as addressed in Section 4.2. All of the experimental data 
sets are available at [2]. 
 
 

From Original Unicode strings (attacked targets)

www.citibank.com 

Every Internet user should know about spoof 
(a.k.a. phishing or hoax) e-mails that appear 
to be from a well-known company but can 
put you at risk. Although they can be difficult 
to spot, they generally ask you to click a link 
back to a spoof web site and provide, update 
or confirm sensitive personal information.
(total: 313 characters) 

www.citibank.com.c
n 

最近，电子邮件用户成为全球网络黑客的攻击
目标。花旗银行相信让所有网上银行用户了解
邮件欺诈是至关重要。因此，我们为您提供了
一系列建议以防止您的金融信息受到攻击。
(total: 79 characters) 

www.citibank.co.jp

最近、シティバンクを装って送られる偽の電
子メールが増えております。一般的にこのよ
うな電子メールにあるリンクをクリックする
と、暗証番号や口座番号など個人の機密情報
の入力を促す偽のウェブページがあらわれま
す。(total: 102 characters) 

 
Figure 2. Original Unicode strings or English, Chinese and 
Japanese from the webpages of CitiBank 
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Figure 3. Precision and recall evaluation of detecting similar/fake 
Unicode strings to USE (the purple curve is recall, the blue one is 
precision, the x-axis denotes the varying thresholds and the y-axis 
denotes the precision/recall percentage value) 
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Figure 4. Precision and recall evaluation for detecting 
similar/fake Unicode strings to USC (the legend is the same as in 
Figure 3) 
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Figure 5. Precision and recall evaluation for detecting 
similar/fake Unicode strings to USJ (the legend is the same as in 
Figure 3) 

4.4 Experiments with IRI/IDNs 
Although IRI/IDN could be the complement or the replacement of 
URI in the near future, IRI/IDN is not used widely at present, and 
 
 

the number of real phishing URIs or IRI/IDNs is small. Hence, we 
also need to generate phishing IRI/IDNs for our experiments. 
Suppose we have 10 IRI/IDNs under protection as listed in Figure 
6. We’ll denote these as USIRI. Next, we generate 100 similar 
IRI/IDNs for each of them by replacing similar characters in each 
original IRI/IDNs using UC-SimListT and UC-SimListvT, where 
T∈{0.8, 0.85, 0.9, 0.95, and 1}. Note that we get 1,000 IRI/IDNs 
for each element of USIRI, since there are 5 different T values, and 
we use each value in both UC-SimListT and UC-SimListvT. We 
treat all of these generated IRI/IDNs as phishing IRI/IDNs, and 
we denote the 10 sets as SUSIRI(X), following the conventions 
defined in Section 4.3. 
 

www.citibank.com www.icbc.com 

www.bank-of-china.com www.wellsfargo.com 

www.ebay.com www.keybank.com 

www.wamu.com www.花旗银行.公司 

www.usbank.com www.シテイバンク.会社 
Figure 6. The 10 IRI/IDNs under protection 
 
Now we mix the phishing IRI/IDNs up with 10,269 real web 
addresses that are randomly collected from the Internet. We then 
use the algorithm in Section 4.2 to perform phishing IRI/IDN 
detection. We use precision and recall values to evaluate our 
approach with varying edit distance thresholds. We also do 
experiments with UC-SimLists with various filtering thresholds 
(from 0 to 1, with a step of 0.01). We mix up SUSIRI(X) with 
11,269 IRI/IDNs in random order to form the suspected Unicode 
strings and calculate the precision and recall value of detecting 
similar/fake Unicode strings to the 10 protected IRI/IDNs with 
varying thresholds. The partial experimental results are shown in 
Figure 7Error! Reference source not found., and the complete 
results are in [2]. It is obvious that there is a clear threshold range, 
0.08~0.17, where both high precision and recall values (both 
approaching 100%) can be achieved. It takes about 10-3 second to 
calculate the similarity of one pair of IRI/IDNs using the same 
machine we used in Section Error! Reference source not 
found.. This performance is sufficient for online phishing 
IRI/IDN detection. 

5. IRI/IDN SECUCHECKER 
With the internationalization of information processing, the use of 
IRI/IDN is becoming a trend. However, we’ve shown that 
IRI/IDNs can be deceptive; in particular, it is possible to have two 
distinct IRI/IDNs which are hard (or impossible) to distinguish 
visually. This problem has already been reported for URIs in [12], 
which notes the possibility of mimicking English “microsoft.com” 
with Cyrillic “microsoft.com”. However, there is no application 
or tool available for IRI/IDN detection. The domain name 
registration regulations are made by ICANN [15]. It can improve 
the domain name registration guidelines and ask its authorized 
registrar companies to follow them. ICANN first added the related 
section in “Additional Remark” in IRI/IDN Ver. 2.0, Nov. 8, 
2005, and continued listing it in the “Additional Remark” of Ver. 
2.1, Feb. 22, 2006. However no solution has been provided yet. 
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Figure 7. Precision and recall evaluation of detecting phishing 
IRI/IDNs to USIRI (the legend is the same as in Figure 3) 
 
We implement IRI/IDN SecuChecker, which provides a 
mechanism to help domain name registrars check the validity of 
new registered domain names. Figure 8 shows the interface of 

IRI/IDN SecuChecker. It includes a textbox to input a new 
registered IRI/IDN, a display showing the Unicode form of the 
inputted IRI/IDN, an option pane for selecting the Kernel 
Algorithm, a “Search” button, a “Clear” button, and a listbox to 
show the detected similar/fake IRI/IDN(s). There are two 
important lists in the database running behind the application: the 
UC-SimList and the registered IRI/IDN list. According the 
methodology in Section 3.4, various string matching algorithms 
(including string similarity algorithms and substring searching 
algorithms, etc.) could be applied. We have implemented visual 
and semantic based edit distance (VSED), where we use the UC-
SimList to evaluate the cost of replacing one character into 
another. We choose the threshold to be 0.12, where we can 
achieve the best recall and precision values at the same time, as 
already shown in Figure 7Error! Reference source not found.. 
We also implement the visual and semantic based Knuth Morris 
Pratt (KMP) algorithm (VSKMP), where we use UC-SimList to 
assess the similarity between two given characters. We use a 
character similarity threshold of 0.08 to evaluate the two given 
characters—empirically, we find that this threshold can classify 
the characters well, as shown in Figure 9. Characters to the left of 
the thick vertical bars have similarity values to the given 
characters (GCs) of more than 0.8. 
VSED shows better performance in phishing IRI/IDN detection. 
VSED can detect “www.bankofthevvest.com” (double “v” to 
mimic “w”) from “www.bankofthewest.com”, while VSKMP 
cannot, as shown in Figure 10. However VSKMP has better time 
complexity, namely Θ(m+n) compared to Θ(mn) for VSED 
(where m and n are the lengths of the two strings under 
assessment). In real experiments, VSKMP tends to be fast, and it 
also behaves well when the protected IRI/IDN is a substring of 
the new domain name under registration, e.g. VSKMP can detect 
the phishing IRI/IDN “www.citibank.com.info123.biz”, while 
VSED cannot, as shown in Figure 11. Each pair of domain name 
evaluations takes about 0.0012 seconds with VSDE and about 
0.0005 seconds with VSKMP (on average, on a P4 2.4G PC with 
512MB RAM). So if the user thinks the system is fast enough, we 
recommend selecting “Both” in the kernel algorithm group before 
pressing the “Search” button. In this way, the phishing IRI/IDN(s) 
detected by any of VSED or VSKMP will be reported. 
IRI/IDN SecuChecker is not just limited to checking the validity 
of domain names; it can also be used in any instance where 
visually and semantically unique Unicode identifiers are desired. 
For instance, it can be used in a user name (account) registration 
server, preventing users from spoofing the identities of other 
users. 
In the new registration textbox, we used different colors to 
represent characters from different language character sets. It is 
another feature of IRI/IDN SecuChecker and we call it Web Link 
Illustrator. We can simply add this web address convention to 
web browsers’ address bars. A demo of the Web Link Illustrator 
for Microsoft IE is available at [9] as shown in Figure 12. ICANN 
classifies characters that can be used in many different languages, 
which are listed in [15]. To implement a Web Link Illustrator, one 
can simply study and implement the character code ranges and 
program add-ins for IE, FirFox, etc. In this demo, the fake address 
for CitiBank contains an “a” from a different character set, which 
is highlighted in a different color (red) to remind users to be 
cautious (we choose to change the color because human eyes are 
sensitive to colors). We consider this a simple but effective 
potential feature for web browsers. 



 
Figure 8. The interface of IRI/IDN SecuChecker 
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Figure 9. The threshold selection for characters’ visual similarity. 
Note: GC for given character. In each row, higher ranks indicate 
higher visual similarities to GC. 

 
a) Phishing IRI/IDN detected using VSED 

 
b) Phishing IRI/IDN not detected using VSKMP 
Figure 10. VSED can detect the string“www.bankofthevvest.com 
” (double “v” to mimic “w”), while VSKMP cannot. 

 
a) Phishing IRI/IDN not detected using VSED 

 
b) Phishing IRI/IDN detected using VSKMP 

Figure 11. VSKMP can detect the string “www.citibank.com. 
info123.biz”, while VSED cannot. 
 

 
a) Correct web link. Web Link Illustrator paints all characters  
blue, which is the color corresponding to Latin characters.  

 
b) Web Link Illustrator paint the “a” red, since it is from another 
character set.  

Figure 12. Demo for Web Link Illustrator. 
 

6. DISCUSSION-PRACTICAL USE AND 
DEPLOYMENT PROPOSAL 
We have demonstrated in Section 4 that the prototype application 
performs well for Unicode attack detection. All it needs is a list of 
domain names to protect and the attack detection algorithms. 
However, deploying the technology in real-world situations raises 
issues that we would like to address in this section. 

6.1 Domain Name Server 
When we need a domain name, we get it from domain name 
registrars. The registrars are relatively autonomous. However they 
are under the supervision of ICANN (Internet Corporation for 
Assigned Names and Numbers). ICANN makes regulations for 
the Internet domain name registration. It will be very helpful if 
ICANN can promote the pre-checking process before a malicious 
web page can be registered. People may worry that this limits 
their freedom to register any domain name, but it may protect 
more people than it hurts.. As a matter of fact, ICANN is realizing 
this problem. ICANN first added the related section in 



“Additional Remark” in IRI/IDN Ver. 2.0, Nov. 8, 2005, and 
continued listing it in the “Additional Remark” of Ver. 2.1, Feb. 
22, 2006. However we have not seen a solution yet. We hope that 
the method proposed in this paper can be used to address this 
issue. 
Another solution is that domain name service registrars may 
provide the following service: once a domain name is registered, 
all similar domain names will automatically be registered to the 
same domain name owner. This service can be implemented by 
enumerating every way of substituting similar characters from 
UC-SimList for the characters in the domain name. The obvious 
drawback of this approach is that some domain names will have a 
prohibitively large number of similar names (since this number 
grows exponentially in the length of the name). However, some 
organizations may be willing to pay a premium for the resulting 
security if their name is small enough to secure in this manner. 

6.2 Anti-Phishing Client Application 
There are solutions to protect end user computers. The Unicode 
attack method can be embedded into anti-phishing client 
applications or web browser plugins and installed in end user 
computers. These client applications and plugins act as filters for 
the web links that users try to use to access the Internet. If any 
suspected web link is found, then they can provide alert 
information. One possible problem is that it may be hard for client 
applications or plugins to maintain one complete list of legitimate 
domain names. However they can be designed as only 
maintaining the most security sensitive domain names, e.g. only 
maintain the list of banks, credit card companies, and online 
transactions services. 

6.3 Registrar applications  
As we discussed, Web Identity could become a big target for 
malicious people. They can use Unicode attacks to create similar 
user names and accounts on the Internet. We would like to 
propose that username/account registrars in various online 
systems use Unicode attack detection systems to overcome 
possible attacks. E.g. when someone wants to register a new 
username/account in a BBS system, if the BBS system allows 
users to register with Unicode strings (they will do this if it has 
many international users that prefer to use Chinese, French etc.), 
then Unicode attacks could happen. We propose using Unicode 
detection systems to verify the legitimacy of new usernames 
during registration.  

6.4 Content Filtering 
It is possible that phishers can carry out attacks through systems 
such as Email Servers, BBSs, Wikis, and Search Engines. It has 
been reported that people have directed phishing web pages 
through Google Searches. Such attacks not only cause network 
security problems, but also affect the reputations of decent service 
providers. Our method can be used by such systems to detect 
phishing Unicode attacks.  

7. CONCLUSION AND FUTURE WORK 
We have identified a severe security and privacy threat to various 
systems which use Unicode as text media, namely the Unicode 
attack. The problem arises from the fact the computer screens are 
hiding the truth from their users about which characters they are 
displaying. To resolve Unicode attack problems, we propose a 
methodology, which can be used to implement Unicode attack 
detection systems. Following this methodology, we provide a real 
demo implementation study using vision and semantic based 

algorithms to perform similar/fake Unicode string detection. 
Experiments show that both the classification effect and time 
efficiency of the proposed method are satisfactory. The threshold 
for VSED could reach an optimum around 0.12. We also 
implemented VSMKP, where we showed that the threshold for 
character-character similarity of 0.80 is an empirical optimization 
of VSKMP. We also built up IRI/IDN SecuChecker using the two 
algorithms to perform IRI/IDN based phishing and fake web 
identity detection. The demo of Web Link Illustrator [9] 
demonstrated a possible improvement for web browsers. 
The establishment of UC-SimLists is a complicated work, as 
discussed in Section 4.1. The current version of UC-SimLists only 
includes characters in English, Chinese, and Japanese. It is 
expected to include more languages in our future work. We also 
would like to keep working on the generation of the word-word 
similarity matrix and apply it to the IRI/IDN SecuChecker. The 
algorithms, VSED and VSMKP, in IRI/IDN SecuChecker are the 
kernel parts to construct potential future similar/fake Unicode 
string detection systems. We expect that they could be 
implemented in email servers, BBSes, chatting rooms, and 
gateway filters to perform Unicode attack detection tasks.  
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