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Abstract
In the model-based policy search approach
to reinforcement learning (RL), policies are
found using a model (or “simulator”) of the
Markov decision process. However, for high-
dimensional continuous-state tasks, it can
be extremely difficult to build an accurate
model, and thus often the algorithm returns
a policy that works in simulation but not in
real-life. The other extreme, model-free RL,
tends to require infeasibly large numbers of
real-life trials. In this paper, we present a
hybrid algorithm that requires only an ap-
proximate model, and only a small number
of real-life trials. The key idea is to succes-
sively “ground” the policy evaluations using
real-life trials, but to rely on the approxi-
mate model to suggest local changes. Our
theoretical results show that this algorithm
achieves near-optimal performance in the real
system, even when the model is only approx-
imate. Empirical results also demonstrate
that—when given only a crude model and
a small number of real-life trials—our algo-
rithm can obtain near-optimal performance
in the real system.

1. Introduction

In model-based reinforcement learning (or optimal
control), one first builds a model (or simulator) for the
real system, and finds the control policy that is opti-
mal in the model. Then this policy is deployed in the
real system. Research in reinforcement learning and
optimal control has generated efficient algorithms to
find (near-)optimal policies for a large variety of mod-
els and reward functions. (See, e.g., Anderson and
Moore (1989); Bertsekas (2001); Bertsekas and Tsit-
siklis (1996); Sutton and Barto (1998).)

However, for many important control problems, par-
ticularly high-dimensional continuous-state tasks, it is
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extremely difficult to build an accurate model of the
Markov decision process. When we learn a policy us-
ing an inaccurate model, we are often left with a pol-
icy that works well in simulation (i.e., the policy works
well in the model), but not in real-life. In contrast to
model-based policy search, there is the other extreme
of searching for controllers only on the real system,
without ever explicitly building a model. Although
successfully applied to a few applications (e.g., Kohl
and Stone, 2004), these model-free RL approaches
tend to require huge, and often infeasibly large, num-
bers of real-life trials.

The large number of real-life trials required by model-
free RL is in sharp contrast to, e.g., humans learning to
perform a task. Consider, for example, a young adult
learning to drive a car through a 90-degree turn, more
specifically, learning the amount of steering required.
On the first trial, she might take the turn wide. She
will then adjust and take the next turn much less wide
(or maybe even take it short). Typically, it will require
only a few trials to learn to take the turn correctly.

The human driver clearly does not have a perfect
model of the car. Neither does she need a large number
of real-life trials. Instead, we believe that she combines
a crude model of the car together with a small number
of real-life trials to quickly learn to perform well.

In this paper, we formalize this idea and develop an al-
gorithm that exploits a crude model to quickly learn to
perform well on real systems. Our theoretical results
show that—assuming the model derivatives are good
approximations of the true derivatives, and assuming
deterministic dynamics—our algorithm will return a
policy that is (locally) near-optimal.

The key idea is to use a real-life trial to evaluate a
policy, but then use the simulator (or model) to es-
timate the derivative of the evaluation with respect
to the policy parameters (and suggest local improve-
ments). For example, if in a car our current policy
drives a maneuver too far to the left, then driving in
real-life will be what tells us that we are driving too
far to the left. However, even a very poor model of
the car can then be used to tell us that the change
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we should make is to turn the steering wheel clockwise
(rather than anti-clockwise) to correct for this error.
In particular, we do not need additional real-life trials
of turning the steering wheel both clockwise and anti-
clockwise in order to decide which direction to turn
it. Therefore, even a crude model of the car allows
us to significantly reduce the number of real-life trials
needed compared to model-free algorithms that oper-
ate directly on the real system.

Compared to standard model-based algorithms, our
approach has the advantage that it does not require a
“correct” model of the Markov decision process. De-
spite the progress in learning algorithms for building
better dynamical models, it remains an extremely diffi-
cult problem to model the detailed dynamics of many
systems, such as helicopters, cars and some aircraft.
The approach we present requires only a very crude
model of the system.

Although an extension to stochastic systems might be
possible, the algorithm and guarantees we present in
this paper only apply to systems that are (close to) de-
terministic. Despite this limitation, we believe our al-
gorithm still has wide applicability. In our experience
with a variety of systems, such as autonomous cars
and helicopters, we have observed that they behave
close to deterministically (in the absence of external
disturbances, such as wind).1

Throughout the paper, we assume a continuous state
space and a continuous action space.

The remainder of this paper is organized as follows:
Section 2 covers preliminaries. Section 3 describes our
algorithm in full detail. Section 4 gives formal perfor-
mance guarantees for our algorithm. Section 5 demon-
strates the effectiveness of our algorithm when applied
to flying a fixed-wing aircraft in a flight simulator and
when applied to driving a real RC car.

2. Preliminaries

A non-stationary Markov decision process (MDP) can
be described by a tuple (S,A, T,H, s0, R), where S =
R

n is a set of states; A = R
p is a set of actions/inputs;

T = {Pt(·|s, a)}t,s,a is a set of time-dependent state
transition probabilities (here, Pt(·|s, a) is the state
transition distribution upon taking action a in state s
at time t); the horizon H is the number of time steps;
s0 is the initial state at time 0; and R : S 7→ R is the
reward function. We assume that R is bounded from
above, i.e., for all states s ∈ S we have R(s) ≤ Rmax.

A policy π = (π(0), π(1), . . . , π(H)) is a set of mappings
from the set of states S to the set of actions A for

1Even though stochastic models are often used in rein-
forcement learning, the stochasticity of the models is often
artificial and is to a large part used to capture unmodeled
dynamics, rather than actual stochasticity.

each time t = 0, 1, . . . ,H. The utility of a policy π in
an MDP M is given by UM (π) = E[

∑H
t=0R(st)|π,M ].

Here the expectation is over all possible state trajec-
tories s0, s1, . . . , sH in the MDP M . Throughout the
paper we consider policies parameterized by a param-

eter θ. We let π
(t)
θ (s) denote the action taken by the

policy πθ when in state s at time t.

This paper focuses on MDPs that are (close to) de-
terministic. We let {ft : S × A → S}H

t=0 denote the
set of state transition functions. Here, ft(s, a) gives
the expected state at time t + 1 upon taking action
a in state s at time t. For deterministic systems, the
system dynamics (T ) are specified completely by the
time-dependent state transition functions {ft}

H
t=0.

We use ‖ · ‖2 to denote the matrix 2-norm.2

3. Algorithm

Our algorithm takes as input an approximate MDP
M̂ = (S,A, T̂ ,H, s0, R) and a local policy improve-

ment algorithm A. The MDP’s dynamics model T̂ is
a (possibly inaccurate) model of the true dynamics T
of the true MDP M = (S,A, T,H, s0, R). The local
policy improvement algorithm A could be any method
that iteratively makes local improvements upon the
current policy. Two examples are policy gradient
methods and differential dynamic programming.3

The algorithm proceeds as follows:

1. Set i = 0. Set the initial model estimate T̂ (0) = T̂ .

2. Find the (locally) optimal policy πθ(0) for the

MDP M̂ (0) = (S,A, T̂ (0),H, s0, R) by running the
local policy improvement algorithm A.

3. Execute the current policy πθ(i) in the real MDP
M and record the resulting state-action trajectory

s
(i)
0 , a

(i)
0 , s

(i)
1 , a

(i)
1 , . . . , s

(i)
H , a

(i)
H .

4. Construct the new model T̂ (i+1) by adding a
(time-dependent) bias term to the original model

T̂ . More specifically, set f̂
(i+1)
t (s, a) = f̂t(s, a) +

s
(i)
t+1 − f̂t(s

(i)
t , a

(i)
t ) for all times t.

5. Use the local policy improvement algorithm A in

2In the case the matrix is a vector, the matrix 2-norm is
equal to the Euclidean norm. In general, the matrix 2-norm
is equal to the maximum singular value of the matrix.

3Differential dynamic programming iteratively com-
putes a time-varying linear model by linearizing the state
transition functions around the current trajectory, and
then uses the well-known exact solution to the resulting
LQR (linear quadratic regulator) control problem as the
step direction to locally improve the current policy. (Jacob-
son & Mayne, 1970) In its full generality, differential dy-
namic programming also approximates the reward function
by a concave quadratic function. The reward function ap-
proximation is irrelevant for this paper: in our experiments
the reward functions themselves are already quadratic.
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the MDP M̂ (i+1) = (S,A, T̂ (i+1),H, s0, R) to find
a local policy improvement direction d(i) such that
Û(πθ(i)+αd(i)) ≥ Û(πθ(i)) for some step-size α > 0.

Here Û is the utility as evaluated in M̂ (i+1).4

6. Find the next (and improved) policy πθ(i+1) ,
where θ(i+1) = θ(i) + αd(i), by a line search over
α > 0. During the line search, evaluate the poli-
cies πθ(i)+αd(i) in the real MDP M .

7. If the line-search did not find an improved pol-
icy, then return the current policy πθ(i) and exit.
Otherwise, set i = i+ 1 and go back to step 3.

The algorithm is initialized with the policy πθ(0) , which
is locally optimal for the initial (approximate) model
of the dynamics. In subsequent iterations, the per-
formance in the real system improves, and thus the
resulting policy performs at least as well as the model-
based policy πθ(0) , and possibly much better.

In each iteration i, we add a time-dependent bias to

the model: the term s
(i)
t+1 − f̂t(s

(i)
t , a

(i)
t ) in step 4 of

the algorithm. For the resulting model T̂ (i+1) we have

that f̂
(i+1)
t (s

(i)
t , a

(i)
t ) = s

(i)
t+1 for all times t. Hence,

the resulting model T̂ (i+1) exactly predicts the real-life

state sequence s
(i)
0 , s

(i)
1 , . . . , s

(i)
H obtained when execut-

ing the policy πθ(i) . Thus, when computing the policy
gradient (or, more generally, a local policy improve-
ment direction) in step 5, our algorithm evaluates the
derivatives along the correct state-action trajectory.
In contrast, the pure model-based approach evaluates
the derivatives along the state-action trajectory pre-
dicted by the original model T̂ , which—in the case of
an imperfect model—would not correspond to the true
state-action trajectory.

In contrast to our algorithm, one might also try a
model-free algorithm in which real-life trajectories are
used to estimate the policy gradient. However, doing
so requires at least n real-life trajectories if there are
n parameters in the policy.5 In contrast, our approach
requires only a single real-life trajectory to obtain an
estimate of the gradient. So long as the estimated gra-
dient is within 90◦ of the true gradient, taking a small

4When the local policy improvement algorithm is policy

gradient, we have d(i) = ∇θÛ(θ(i)), the policy gradient in

the MDP M̂ (i+1) evaluated at the current policy π
θ(i) .

5If our policy πθ is parameterized by θ ∈ R
n, we can

estimate the derivative of the utility with respect to θi by
evaluating the policy’s performance U(πθ) using parame-
ters θ and again obtain its utility U(πθ+εei

) using θ + ε · ei

(where ei is the i-th basis vector). Then, we estimate
the derivative as ∂U(πθ)/∂θi ≈ (U(πθ+εei

) − U(πθ)) /ε. In
practice, this approach of using finite differences to numeri-
cally estimate derivatives not only suffers from the problem
of requiring a large number of real-life trajectories, but is
also very sensitive to even small amounts of noise in the
estimates of the policy’s utility.

step in the direction of the estimated gradient will im-
prove the policy. Consequently, our approach requires
significantly fewer real-life trials than model-free algo-
rithms to learn a good policy.

4. Theoretical Results

Throughout this section we assume that the real sys-
tem is deterministic, and we assume that the local pol-
icy improvement algorithm is policy gradient. In Sec-
tion 4.1 we give an informal argument as to why our
algorithm can be expected to outperform model-based
algorithms that use the same model. Then in Sec-
tion 4.2 we formalize this intuition and provide formal
performance and convergence guarantees.

4.1. Gradient Approximation Error

The dependence of the state st on the policy πθ plays a
crucial role in our results. To express this dependence
compactly, we define the function ht(s0, θ):

h1(s0, θ) = f0(s0, πθ(s0)),

ht(s0, θ) = ft−1 (ht−1(s0, θ)) . (1)

Thus ht(s0, θ) is equal to the state at time t when using
policy πθ and starting in state s0 at time 0. For an
approximate model T̂ we similarly define ĥt in terms
of the approximate transition functions f̂t (instead of
the true transition functions ft).

Let s0, s1, . . . , sH be the (real-life) state sequence ob-
tained when executing the current policy πθ. Then the
true policy gradient is given by:

∇θU(θ) =
∑H

t=0 ∇sR(st)
dht

dθ

∣

∣

s0,s1,...,st−1
. (2)

The derivatives appearing in dht

dθ
can be computed

by applying the chain rule to the definition of ht

(Eqn. 1).6 Expanding the chain rule results in a sum
and product of derivatives of the transition functions
{ft}t and derivatives of the policy πθ, which are eval-
uated at the states of the current trajectory s0, s1, . . ..

Let s0, ŝ1, . . . , ŝH be the state sequence according to
the model T̂ when executing the policy πθ. Then, ac-
cording to the model T̂ , the policy gradient is given
by:

∑H
t=0 ∇sR(ŝt)

dĥt

dθ

∣

∣

∣

ŝ0,ŝ1,...,ŝt−1

. (3)

Two sources of error make the policy gradient estimate
(Eqn. 3) differ from the true policy gradient (Eqn. 2):

1. The derivatives appearing in dĥt

dθ
according to

6We use the phrasing “derivatives appearing in dht

dθ
”

since for an n-dimensional state-space and a q-dimensional
policy parameterization vector θ, the expression dht

dθ
de-

notes the n × q Jacobian of derivatives of each state-
coordinate with respect to each entry of θ.
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the model are only an approximation of the true
derivatives appearing in dht

dθ
.

2. The derivatives appearing in ∇sR and in dĥt

dθ
are

evaluated along the wrong trajectory, namely the
estimated (rather than the true) trajectory.

In our algorithm, by adding the time-dependent bias
to the model (in step 4 of the algorithm), the resulting
model perfectly predicts the true state sequence result-
ing from executing the current policy. This results in
the following gradient estimate:

∇θÛ(θ) =
∑H

t=0 ∇sR(st)
dĥt

dθ

∣

∣

∣

s0,s1,...,st−1

, (4)

which evaluates the derivatives along the true trajec-
tory. Thus, by successively grounding its policy evalua-
tions in real-life trials, our algorithm’s policy gradient
estimates are actually evaluated along true trajectories,
eliminating the second source of error.

We discussed the specific case of policy gradient. How-
ever, for any local policy improvement algorithm used
in conjunction with our algorithm, we get the ben-
efit of evaluating local changes along the true tra-
jectory. For example, our experiments successfully
demonstrate the benefits of our algorithm when used
in conjunction with differential dynamic programming.

4.2. Formal Results

The following theorem shows that (under certain as-
sumptions) our algorithm converges to a region of local
optimality (as defined more precisely in the theorem).

Theorem 1. Let the local policy improvement algo-
rithm be policy gradient. Let ε > 0 be such that for all

t = 0, 1, . . . ,H we have ‖dft

ds
− df̂t

ds
‖2 ≤ ε and ‖dft

da
−

df̂t

da
‖2 ≤ ε. Let the line search in our algorithm be η-

optimal (i.e., it finds a point that is within η of the op-
timal utility along the line). Let all first and second or-

der derivatives of {ft(·, ·)}
H
t=0, {f̂t(·, ·)}

H
t=0, πθ(·), R(·)

be bounded by a constant C. Let R ≤ Rmax. Let n, p, q
denote the dimensionality of the state space, action
space and policy parameterization space respectively.
Then our algorithm converges to a locally optimal re-
gion, in the following sense: there exist constants K
and M—which are expressible as a function only of
n, p, q, the constant C, and the MDP’s horizon H—
such that our algorithm converges to a region where
the following holds:

‖∇θU(θ)‖2
2 ≤ 2K2ε2 + 2Mη. (5)

For the case of exact line search (η = 0) we obtain:

‖∇θU(θ)‖2
2 ≤ 2K2ε2. (6)

Proof (sketch). 7 The assumptions on the transition
functions {ft}

H
t=0, the approximate transition func-

tions {f̂t}
H
t=0, the policy class πθ and the reward func-

tion R imply that there exist constants K and M (ex-
pressible as a function of n, p, q, C and H only) such
that:

‖∇θU(θ) −∇θÛ(θ)‖2 ≤ Kε, (7)

‖∇2
θU(θ)‖2 ≤ M. (8)

Thus, our algorithm performs an iterative gradient as-
cent (with approximate gradient directions and ap-
proximate line search) to optimize the utility func-
tion U , which is bounded from above and which has
bounded second order derivatives. Our proof proceeds
by showing that this optimization procedure converges
to a region where Eqn. (5) holds. �

Theorem 1 shows that—if certain boundedness and
smoothness conditions hold for the true MDP and
the model—our algorithm will converge to a region
of small gradient. It also shows that, as the model’s
derivatives approach the true system’s derivatives, the
gradients in the (shrinking) convergence region ap-
proach zero (assuming exact line search).8

In contrast, no non-trivial bound holds for the model-
based approach without additional assumptions.9

Theorem 1 assumes a deterministic MDP. Space con-
straints preclude an in-depth discussion, but we note
that the ideas can be extended to systems with (very)
limited stochasticity.10

7Due to space constraints we refer the reader to the long
version of the paper (Abbeel et al., 2006) for the complete
proof.

8We note that, like exact gradient ascent, our algorithm
could (pathologically) end up in a local minimum, rather
than a local maximum.

9Consider the MDP with horizon H=1, state-space S =
R, transition function f(s, a) = a, and R(s) = C exp(−s2).

Now consider the model with transition function f̂(s, a) =
a + b, with b ∈ R. Then, for C and b arbitrarily large,
the model-based optimal policy will be arbitrarily worse
than the true optimal policy. However, the assumptions of
Theorem 1 are satisfied with ε = 0, and our algorithm will
find the optimal policy in a single iteration.

10The results can be extended to those stochastic sys-
tems for which we can bound the change in the utility
and the change in the values of the derivatives (used in
our algorithm) resulting from being evaluated along state
trajectories from different random trials under the same
policy. We note that the assumption concerns the trajec-
tories obtained under a fixed policy in the policy class πθ,
rather than any policy or sequence of inputs. Feedback can
often significantly reduce the diversity of state trajectories
obtained, and thus help in satisfying the assumption. Still,
the stochasticity needs to be very limited for the resulting
bounds to be useful. A significant change in the algorithm
(or at least in the analysis of the algorithm) seems neces-
sary to obtain a useful bound for systems with significant
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Table 1. Utilities achieved in the flight simulator: mean
and one standard error for the mean (10 runs).

Model-based Our algorithm Improvement

−13, 028 (±330) −3, 000 (±100) 76% (±2%)

5. Experimental Results

In all of our experiments, the local policy improvement
algorithm is differential dynamic programming (DDP).
We also used DDP to find the initial policy πθ(0) .11

5.1. Flight Simulation

We first tested our algorithm using a fixed-wing air-
craft flight simulator. The flight simulator model con-
tains 43 parameters corresponding to mass, inertia,
drag coefficients, lift coefficients etc. We randomly
generated “approximate models” by multiplying each
parameter with a random number between 0.8 and 1.2
(one independent random number per parameter).12

The model with the original (true) parameters is the
“real system” in our algorithm. Our (closed-loop) con-
trollers control all four standard fixed-wing aircraft in-
puts: throttle, ailerons, elevators and rudder. Our
reward function quadratically penalizes for deviation
from the desired trajectory (which in our case was a
figure-8 at fixed altitude), for non-zero inputs, and for
changes in inputs at consecutive time steps.13

Table 1 compares the performance of our algorithm
and the model-based algorithm. Our algorithm sig-
nificantly improves the utility (sum of accumulated
rewards), namely by about 76%, within 5 iterations.
Since typically only 1 iteration was required in the line
searches, this typically corresponded to (only) 5 real-
life trials. Figure 1 shows the result of one represen-
tative run: the desired trajectory (black, dotted), the

stochasticity.
11In iteration i, let π

θ(i) be the current policy, and let
π

θ(i)′ be the policy returned by DDP (applied to the MDP

M̂ (i+1)). Then, we have that d(i) = θ(i)′
−θ(i) is the policy

improvement direction. For the line search, we initialized
α = 1 (which corresponds to the policy π

θ(i)′), and then
reduced α by 50% until an improved policy was found.

12We discarded approximate models for which the initial
(model-based) controller was unstable in the real system.
(This was ±20% of the approximate models.)

13Details of the setup: The fixed-wing flight simulator
experiments were produced using the linearized 6-DOF
model developed in Chapter 2 of Stevens and Lewis (2003).
The parameterization is intended to model a small (1-
kilogram, 1.5-meter wingspan) wing-body UAV that flies
at low airspeeds (10 m/s). The simulation ran at 50Hz.
The target trajectory was a figure-8 at fixed altitude with
varying speed: slower in the turns, faster in the straight
segments. The penalties on the inputs and on the changes
in inputs make the controller more robust to model inac-
curacies. The trajectory was 60 seconds long.
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Figure 1. Results of our algorithm for the flight simulator.
Black, dotted: desired trajectory; blue, solid: controller
from model; green, dashed: controller after five iterations
of our algorithm. (See text for details.)

trajectory with the controller from the (approximate)
model (blue, solid), and the trajectory obtained after
5 iterations of our algorithm (green, dashed). The top
plot shows the (x, y) coordinates (North, East), the
bottom plot shows z (the altitude) over time. The
initial controller (based on the perturbed model) per-
forms reasonably well at following the (x, y) coordi-
nates of the trajectory. However, it performs poorly
at keeping altitude throughout the maneuver. Our
algorithm significantly improves the performance, es-
pecially the altitude tracking. We note that it is fairly
common for badly-tuned controllers to fail to accu-
rately track altitude throughout transient parts of ma-
neuvers. (Such as rolling left-right to stay in the figure-
8 for our control task.)

Figure 2. Screenshot of the flight-simulator.

A graphical simulation14 of the trajectories flown by
the model-based controller and by the controller found
by our algorithm is available at the following url:

www.cs.stanford.edu/~pabbeel/rl-videos.

14The (OpenGL) graphical flight simulator was origi-
nally developed by one of the authors, and is now main-
tained at http://sourceforge.net/projects/aviones.
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Figure 2 shows a screenshot of the graphical simulator.

5.2. RC Car

In our second set of experiments, we used the RC car
shown in Figure 3. A ceiling-mounted camera was used
to obtain position estimates of the front and the rear
of the car (marked with red and blue markers). This
allowed us to track the car reliably within a rectangle
of 3 by 2 meters. We then used an extended Kalman
filter to track the car’s state based on these observa-
tions in real-time.15

Figure 3. The RC car used in our experiments.

We modeled the RC car with six state-variables: the
steering angle δ, the forward velocity of the front
wheels v, the position coordinates x, y, the heading
angle ψ and the heading rate ψ̇. The inputs are the
steering wheel servo input (u1 ∈ [−1,+1]) and the
drive motor throttle (u2 ∈ [−1,+1]). At the speeds we
consider, the slippage of front and rear wheels is neg-
ligible. Rigid-body kinematics then gives the heading
rate ψ̇ as a function of steering angle and velocity.16

Data collected from the car showed that, when the
throttle is decreased, the car slows down with fixed
acceleration. However, when the throttle is increased,
the response is similar to a first order linear model.

15Experimental setup details: The RC car is an off-the-
shelf XRAY M18, which has an electric drive motor and
an electric steering servo motor. The car was fitted with
lower gearing to allow it to run reliably at lower speeds
(necessary to stay within the 3 by 2 meters area that can
be tracked by the camera). It was fitted with a switching
voltage regulator to prevent battery decay from affecting
performance. The video stream captured by the ceiling
mounted camera was digitized by a 2GHz Linux worksta-
tion and processed by OpenCV (Intel, 2001) to dewarp the
camera image. Custom software was then used to locate
the largest centroid of red and blue in the image, and to
map those image locations back to their respective posi-
tions in the ground plane. This experimental setup was
inspired in part by a similar one in Andrew W. Moore’s
Auton Lab at Carnegie-Mellon University.

16See, e.g., Gillespie (1992) pp. 196-201, for details on
low-speed turning and details on car modeling in general.

This results in the following model:

δss = a1u1 + b1,

δ̇ = (δss − δ)/τδ,

vss = a2u2 + a3|u1| + b2,

v̇ = 1{vss ≥ v}(vss − v)/τv + 1{vss < v}a4,

ψ̇ =
v sin δ

L
.

Here 1{·} is the indicator function, which returns one
if its argument is true and zero otherwise; δss is the
steady state steering angle for fixed input u1; vss is
the steady-state velocity for fixed inputs u1 and u2.
We find the state variables x, y, ψ by numerical inte-
gration. The parameters (a1, b1, a2, b2, a3, a4, τδ, τv, L)
were estimated from measurements from the car and
data collected from manually driving the car.17

We considered three control problems: a turn with
an open-loop controller, circles with a closed-loop con-
troller, and a figure-8 with a closed-loop controller.
During the open-loop turn, the desired velocity and
turning radius change. Thus, the control task requires
a sequence of inputs, not just a single throttle and
steering input setting. The circle maneuver is non-
trivial because of the velocity (1.4m/s) and the tight
turning radius. Moreover, the carpet threading makes
the RC car drift, and thus the circle cannot be driven
with a fixed throttle and steering input. The figure-8
maneuver is the most challenging of the three maneu-
vers: the car is required to drive at varying speeds
(fast in straight segments (1.4m/s), slower in turns
(1.0m/s)) and is required to make sharp turns, which
requires fast and accurate control at the desired ve-
locity. In each case, our reward function penalizes
quadratically for deviation from the target trajectory
(which defines a target state for each time step) and
penalizes quadratically for inputs and changes in the

17We measured the wheelbase of the car L. We measured
the steering angle for various inputs u1, and used linear re-
gression to initialize the parameters a1, b1. We collected
about 30 minutes of data (at 30Hz) from the RC car driv-
ing in circles with different radii and at various speeds,
including the velocities and turning radii for the control
tasks to come. We used linear regression to estimate the
parameters a2, b2, a3 from the data segments where steady-
state velocity was reached. We used step-input responses
to initialize the parameters τδ, τv, a4. We fine-tuned the
parameters a1, b1, τδ, τv, a4 by maximizing the likelihood
of the data (using coordinate ascent). The model included
that when the throttle input was very close to 0 (more
specifically, below 0.18), the RC car’s drive motor would
stall, i.e., the drive motor acted as if its input was 0. The
model included the latency from inputs to camera observa-
tion: it was estimated from step-input responses to be 0.1
seconds. Modeled latency does not affect, and is orthogonal
to, our method. However, unmodeled latency contributes
to model error and could thus decrease performance.
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inputs. The penalty terms on the inputs make the
controller more robust to model inaccuracies. (See,
e.g., Anderson and Moore (1989) for more details.)18

For all three control problems our algorithm signif-
icantly outperforms the model-based controller after
5-10 iterations, with typically 1-4 real-life executions
required per iteration (due to the line search). Fig-
ure 4 shows the improvements throughout the algo-
rithm for the case of the turn with open loop control.
We see that the algorithm consistently makes progress
to finally follow the turn almost perfectly. This is in
sharp contrast to the performance of the model-based
controller. Figure 5 shows the initial (model-based)
trajectory and the trajectory obtained with our algo-
rithm for the cases of closed-loop control for following
a circle and a figure-8. Our algorithm improved the
performance (utility) by 97%, 88% and 63% for the
turn, circles and figure-8, respectively. Videos of the
real-life trials when learning to drive the different tra-
jectories are available at the url given previously.19

The sub-optimal performance of the model-based pol-
icy approach indicates model inaccuracies. Given
the amount of training data collected (covering the
velocities and turning radii required for the control
tasks later), we believe that the model inaccuracies
are caused by our car modeling assumptions, rather
than lack of data. This suggests a more complex car
model might be needed for the model-based approach.
Additional model inaccuracy results from the carpet
threading. The asymmetric carpet threading causes
the RC car to drift by up to 0.10m per circle when
driving circles of 1m radius in open-loop (fixed throt-
tle and steering inputs). The carpet threading also
seems to affect the stalling speed of the drive motor.

To evaluate how deterministic the RC car setup is, we
repeatedly ran a few open-loop input sequences. For
the same input sequence, the end-points of the tra-
jectories differed from a few centimeters up to 50cm
(for 2 second runs). We believe the (apparent) non-
determinism was caused mostly by the (unavoidably)
slightly differing initial positions, which result in dif-
ferent interactions with the carpet throughout the tra-
jectory. This effect is most significant when the car
drives around the stalling speed of the drive motor.

18Control setup details: differential dynamic program-
ming generated a sequence of linear feedback controllers
(for the closed-loop case) and a sequence of inputs (for the
open-loop case), all at 20Hz. The extended Kalman filter
updated its state at roughly 30Hz (the frame rate of the
camera). Whenever the state estimate was updated, the
controller for the time closest to the current time was used.
All three target trajectories started from zero velocity.

19We repeated the experiments 3-4 times for each maneu-
ver, with similar results. The reported results correspond
to the movies we put available online.
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Figure 4. Results of our algorithm for the task of a turn
with open-loop controller. (See text for details.)

6. Related Work

Classical and (especially) robust control theory con-
sider the design of controllers that work well for a
large set of systems that are similar to the model
that is used for designing the controller. The resulting
controllers are less vulnerable to modeling errors, but
do not achieve optimal performance in the true sys-
tem. (See, e.g., Zhou et al. (1995); Dullerud and Pa-
ganini (2000) for more details on robust control. See,
e.g., Bagnell et al. (2001); Nilim and El Ghaoui (2005);
Morimoto and Atkeson (2002) for some examples of
robust-control work within the RL community.) Also
within the formalism of optimal control one can give
up optimality and, instead, design controllers that are
more robust to mismatches between model and real-
life, namely by including additional terms into the re-
ward function. For example, one penalizes high fre-
quency inputs (since the simulator is typically less ac-
curate at high frequencies), or one penalizes the inte-
gral of the error over time to avoid steady-state errors.
(See, e.g., Anderson and Moore (1989) for the linear
quadratic setting.)

Another approach is to use non-parametric learning
algorithms to build a model. (Atkeson et al., 1997)
Although they might require more training data, non-
parametric learning algorithms have the advantage of
being less prone to modeling errors.

We note that Atkeson and Schaal (1997) and Mori-
moto and Doya (2001) also achieved successful robot
control with a limited number of real-life trials. Our
work significantly differs from both. Atkeson and
Schaal (1997) started from a human demonstration of
the (swing-up) task. Morimoto and Doya (2001) use a
(hierarchical) Q-learning variant.

Iterative learning control (ILC) is the research area
most closely related to our work, as our work could be
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Figure 5. Results of our algorithm for the task of following a circle (a) and a figure-8 (b). (See text for details.)

seen as an instance of iterative learning control. ILC
refers to the entire family of iterative control design
approaches where the errors from past trials are used
to compute the current inputs. In its most common
form, ILC iteratively optimizes an open-loop (or feed-
forward) input sequence. In contrast to our approach,
most work in ILC does not use a model, rather, it just
uses the past trials to compute the next iteration’s
controller. See, e.g., Moore (1998), for an overview and
references to other work in iterative learning control.

7. Discussion

We presented an algorithm that uses a crude model
and a small number of real-life trials to find a controller
that works well in real-life. Our theoretical results
show that—assuming the model derivatives are good
approximations of the true derivatives, and assuming
a deterministic setting—our algorithm will return a
policy that is (locally) near-optimal. Our experiments
(with a flight simulator and a real RC car) demonstrate
that our algorithm can significantly outperform the
model-based control approach, even when using only
an approximate model and a few real-life trials, and
when the true system is not (perfectly) deterministic.

An interesting future research direction is to extend
our algorithm to the case of stochastic dynamics.
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