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Abstract

Clustering is one of the most widely used sta-
tistical tools for data analysis. Among all
existing clustering techniques, k-means is a
very popular method because of its ease of
programming and because it accomplishes a
good trade-off between achieved performance
and computational complexity. However, k-
means is prone to local minima problems, and
it does not scale well with high dimensional
data sets. A common approach to dealing
with high dimensional data is to cluster in the
space spanned by the principal components
(PC). In this paper, we show the benefits of
clustering in a low dimensional discriminative
space rather than in the PC space (genera-
tive). In particular, we propose a new cluster-
ing algorithm called Discriminative Cluster
Analysis (DCA). DCA jointly performs di-
mensionality reduction and clustering. Sev-
eral toy and real examples show the bene-
fits of DCA versus traditional PCA+k-means
clustering. Additionally, a new matrix for-
mulation is suggested and connections with
related techniques such as spectral graph
methods and linear discriminant analysis are
provided.

1. Introduction

Clustering is one of the most widely used statistical
methods in data analysis (e.g. multimedia content-
based retrieval, molecular biology, text mining, bioin-
formatics). Recently, with an increasing number of
database applications that deal with very large high
dimensional datasets, clustering has emerged as a very
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Figure 1. DCA finds a low dimensional projection benefi-
cial for clustering.

important research area in many disciplines. Unfortu-
nately, many known algorithms tend to break down in
high dimensional spaces because of the sparsity of the
points. In such high dimensional spaces not all the di-
mensions might be relevant for clustering, outliers are
more difficult to detect, and it is not necessarily clear
which distance measure to choose. On the other hand,
when handling large amounts of data, time complexity
can becomes a limiting factor.

Two types of clustering algorithms exist: partitional
and hierchical (Jain et al., 1999). Partitional methods
(e.g. k-means, mixture of Gaussians, graph theoretic,
mode seeking) produce just one partition of the data;
whereas, hierarchical ones (e.g single link, complete
link) produce several of them. In particular, k-means
(MacQueen, 1967) is one of the simplest unsupervised
learning algorithms that has been extensively studied
and extended (Jain, 1988). Although being an ex-
tremely popular technique because of its ease of pro-
gramming and performance in large high dimensional
data sets, k-means suffers from many drawbacks: it is
sensitive to initial conditions; it does not remove un-
desirable noise (e.g. variables that are not useful for

Removes undesirable noise.
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clustering); and it is optimal only for hyper-spherical
clusters. In addition, its complexity in time is O(nkl)
and in space is O(k), where n is the number of pat-
terns, k is the number of clusters, and [ the number
of iterations. This complexity can be impractical for
large datasets.

In this paper, we propose Discriminative Cluster Anal-
ysis (DCA) that alleviates some of the previously men-
tioned problems. DCA jointly optimizes for clustering
and dimensionality reduction. In the first step, DCA
finds a low dimensional projection of the data well
suited for clustering by encouraging the preservation of
distances between neighboring data points. Once the
data is projected into a low dimensional space, DCA
finds a "soft” clustering of the data. Later, this infor-
mation is fed back into the dimensionality reduction
step until convergence. Clustering in this subspace is
less prone to local minima, it is faster to compute (es-
pecially for high dimensional data), and noisy dimen-
sions that are not useful for clustering are removed.
Moreover, it is often difficult to model correlations in
high dimensional spaces, but by projecting them into a
low dimensional space, these correlations can be mod-
eled. Figure 1 shows the main benefits of DCA.

2. Previous work

This section reviews, in a unified matrix framework,
previous work on k-means clustering, spectral methods
and linear discriminant analysis, and points out the
relationship between them.

2.1. K-means and spectral graph methods: a
unified framework

K-means (MacQueen, 1967; Jain, 1988) is one of the
simplest and most popular unsupervised learning al-
gorithms to solve the clustering problem. Clustering
refers to the partition of n data points into ¢ disjoint
clusters. k-means clustering splits a set of n objects
into ¢ groups by maximizing the between-clusters vari-
ation relative to within-cluster variation. In other
words, k-means clustering finds the partition of the
data that is a local optimum of the following energy
function:

T(pegs s pin) = D 3 M1y = pll3 (1)

i=1j€C;

where d; (see notation !) is a vector representing the
jth data point and p, is the geometric centroid of the

'Bold capital letters denote a matrix D, bold lower-case
letters a column vector d. d; represents the j column of the
matrix D. d;; denotes the scalar in the row 4 and column

data points for class ¢. The optimization criteria in eq.
1 can be rewritten in matrix form as:

Ey(M,G) = ||D - MG™||F (2)
subject to G1. =1, and g;; € {0,1}

where G € R"*¢ and M € R9%¢, G is a dummy
indicator matrix, such that >, g;; = 1, gi;; € {0,1}
and g;; is 1 if d; belongs to class C;, ¢ denotes the
number of classes and n is the number of samples. The
columns of D € R4X™ contain the original data points,
where d is the dimension of the data. The equivalence
between the k-means error function eq. 1 and eq. 2 is
only valid if G strictly satisfies the constraints.

The k-means algorithm performs coordinate descent
in E1(M,G). Given the actual value of the means
M, the first step finds for each data point d;, the g’
such that one of the columns is one and the rest 0
and minimizes eq. 2. The second step optimizes over
M = DG(GTG)™!, which is equivalent to compute
the mean of each cluster. Although it can be proven
that alternating these two steps will always terminate,
the k-means algorithm does not necessarily find the op-
timal configuration over all possible assignments. The
algorithm is significantly sensitive to the initial ran-
domly selected clusters’ centers; it typically runs mul-
tiple times, and the best solution is chosen. Despite
these limitations, the algorithm is used frequently as a
result of its ease of implementation and effectiveness.

Eliminating M, eq. 2 can be rewritten as:

E»(G) = ||D - DG(GTG)"'GT||p = tr(DTD)

~tr((GTG)'GTDTDG) > LI A (3)
where )\; are the eigenvalues of DTD.  Min-
imizing eq. 3 is equivalent to maximizing
tr((GTG)"'GTDTDG). Ignoring the special struc-
ture of G and considering the continuous domain, the
optimum G value that optimizes eq. 3 is given by the
eigenvectors of the covariance matrix D7D and the

error is By = Y7™4™ )\, (Ding & He, 2004; Zha

et al., 2001) reported similar reasoning, they show that
a lower bound of eq. 3 is given by the residual eigen-
values. The continuous solution of G lies in the ¢ — 1

j of the matrix D and the scalar i-th element of a column
vector d;. dj; is the i-th scalar element of the vector d’. All
non-bold letters will represent variables of scalar nature.
diag is an operator that transforms a vector to a diagonal
matrix or takes the diagonal of the matrix into a vector. o
denotes the Hadamard or point-wise product. 15 € R**! is
a vector of ones. Tr, € RF** is the identity matrix. tr(A) =
>, as is the trace of the matrix A and |A| denotes the
determinant. ||A||r = tr(ATA) = tr(AAT) designates
the Frobenious norm of a matrix.
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subspace spanned by the first ¢ — 1 eigenvectors with
highest eigenvalues (Ding & He, 2004) of DTD.

Finally, it is worthwhile to point out the connections
(Dhillon et al., 2004) between k-means and standard
spectral graph algorithms, such as Normalized Cuts
(Shi & Malik, 2000), by means of kernel methods. The
kernel trick is a standard method for lifting the points
of a dataset to a higher dimensional space, where
points are more likely to be linearly separable (assum-
ing that the correct mapping is found). Consider a
lifting of the original points to a higher dimensional
space, T = [ ¢(d1) p(da) -+ @(d,) | where ¢ is a
high dimensional mapping. The kernelized version of
eq. 2 will be:

E3(M,G) =[|(T - MG")W||p (4)

where a weighting matrix W for normalization
purposes is introduced. Eliminating M =
TWWTG(GTWWTG)~! it can be shown that:

Es < —tr((GTWWTG)1GTWWITITWWTG) (5)

where TTT is the standard affinity matrix in Nor-
malized Cuts (Shi & Malik, 2000). After a change
of variable Z = GT'W, the previous equation can be
expressed as E3(Z) o« —tr((ZZT)'ZWTTTTWZT).
Choosing W = diag(T"T1,)~ %% the problem is
equivalent to solving the Normalized Cuts problem.
This formulation is more general since it allows for ar-
bitrary kernels and weights. In addition, the weight
matrix can be used to reject the influence of pairs
of data points with unknown similarity (i.e. missing
data).

2.2. Linear Discriminant Analysis

The aim of most discriminant analysis methods (e.g.
LDA) is to project the data into a space of lower di-
mension so that the classes are projected as far as pos-
sible from each other and the projection is compact
within each cluster. LDA can be calculated by maxi-
mizing several optimization criteria (Fukunaga, 1990),
and most of them are based on relations between the
following covariance matrices, conveniently expressed
in matrix form (de la Torre & Kanade, 2005):

fSt = Z(d] — m)(dJ — m)T = DPlDT
j=1

fSw = > Y (dj —my)(d; — m;)" = DP,D”
i=1 djECi

Z ni(mi - m) (mi - m)T = DP3DT
i=1

where f = n — 1, P;’s are projection matrices (i.e
P! = P, and P? = P;) with the following expressions:

P =I-11,1" P,=1-G(G"G)"'GT
P; =G(GTG)'GT - 11,17 (6)

S; is the between-class covariance matrix and repre-
sents the average of the distances between the mean of
the classes. S,, represents the within-class covariance
matrix and it is a measure of the average compactness
of each class. Finally, S; is the total covariance matrix.
With the matrix expressions, it is straightforward to
show that S; = S,, + S;. The upper bounds on the
ranks of the matrices (if djjn) arec—1, n—c¢, n—1
for Sy, Sw, S; respectively. Note that eq. 2 is t7(Sy,)-

LDA computes a linear transformation of the data
B € RY* that maximizes the distance between
the means of the classes and minimizes the variance
within clusters. The Rayleigh-like quotient is among
the most popular LDA optimization criteria (Fuku-

naga, 1990), some are: J;(B) = }g;g;g} J2(B) =

tr((B”SB)(B7S;B) ") J3(B) = £E5B) where
S1 € {Si,Sp,S:} and So € {Su,St,Sw}. A closed
form solution to previous minimization problems is
given by a generalized eigenvalue problem S;B =

S2BA.

Previous Rayleigh quotient optimization procedures
are not easy to modify in order to incorporate new
constraints (e.g temporal constraints or geometric in-
variance). Formulating LDA as an error function will
allow for a better understanding of the LDA limita-
tions; moreover, further generalizations will be eas-
ier to formulate . Consider the following weighted
between-class covariance matrix, S, = DGGTD7T =
Ziczl(%)Z(mi)(mi)T, that favors the classes with
more samples. m; is the mean vector for the class
i, and we assume the global mean (i.e. m = 1D1,,) is
zero. In the line with earlier work on neural networks
(Gallinari et al., 1991; Lowe & Webb, 1991), maximiz-
ing J4(B) = tr((BTS,B)(BTS;B)~1) is equivalent to
minimizing:

E4B,V)=||GT - VBTD||r (7)

(Gallinari et al., 1991; Lowe & Webb, 1991) shows
that:

E4B) < —tr((B"DD'B)")B'DGG'D'B) (8)

This approach is appealing since (Baldi & Hornik,
1989) have shown that the surface of eq. 7 has a unique
local minima , although it has several saddle points.
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3. Discriminative Cluster Analysis

In the previous section, we have suggested a matrix
formulation for a generative approach to understand
the error function of k-means algorithm (unsuper-
vised), and a matrix expression to derive an approx-
imation of LDA (supervised). The aim of DCA is to
combine clustering and dimensionality reduction in an
unsupervised manner. In this section, we show how
DCA finds a low dimensional projection that preserves
the local structure of the data, improving clustering by
iteratively computing B and G.

3.1. Error function for LDA

The key aspect to simultaneously performing dimen-
sionality reduction and clustering is the analysis of eq.
7. Ideally one would like to optimize eq. 7 w.r.t.
B, G; however, directly optimizing eq. 7 has several
drawbacks. First, eq. 7 biases the solution towards
the classes that have more samples, because it maxi-
mizes S, = DGGTDT = Y°¢_ (%)% (m;)(m;)”. Sec-
ondly, eq. 7 does not encourage sparseness in G if
gij > 0. Let C = BTD € R**" eq. 7 is equivalent
to By = tr(GTG) — tr(GTCT(CCT)~1CG). If g;;
are positive, minimizing tr(G”G) does not encourage
sparsitivity in g' Vi (g’ represents the i row of G, see
notation).

In this section, we correct Eq. 7 to obtain the original
LDA criteria by normalizing the error as follows:

B5(B,V,G) =||(GTG)"%(G" - VBTD)||r  (9)

subject to the constraint that g;; € {0,1} and G1, =
1,. After eliminating V| eq. 9 is equivalent to:

E5(B,G) = [(G"G)"2G”(I, - C"(CCT)~C)||r (10)
x tr((GTG)'GTD'B(B'DD”"B)'BTDG) (11)

Equation eq. 11 can be re-written as
tr((BTDDTB)*l(BTDG(GTG)*GTDTB)).
If G is known eq. 11 is the exact expression for LDA.

If the constraints on G are relaxed, an algorithm to
minimize eq. 11 will alternate between solving the
following eigenvalue problems:

DG(GTG)'GTD?B = DDTBA, (12)
cTcc™)~1CcG = GA, (13)

Observe that in the continuous case there is an am-
biguity because for any invertible matrix T; € R***,
E5(B) = E5(BT)), similarly for any invertible matrix
Ty € R°*¢ E5(G) = E5(GTy).

At this point, an interesting connection of the error
function 11 with previous clustering techniques can be

made. Let B = I; € R?*9 be the identity matrix (no
projection is done). By assuming G is continuous, the
low dimensional embedding for clustering will be com-
puted as the eigenvectors of DT (DDT)~'D. If n >> d
D = UXVT (ie. SVD), where U € R4V ¢ pnxd
and ¥ € R4 and assuming DD7 is full rank,
D7 (DD?)"'D = VVT, which is the affinity matrix
used in (Costeira & Kanade, 1995) for motion segmen-
tation problems .

3.2. Updating B

The optimal B given G can be computed in closed
form by solving the following generalized eigenvalue
problem (eq. 12) DRD?YB = DDTBA;, where R =
G(GTG)™'GT. If d << n and DD7 is full rank,
standard packages for generalized eigenvalue problems
can be applied. However, for high dimensional data
(d >> n) solving directly previous eigenvalue prob-
lem is not computationally efficient in either space or
time. Fortunately, using the fact that the solutions of
B are linear combinations of the data (i.e. B=Da),
multiplying both sides by D7 and assuming D7D is
invertible, the original eigenvalue problem is equiva-
lent to solve RDTDa = DT"DaA;, which is of much

lower dimension (n X n).

There are many ways of efficiently solving this general-
ized eigenvalue problem (e.g. subspace methods (de la
Torre et al., 2005)). In this section, we explore closed
form solutions that invert D”D and solve a regular
eigenvalue problem (i.e. (DTD)"'RD’Da = aA,).
Assuming DTD is full rank, computing (DTD)~?! can
be a numerically unstable process, especially if D7D
has some eigenvalues close to zero. A common ap-
proach to solving the ill-conditioning is to regularize
the solution by factorizing ¥ = D7D as the sum of
the outer products plus a scaled identity matrix, so
that & ~ VAVT 4+ 6%2I;. V € Rk A € RExk
is a diagonal matrix. The parameters o2, V, A are
estimated by following a fitting approach that mini-
mizes E.(V,A,0?%) = || — VAVT — 021, ||p. After
optimizing the parameters, (de la Torre & Kanade,
2005) have shown that: o2 = tr(X — VAVT)/d — k,
A = A — 621, where A are the eigenvalues of the
covariance matrix ¥ and V the eigenvectors. Af-
ter the factorization is found, the matrix inversion
lemma (Golub & Loan, 1989) (A~ +VC~'VT)~! =
A — (AV(C + VTAV) "1 VT A) is applied to invert
(UAUT + 621,)~! which results in:

1 1

I
(VAVT +6%1,)7t = — (- ;V(A‘l +

7V

Now solving (I; — 5 V(A™! + 1) ="'V )RD"Da =
aA becomes more computationally tractable and nu-
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merically stable process.

The number of bases (k) are bounded by the number of
classes, since rank(DRDT) = c¢. We typically choose
¢ — 1 to be consistent with LDA. Moreover, the best
clustering results are achieved by projecting the data
into a space of ¢ — 1 dimensions.

3.3. Updating G

If A=CT(cc”)~1C e ", and C = BTD, eq. 11
is equivalent to:

E5(G) x tr((GTG)'GTAG) (14)

To impose non-negativity constraints in g;;, we param-
eterize G as the product of two matrices G = VoV
(Liu & Yi, 2003) and a gradient descent strategy is
used to search for an optimum:

VAR UEPRLTS (15)
9B(Q) — (I, - G(GTG)'GT)AG(GTG) ' oV

The major problem with the update of eq. 15 is to
determine the optimal n. In this case, 77 is determined
with a line search strategy. To impose G1. = 1,, in
each iteration, the V is normalized to satisfy the con-
straint. Because eq. 15 is prone to local minima, this
method starts from several random initial points and
then selects the solution with minimum error.

This optimization problem is similar in spirit to recent
work on clustering with non-negative matrix factoriza-
tion (Zass & Shashua, 2005; Ding et al., 2005; Lee &
Seung, 2000). However, we optimize a discriminative
criteria rather than a generative one. On the other
hand, we simultaneously compute the dimensionality
reduction and clustering and a different optimization
technique is used.

3.4. Initialization

At the beginning neither G nor B are known, but the
matrix G(GTG)7!G” can be estimated from data.
Similarly to (He & Niyogi, 2003), we compute local
information (i.e. G(GTG)7!GT € R"*") from data.
We assume that (GTG) ~ sI., so that all the classes
are equally distributed and s is the number of sam-
ples per class. R = %GGT is a hard-affinity ma-
trix, where 7;; will be 1 if d; and d; are considered
to be neighbors (i.e. belong to the same class). R
can be estimated by simply computing the k nearest
neighbors for each data point using Euclidian distance.
To make R symmetric, the cases where d; is within
the k-neighborhood of d; but not the opposite are fil-
tered out. Figure 6.b shows an estimate of R. In

Figure 2. Two class toy problem. PCA; WPCA and DCA
projections into 1 dimensional space.

this example, 15 clusters (subjects), 10 samples per
class and 9 nearest neighbors are selected. The sam-
ples are ordered by class. After factorizing (i.e. SVD)
R = UXU7, we normalize R as R ~ U UL, where
U, € R™*¢ are the first ¢ eigenvectors of R. R will be
the initial neighbor matrix.

3.5. Interpreting the weighted covariance
matrix

A key aspect to interpret DCA is the understand-
ing of the weighted covariance matrix DRD? =
DY D) rijdidjT. Principal Component Analy-
sis (PCA) (Jolliffe, 1986) computes a basis B that
maximize the variance of the projected samples, i.e.
PCA finds an orthonormal basis that maximizes
tr(BTDDTB) = Y | ||BTd,||2. The PCA solution,
B, is given by the eigenvectors of DD”. Finding the
leading eigenvectors of DRD7 is equivalent to maxi-
mize tr(BTDRD”B) = =¥ SV r;;d/BB7d,. If
R = I the standard PCA is the result; however, if
R contains a block structure with the cluster infor-
mation, the weighted covariance just maximizes the
covariance within each cluster, finding a projection
where the correlation between each pair of points
within each cluster is maximized. Figure 2 shows a
toy problem, where two Gaussian classes with an equal
number of points are generated. The first eigenvector
in PCA finds a direction of maximum variance that
does not necessarily correspond to maximum discrim-
ination (in fact, projecting the data into the first prin-
cipal component the clusters overlap). If R is the ini-
tial matrix of neighbors, the first step of DCA finds a
better projection for clustering.

Another possible unsupervised technique for di-
mensionality reduction preserving topological re-



Discriminative Cluster Analysis

388 3 6 o 0 2

2 0 2 0 g ]

Figure 3. a) 2 classes of 3 dimensional data. b) Projection
onto XY space.
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Figure 4. a) k-means clustering. b) DCA clustering.

lations is Weighted Principal Component Analy-
sis. WPCA minimizes E5;(B,C) = |[|(D —
BC)Rz||p. After eliminating C, minimizing the pre-
vious equation is equivalent to maximizing F5(B) =
tr(BTB)"1(BTDRDTB)). WPCA will be closely
related to local preserving projection (He & Niyogi,
2003) with the right choice of weights. The optimum
is achieved by solving the following eigenvalue prob-
lem DRD7B = BA, where B will be given by the
eigenvectors of DRD7.

4. Experiments
4.1. Removing undesirable dimensions

The first experiment demonstrates the ability of DCA
to deal with undesired dimensions not relevant for
clustering. A toy problem is created as follows: 200
samples from a two-dimensional Gaussian distribution
with mean [—5,—5] and another 200 samples from
another Gaussian with mean [5,5] are generated (x
and y dimensions). We add a third dimension gener-
ated with uniform noise between [0..35] (2 dimension).
Figure 3 shows the 200 samples of each class, in the
original space (fig. 3.a) and the projection (fig. 3.b)
onto z and y. k-means algorithm gets confused by the
noise(fig. 4.a). Similarly, by projecting the data into
the first two principal components, the wrong clus-
tering is achieved, since PCA preserves the energy of
the uniform noise which is not relevant for cluster-
ing. However, DCA (projecting into two dimensional
space) is able to remove the noise and, it achieves the
correct clustering, fig. 4.b. In this particular example
15 neighbors were initially selected and B € R3*2.

200

s

Time (seconds)

o L . L L s L . L
00 200 00 a00 500 800 700 800 900 1000
Dimensions

Figure 5. Time (seconds) versus number of dimensions.
Blue straight line PCA+k-means, red dotted line DCA.

Figure 6. a) Some faces of the ORL data base. b) Estimate
of R for 15 clusters (people), each cluster has 10 samples.
The samples are ordered by clusters.

4.2. Computational efficiency

In this experiment, we have generated 400 samples of
four x-dimensional Gaussians, with the dimension x
ranging from 100 to 1000 in increments of 50. For two
of the Gaussians, the means are 10 and —10 respec-
tively; whereas, the other two have half of the dimen-
sions as 10 and the other half —10, and vice versa. For
each dimension and each Gaussian, we synthetically
generate 400 samples and cluster by using k-means
and DCA. Figure 5 shows the results of the time spent
in clustering with k-means in the original spaces ver-
sus DCA. DCA is more computationally efficient as
the number of samples increase.

4.3. Clustering faces

The final experiment shows results on clustering faces
from the ORL face database (Samaria & Harter, 1994).
The ORL face database is composed of 40 subjects
and 10 images per subject. We randomly select k
subjects from the database and add its 10 images to
the data matrix D € R (e.g. fig. 6.a). After-
wards, we compute PCA, WPCA (with the initial ma-
trix R), PCA+LDA (preserving 95% of the energy in
PCA) and DCA. After computing PCA, WPCA and
PCA+LDA, we run the k-means (Matlab) on the pro-
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jected samples 10 times and the best solution is cho-
sen (the one with the least error). This procedure is
repeated 40 times for different numbers of classes (be-
tween 4 and 40 subjects). To perform a fair compar-
ison, we project the data into classes — 1 dimensions
for all the methods. Fig. 7.a shows the PCA projec-
tion for the 10 classes case; fig. 7.b shows the DCA
projection in the first step.

Figure 7. a) PCA projection. b)DCA projection.

To compute the accuracy of the results for a ¢ cluster
case, we compute a ¢ — by — ¢ confusion matrix C,
where each entry c;; is the number of faces in cluster
i, which belong to class j. It is difficult to compute the
accuracy by just using the confusion matrix C because
it is not known which cluster matches which class. An
optimal way to solve it (Zha et al., 2001; Knuth, 1993)
is to compute the following maximization problem:

max tr(CP) | P is a permutation matriz  (16)

The accuracy is obtained by dividing the results for
the number of data points to be clustered. To solve eq.
16, we use the classical Hungarian algorithm (Knuth,
1993). Table 1 shows the accuracy results (the mean
and standard deviation over 40 runs) for different pro-
jection methods and different number of classes. DCA
outperforms most of the methods when there are be-
tween 5 and 30 classes. For more classes PCA+ LDA
performs marginally better.

C | PCA | WPCA | DCA | PCA+LDA
4 1 7320% | 1£0% | 87+2% 1+0%
10 | 884+6% | 95+6% | 97+4% 88+8%
15 | 86+5% | 884+4% | 96+1% 82+6%
20 | 80+4% | 84+4% | 87+2% 83+4%
25 | 77+3% | 80+4% | 87+2% 80+4%
30 | 75+£3% | 79+3% | 81+3% 81+4%
35 | 73+4% | TT£3% | 78+4% 81+3%
40 | 71£2% | 74+3% | 73+3% 80+4%

Table 1. Comparison of accuracy for several projection
methods (same number of bases: classes-1).

Fig. 8 shows the accuracy in clustering for PCA+k-
means vs. DCA. For a given number of clusters, we

M e

12 ] 20 30 3 40
Number of clusters (classes)

Figure 8. Accuracy of clustering versus the number of
classes. Blue PCA and red DCA (dotted line).

show the mean and variance of 40 realizations. DCA
always outperforms PCA+k-means. In addition, the
accuracy drops as the number of classes increases (as
expected).

5. Discussion and future work

In this paper we have proposed DCA, a new dimen-
sionality reduction and clustering algorithm. DCA
outperforms PCA+k-means, since it uses discrimina-
tive features for clustering rather than generative ones.
Clustering in this space is less prone to local min-
ima and removes irrelevant dimensions for clustering.
Moreover, clustering in this low dimensional discrim-
inative space is more computationally efficient than
clustering in the original space. Additionally, we have
constructed an error function for LDA.

However, several issues still need to be addressed. It
still remains unclear how to select the optimal number
of clusters; several model order selection (e.g. Mini-
mum Description Length or Akaike information crite-
rion) could be applied. On the other hand, DCA as-
sumes that all the clusters have the same orientation
(not necessarily spherical). Several extensions could
be made in the case of non-Gaussian shape clusters,
for instance using kernel methods. However, for huge
amounts of high dimensional data (d,n >> c) the ef-
ficiency of the solution will be lost. Adding the con-
straint that GT G = I will probably help the clustering
process. An approximate approach to incorporating
these constraints without transforming the problem
into a quadratic programming (which is computation-
ally expensive) is to add Mr(GTG) to eq. 11.
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