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ABSTRACT 
The approach of H. Bersini to shape-spaces and in particular his 
definition of affinity are analysed. It is shown that the definition of 
the affinity function in Bersini style implies a special form of an 
affinity region, namely a rhombus. However, variants of the function 
can be defined with rectangular or square but rotated affinity 
regions. In all cases, the affinity function has the form of a pyramid 
over the affinity region. The definition of the affinity function can be 
modified in such a way that it describes a lopsided pyramid. 
Experimental results with a reimplementation of Bersini’s 
simulation procedure show that the form of the affinity region has a 
strong influence on the form of the recognition/tolerance separation 
of the shape-space. 

Categories and Subject Descriptors 
I.6.4 [Model Validation and Analysis]  

General Terms 
Algorithms, Experimentation 

Keywords 
Shape-space, affinity function, affinity region. 

1. INTRODUCTION 
The mostly used definition of shape-spaces is the one introduced by 
Perelson and Oster in [6]. According to this definition, the 
interaction between elements of the immune system (cells, 
antibodies, or molecules) and antigens is determined by properties of 
shape. Actually, this approach is an abstraction from the real 
immune system, where the interaction is essentially based on 
electrical forces due to the charge distribution on the surface of the 
molecules. The next step of abstraction, then, is the representation of 
the shape properties by a string of parameters of certain types of 
values like binary, integer, real, or symbolic. 

A basic notion in the Perelson/Oster shape-space is that of 
complementarity, which means that an immune element and an 
antigen must have complementary shapes in order to exert affinity 
on each other. Different types of affinity have been defined, 
depending on the type of the shape-space as a vector, but all of them 
are based on some distance measure like Euclidian distance or 
Hamming distance. 

 

In [1], Bersini introduced an alternative definition of a shape-space 
which on first glance departs considerably from the Perelson/Oster 
definition. On second glance, it turns out that it is a shape-space 
based on ℜ2 with complementary affinity. However, Bersini uses a 
special definition of affinity which makes his shape-space 
particularly interesting. This definition incorporates 
complementarity as mirror image positions in the space together 
with a fixed affinity region where the immune elements (antibodies) 
are attracted with graded force. Bersini’s approach has been adopted 
and modified in several ways by Hart and Ross [5] and Hart [4] who 
demonstrate the properties of this kind of shape-space by some 
simulation experiments. 

Bersini’s paper is based on the work he has done in the group of F. 
Varela for several years and which he has published in a number of 
papers like in [2] or [3] among others. The main objective of 
Bersini’s work is to support the self-assertion view of the immune 
system as it was developed and propagated in Varela’s group by 
simulation experiments. However, the system can also be used to 
simulate the self-recognition view. Nevertheless, Bersini’s basic 
definition of a shape-space and the affinity in this space is highly 
interesting and worth to be considered in more detail than obviously 
he himself did. This is the aim of this paper. 

In the next section we give a detailed analysis of Bersini’s affinity 
definition which reveals the consequences of that definition, in 
particular the form of the affinity function and the affinity region. In 
section 3, some variants of the definition are introduced with 
different affinity regions. Section 4 gives a detailed description of an 
asymmetric version of the affinity function, motivated by the work 
of Hart and Ross. This definition deviates on first glance from 
Bersini’s approach but is still in the lines of his definition as will be 
shown. Finally, in section 5 we present some experimental results of 
a simulation with the various affinity functions and give an 
interpretation of these results. 

2. BERSINI’S SHAPE-SPACE AND 
AFFINITY FUNCTION 

The shape-space is defined as a two-dimensional space. One point 
in this space is marked as the center of the space. An immune cell 
can be identified by its position in the space. Nothing is said about 
the size of the space, in fact, it does not play any role in the 
concept. The notion of complementarity comes in by the definition 
of the affinity. The idea is to define a region of affinity that is 
arranged around the point which is in the spatially symmetrical 
position with respect to the center of the space. This is illustrated 
in figure 1 (according to [1]). 
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Figure 1. The shape-space according to Bersini 

The affinity region is the zone where the immune cell exerts an 
affinity on antigens or other cells.  The affinity decreases from the 
center of that region to the borders. Bersini assumes that the affinity 
region is a square of a certain size L.1 The position of the shape-
space center is (c1, c2), the immune cell i is at position (i1, i2), and an 
arbitrary element is at position (x1, x2). Each immune cell is provided 
with a concentration Ci(t) at time t, initially it is Ci(0). Based on 
these notations, the affinity exerted by the immune cell i is defined 
by a two-dimensional function 

 ( ) ( ) ( )( )2/22, 22211121 xicxicLtCxxaff ii −−+−−−⋅=  (1) 

The factor ½ in definition (1) is not important; it influences the size 
of the affinity region which is in principle determined by the value 
of L, so that it can be incorporated in L. It will be omitted in the 
remainder of this paper. 

It is important to consider the properties of the function affi(x1, x2) in 
detail. First, it can adopt negative values, but a negative affinity does 
not make sense, therefore it should be restricted to regions where it 
is positive or at least zero. Second, it has a maximum at position (2c1 
– i1, 2c2 – i2), i.e. exactly at the point symmetrical to the position of 
the immune cell, because this is the only point where (|2c1 – i1 – x1| 
+ |2c2 – i2 – x2|) = 0. The maximum value is Ci(t)⋅L. Third, it is zero 
if either Ci(t) = 0, which means that the concentration of i has 
dropped to 0, or if L = |2c1 – i1 – x1| + |2c2 – i2 – x2|. The last 
equation includes four different cases, depending on whether the two 
absolute value terms on the right hand side are greater or less than 
zero. Assume both are greater than zero. Then we get the linear 
equation 

 ( ) ( ) Licicxx −−+−=+ 221121 22  (2) 

This equation describes a straight line with gradient –1. In a similar 
way the other three cases produce the following lines 

 ( ) ( ) Licicxx −−−−=− 221121 22  (3) 
 ( ) ( ) Licicxx +−−−=− 221121 22  (4) 
 ( ) ( ) Licicxx +−+−=+ 221121 22  (5) 

These four lines enclose just the affinity region. The center of this 
area is the point (2c1 – i1, 2c2 – i2), i.e. the point where the affinity 
function has its maximum. Figure 2 shows the form of the affinity 
region for the parameter values c1 = 5, c2 = 3, i1 = 2, i2 = 4, and L = 
1. The affinity region is a rhombus with length of the side 2  and 
therefore size 2. It may be surprising that the size of the affinity 
                                                           
1 Hart and Ross use a slightly different definition. They assume a space of 
restricted size and define the symmetry of positions with respect to the size of 
the space. 

region is not equal to L (= 1), but this is a consequence of the 
definition of the affinity function. 
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Figure 2. The shape-space according to Bersini’s affinity function 

The intersection points of the four straight lines that form the 
rhombus can be easily computed. For instance, the intersection of 
the lines of equations (2) and (3) and of lines number (2) and (4) 
respectively are (2c1 – i1 – L, 2c2 – i2) and (2c1 – i1, 2c2 – i2 – L) 
respectively. These two points together with the center of the affinity 
region form an isosceles right-angled triangle with legs of length L 
and therefore with a hypotenuse (which is the side of the rhombus) 
of length 2⋅L . Therefore the size of the affinity region is 2L2. 

Inside the rhombus and only there, the affinity function has positive 
values, decreasing linearly from the center to the sides, thus the 
function has the form of a pyramid. Each of the lines enclosing the 
affinity region divides the two-dimensional space in two halves. 
Consider e.g. line number (2). For the points of the space for which 
holds x1 + x2 > (2c1 – i1) + (2c2 – i2) – L and which are located right 
above the line, the value of the affinity function is greater than zero 
because here we have the first case considered above where 

( ) ( ) ( ) ( )22212121 2200 xicxicLtCxxaff ii −−+−−>∧>⇔>,  (6) 

The last part of this condition slightly transformed is 

 ( ) ( ) ( )212221 22 xxicicL +−−+−>  (7) 
 ( ) ( ) Licicxx −−+−>+ 222121 22  (8) 

which is exactly the property of the points in question. Similar 
considerations can be made for the other lines. 

3. SOME VARIANTS OF BERSINI’S 
AFFINITY FUNCTION 

As was shown in the previous section, Bersini’s affinity function has 
the nice property that it not only describes the course of that function 
but also the form and location of the affinity region by dividing the 
two-dimensional space by a rhombus. In this section we will present 
three variants of Bersini’s affinity function with different forms of 
the affinity region. The first one defines the affinity region as a 
rectangle in axes parallel position and the second one as a square in 
an arbitrarily rotated position. The third variant is an affinity 
function with a circular affinity region. The affinity function has the 
form of a cone. The first form of the affinity function is the 
following: 

 

( ) ( )
( ) ( )

( ) ( ) 




















++

−−−−−
−⋅=

222111

222111
21

22

22

xicsxic
xicsxic

LtCxxaff ii ,

 (9) 
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s is used as a “scaling parameter” to differentiate the lengths of the 
sides. The range of s is 0 < s. Since the value of the expression that 
is subtracted from L is greater or equal to 0, the maximum value of 
the affinity function is achieved if 

 ( ) ( )
( ) ( ) 022

22

222111

222111

=−−+−−

+−−−−−

xicsxic

xicsxic  (10) 

From (10) it follows that the center of the affinity region is the point 
with maximum affinity, like in section 2. As before, affi(x1, x2) is 
zero if Ci(t) = 0 or 

 ( ) ( )
( ) ( ) 











−−+−−

+−−−−−
=

222111

222111

22

22

xicsxic

xicsxic
L  (11) 

Equation (11) results in four different cases like in section 2 and it is 
easy to see that from these cases the following four equations for the 
borderline of the affinity region can be derived: 

 2222 111111 LicxLicx +−=−−=  (12) 

sLicxsLicx 2222 222222 −−=+−=  (13) 

Obviously, this is a rectangle with side lengths L and L/s 
respectively in axes parallel position. Its size is L2/s. The second 
variant of Bersini’s definition is the following: 

 ( ) ( )
( ) ( )

( ) ( ) 


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
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 (14) 

Here the range of r can be chosen as −1 ≤ r ≤ 1. This definition is 
similar to that of equation (9) but more symmetrical insofar as both 
coordinates of the region are modified. As before, the center of the 
region is the point of maximum affinity. As above, the regions with 
affi(x1, x2) = 0 are the border lines of the affinity region (except for 
the case Ci(t) = 0). They are defined by the following four equations: 

( ) ( ) ( )( ) ( )( ) Licricrxrxr −−−−−+=−−+ 221121 212111  (15) 
( ) ( ) ( )( ) ( )( ) Licricrxrxr +−++−−=++− 221121 212111  (16) 

( ) ( ) ( )( ) ( )( ) Licricrxrxr −−++−−=++− 221121 212111  (17) 
( ) ( ) ( )( ) ( )( ) Licricrxrxr +−−−−+=−−+ 221121 212111  (18) 

Again, lines (15) and (18) are parallels and also lines (16) and (17). 
The gradient of line (15) is (r+1)/(r−1) and that of line (16) is 
−(r−1)/(r+1), so these two lines are orthogonal, correspondingly for 
the others. Thus, the affinity region is in fact a rectangle. The 
corners of the rectangle are 

 
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2 222211 r
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Lic ,  (19) 
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Lic ,  (22) 

All sides have the same length, namely 12 2 +rL , so the 
rectangle is in fact a square of size 2L2/(r2 + 1) rotated by some 
angle against the axes. The length of the sides and the size of the 
square depend on r. The maximum of the size is achieved for r = 0 
and the minimum for r = 1. Consider these two special cases. For r = 
1 we get from (14) the definition of equation (9) with s = 1, i.e. the 
square is parallel to the axes. For r = 0 we get Bersini’s original 
definition (equation (1) except for the factor ½), i.e. the square is a 
rhombus. 

The third variant of the affinity function defines an affinity region 
with circular form and thus the function has the form of a cone. The 
definition of the function is simply that of a circle with center (2c1 – 
i1, 2c2 – i2) and with L as the radius: 

( )
( ) ( )( ) ( )( ) 


 −−+−−−⋅

=
2

222
2

111

21

22 icxicxLtC

xxaff

i

i ,  (23) 

The affinity function has its maximum at the center of the circle 
since here the square root disappears. It is zero where 

( )( ) ( )( )2
222

2
111 22 icxicxL −−+−−=  which is equivalent to 

( )( ) ( )( )2
222

2
111

2 22 icxicxL −−+−−=  and this is exactly the 
borderline of the circle. For points outside the circle the affinity 
function has negative values since for those points 

( )( ) ( )( )2
222

2
111 22 icxicxL −−+−−< . The size of the circle is 

πL2. Figure 3 shows this type of affinity region. The affinity function 
has the form of a cone. 
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Figure 3. The shape-space with circular affinity region 

4. AN ASYMMTERIC VARIANT OF 
BERSINI’S AFFINITY FUNCTION 

This variant of the affinity function is the most general one. It is 
motivated by the work of Hart and Ross who describe some 
experiments with asymmetric affinity regions. We want to define 
such an asymmetric region in accordance with the type of affinity 
function that has been used throughout this paper. In all the variants 
of the affinity function described so far the point with maximum 
affinity is the center of the region and in this sense they are 
symmetric. Thus, an asymmetric region can be defined as one where 
the point of maximum affinity is not the center. However, any 
modification of the definition of the function itself only affects the 
form, the size, and the position of the affinity region but keeps its 
symmetry. 

In order to define an affinity function with asymmetric affinity 
region we have to depart somehow from the type of functions 

97



discussed in sections 2 and 3, while still keeping the essential 
properties, namely linear gradients from the point of maximum 
affinity to the sides of the region and negative values outside the 
region. In addition, the affinity region should be a rectangle of 
arbitrary size, position, and rotation angle with respect to the axes. In 
contrast to Bersini’s definition which is based on the center of the 
affinity region and implies a point symmetric region, the new 
definition is based on the affinity region which is chosen as an 
arbitrary rectangle. The rectangle is shaped by four straight lines 
which are parallel or orthogonal to each other in an appropriate way. 
Figure 4 illustrates these prerequisites. 

 

l1 

l2 

l3 

l4 

x1 

x2 

 
Figure 4. Four straight lines forming a rectangle 

Because of the properties of being parallel or orthogonal, 
respectively, the lines can be defined by the following equations: 

 
1211 bxaxl =−  (24) 

 
11212 dbxaxl +=−  (25) 

 
2213 baxxl =+  (26) 

 
22214 dbaxxl +=+  (27) 

The vertices of the rectangle can be computed from these equations 
in the usual way yielding 
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The two sides of the rectangle have the lengths 

 
12

1

+a
d   and  

12
2

+a
d  (32) 

respectively. The point of maximum affinity shall be located inside 
the rectangle at an arbitrary position, and the affinity function should 
have linear gradients from that point to the sides of the rectangle. 
Figure 5 illustrates this situation. t is the point of maximum affinity. 
The lines m1, …, m4 mark the edges of the (lopsided) pyramid that 
shall be formed by the desired affinity function. The point t can be 
computed like the point c4 as the crossing point of a straight line 
parallel to l1, shifted by some value e1, and a line parallel to l3, 
shifted by e2: 
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Figure 5. The form of the affinity function with asymmetric affinity 

region 

 ( ) 
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The affinity function shall have the form of a pyramid and the sides 
of a pyramid have linear gradients. The height of the pyramid is 
denoted by h. h corresponds to the concentration of the element i in 
the definitions of section 2 and 3, i.e. Ci(t). In order to compute the 
gradients, we need the distances between t and all sides of the 
affinity region as indicated in figure 5 by the dashed lines. These 
lines together with the sides of the rectangle form four small 
rectangles included in the affinity region, thus the distances can be 
computed in the same way as the lengths of the sides of the outer 
rectangle (cf. equation (32)). This gives the following values: 

 ( ) ( )
11 2
11

22
1

1
+

−=
+

=
a

edltdist
a

eltdist ,,  (34) 

 ( ) ( )
11 2
22

42
2

3
+

−=
+

=
a

edltdist
a
eltdist ,,  (35) 

Now consider an arbitrary point x = (x1, x2) inside the triangle 
formed by the lines l1, m1, and m2 (this triangle will be denoted as ∆1 
in the following, correspondingly for the other three triangles) and 
assume its distance from l1 is v1. The value of the affinity function at 
x can then be computed as 

 ( ) ( )1

1
211 ltdist

hvxxaff i ,
, =  (36) 

However, a value like that of equation (36) can even be computed 
for points outside the triangle ∆1, i.e. for arbitrary points in the 
affinity region and even outside as we will see later. In addition, the 
equation (36) can be generalized such that it holds in the same way 
for all sides lj: 

 ( ) ( )j

j
ij ltdist

hv
xxaff

,
, =21

 (37) 

In order to get rid of the parameters ej contained in the expressions 
dist(t, lj) and vj the values vj are computed similar to the expressions 
dist(t, lj) with a shifting value fj (corresponding to ej): 
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From equation (37) the values of e1 and e2 can be computed using 
the coordinates of t and correspondingly the new values f1 and f2 
using the coordinates of x as follows: 

 battebtate −+=−−= 2121211
 (39) 

 baxxfbxaxf −+=−−= 2121211
 (40) 

Inserting the e-values in the dist(t, lj) expressions and the f-values in 
the v-expressions and altogether in the equations of type (37) we get 
the values of the affinity function for the points in the four triangles 
separately: 

 ( )
121

121
211 btat

bxaxhxxaff i −−
−−=,  (41) 

 ( ) ( )
( )1211

1211
212 btatd

bxaxdhxxaff i −−−
−−−=,  (42) 

 ( )
221

221
213 batt

baxxhxxaff i −+
−+=,  (43) 

 ( ) ( )
( )2212

2212
214 battd

baxxdhxxaff i −+−
−+−=,  (44) 

Each of the four values affij(x1, x2) can be computed for arbitrary 
points inside and outside the affinity region. It is easy to see that 
they can adopt negative values for points outside the affinity region, 
more precisely: affi1(x1, x2) is negative for points below the line l1, 
correspondingly for the other lines. Thus, affi1(x1, x2) defines an 
inclined plane which is zero at line l1, negative below and positive 
above the line, correspondingly four the other three values affij(x1, 
x2). This is indicated in figure 6 for affi1(x1, x2) and affi3(x1, x2). 
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Figure 6. Inclined planes formed by the affinity values affi1(x1, x2) 

and affi3(x1, x2) 

Now we are ready for the definition of the affinity value for an 
arbitrary point in the two-dimensional space: 
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In order to show that this definition has the required properties we 
first must check its value at point t. From equations (41) – (44) it is 
easy to see that affji(t1, t2) = h for i = 1, …, 4. Next, it must be shown 
that affi(x1, x2) = affi1(x1, x2) for all points in the triangle ∆1, 
correspondingly for the other three triangles. In order to do this, the 
equations of the lines m1 and m2 are required (cf. figure 5). m1 has 

the general equation x2 = px1 + q. The parameters p and q can be 
determined by inserting the coordinates of the points c1 (cf. equation 
(28)) and t since both points are located on m1. This yields equation 
(46) for m1 and correspondingly equation (47) for m2. 
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Though these equations look a bit clumsy it is easy to show that e.g. 
t is on both lines. Now we claim that for the points inside ∆1 the 
affinity value must satisfy the following condition: 
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The three parts of this condition state that x must be located above l1, 
below m1, and below m2. Actually, we do not have to show the first 
part of the condition since affi1(x1, x2) is defined for points below l1 
as well, thus the condition can be weakened by skipping the first 
line. Assume affi1(x1, x2) ≤ affi3(x1, x2). This is equivalent to 

 
221

221

121

121

batt
baxx

btat
bxax

−+
−+≤

−−
−−  (49) 

A straightforward reformulation of inequation (49) results in the 
condition 
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which is exactly the second part of condition (48). Note that the 
expressions of all steps of this reformulation are logically equivalent. 
Similarly, the assumption affi1(x1, x2) ≤ affi4(x1, x2) leads to the 
condition 
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and this is the third part of condition (48). Finally, to complete the 
proof it has to be shown that affi1(x1, x2) ≤ affi2(x1, x2). This 
assumption leads to the condition 
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which states that the points on line l1 are located below a line 
parallel to l1 and through t which is trivially true. Condition (52) 
describes the fact that the two inclined planes defined by affi1(x1, x2) 
and affi2(x1, x2) intersect at that line and that for points below the line 
affi1(x1, x2) ≤ affi2(x1, x2) holds and for points above it affi1(x1, x2) ≥ 
affi2(x1, x2). In total we have proved condition (48). For a complete 
proof the same must be done for the triangles ∆2, ∆3, and ∆4. 
However, these cases are similar to the case of ∆1 and are left to the 
reader. 

Bersini’s original definition of the affinity function can be 
considered as a special case of the function given by equation (45). 
We just have to insert for the parameters in (45) the special values 
that characterize Bersini’s definition: a = 1, d1 = d2 = 2L, and t = (2c1 
– i1, 2c2 – i2). Lines l1 and l3 (cf. figure 5) both go through the point 
(2c1 – i1, 2c2 – i2 – L), thus we get the equations 

( ) ( ) ( ) ( )LicicbLicicb −−+−=−−−−= 2211222111 2222 (54) 

Inserting all these values in equation (45) yields 

 

( )
( )
( )
( )
( ) 


















−+−
−+−

−+
−+

−−−
−−−

−−
−−

⋅=

221

221

221

221

121

121

121

121

21

2
2
2
2

bttL
bxxL

btt
bxx

bttL
bxxL

btt
bxx

h

xxaff i

,

,,

min

,

 (55) 

Since t1 – t2 – b1 = 2c1 – i1 – (2c2 – i2) – (2c1 – i1 – (2c2 – i2) – L) = L 
and t1 + t2 – b2 = 2c1 – i1 + 2c2 – i2 – (2c1 – i1 + 2c2 – i2 – L) = L 
equation (55) can be transformed to 
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Considering the regions where affi(x1, x2) = 0 we get from equation 
(56) the lines of equations (4), (3), (2), and (5) in this order. This 
shows that Bersini’s affinity function is just a special case of that of 
equation (45). 

5. SOME EXPERIMENTAL RESULTS 
Bersini not only presented a new approach to the definition of 
affinity in his paper but also a simulation procedure which was 
aimed to support the self-assertion view. The procedure is based on 
the total affinity that is exerted by all immune elements on some 
element j. Let (x1, x2) be the position of that element. The total 
affinity on j is defined by 

 ( )∑=
i

ij xxaffAff 21,  (57) 

The simulation procedure tries to keep the concentration of an 
immune element j between the two bounds low and high. It controls 
the concentration by the following steps 

 if low < Affj < high then Cj(t) = Cj(t) + 1 

   else Cj(t) = Cj(t) − 1 

 if Cj(t) = 0 then element j is eliminated 

A new element is added at each time step with some initial 
concentration Cj(0). In contrast to antibodies, the concentration of 
antigens can only decrease according to the following rules: 

 if low < Affj then Cj(t) = Cj(t) − k∗(Affj/low) 

 if Cj(t) = 0 then antigen j is eliminated 

k is a time rate. New elements are added to the system at random 
positions. We implemented the system in Matlab which is well 
suited for simulations and graphical output. Depending on the values 
of the parameters low, high, and k, the system typically evolves in 
such a way that a line develops consisting of immune elements with 
high concentration which divides the shape-space in two or more 
sections. Neighboring sections have the property that in one of them 
immune elements, in particular antigens, can survive, a so-called 
tolerant zone, while in the other the elements are removed, a so-
called reactive zone. Bersini interpreted this result as a confirmation 
of the self-assertion view of the immune system. Figure 7 shows a 
typical result of this kind, achieved after 22.000 simulation steps. 

 
Figure 7. The result of a simulation run with the original affinity 

function 

The dark (blue) points on the line indicate the antibodies with high 
concentrations. On the right hand side below the line is the tolerant 
zone. It still contains other immune elements but with low 
concentration compared to that of the elements on the line. We were 
interested in the behavior of the system when operating on the 
various affinity functions defined in the previous sections. We 
emphasized the course of the separating lines depending on the form 
and the orientation of the affinity region by straight (red) lines. Also, 
the respective affinity regions are added to the figure. Figure 8 
shows an alternative case for the rhombus like region. 
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Figure 8. The result of a simulation run with the rhombus as affinity 

region 

The affinity region can be rotated as defined by the function of 
equation (15) by an arbitrary angle. For an angle of 45° we get an 
axes parallel square. The result of the simulation is shown in figure 
9. For the affinity function of equation (10) (axes parallel rectangle) 
a typical result of the simulation is that of figure 10. 

 
Figure 9. The result of a simulation run with the affinity region as a 

square 

 
Figure 10. The result of a simulation run with the rectangle as 

affinity region 

For an affinity function defined as a cone (cf. equation 24) (or a 
paraboloid), i.e. affinity functions with circular affinity region, the 
separating lines are no longer straight, rather they have the form of 
curves like that of figure 11. 

 
Figure 11. The result of a simulation run with a circular affinity 

region 

From figures 8 to 11 it is obvious that the form of the separating 
lines strongly depends on the form of the affinity region. This is 
confirmed by the results of the simulation runs with the affinity 
functions of equations (45), i.e. the asymmetric functions forming 
lopsided pyramids. Figure 12 shows a result for an affinity function 
of this type. Also for these functions the separating lines obviously 
depend only on the form and the size of the affinity region. 

 
Figure 12. The result of a simulation run with a lopsided pyramid as 

affinity function 

A closer look on the results of the simulation runs reveals that the 
tolerant zone and the reactive zone are closely related to each other. 
Actually, the reactive zones are point symmetrical to the 
corresponding tolerant zones and are even identical to the tolerant 
zones in their sizes except for a band of width L (the parameter that 
determines the size of the affinity region). The rest of the reactive 
zone can be easily seen as being identical to the corresponding part 
of the tolerant zone as figures 13 and 14 show. Bersini wondered 
“why a completely symmetrical simulation leads to unsymmetrical 
outcome” [1]. But actually, the outcome is symmetrical in the sense 
described here, and the fact that it is point symmetrical to the center 
of the space is a direct consequence of the complementarity based 
affinity function. 
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Figure 13. Correspondence between tolerant and reactive zones for 

a circular affinity region 

 
Figure 14. Correspondence between tolerant and reactive zones for 

a rhombus like affinity region 

Bersini interpreted his experiment in the context of a simulation of 
the immune system with the aim to support the self-assertion view. 
But he also mentioned possible applications in AIS. We think that 
the results of the simulation runs can be considered as classifiers. 
The separating lines that are produced give a clear distinction 
between to classes of entities, those in the reactive zone and those in 
the tolerant zone. The separating lines can be considered as 
approximations to piecewise linear functions if the underlying 
affinity function uses a Manhattan metric. 

Look for instance at figure 8 or 9. From the coordinates of the 
antibodies on the separating line the definition of the linear pieces 
can be easily derived. The composition of these pieces describes the 
separating line. By means of this line for each point in the space it 
can be determined to which of the two zones or classes it belongs. If 
for instance the shape-space is taken as a representation of a two-
dimensional data set, the separation represents a classification of the 
set into two classes that was achieved by the simulation. Thus, the 
simulation can be considered as a training process. 

This type of separation of the data space by a number of linear 
equations is similar to one that can be achieved by a decision tree 
procedure. Figure 9 is an example for an axes parallel separation, 
while figure 8 shows a non-axes parallel separation. The form of the 
separation depends on the form and the size of the affinity region, as 
has been shown in this paper, but also on the training  examples,  i.e.  

the antigens and antibodies. This was already described by Bersini 
who noticed that the results of his experiments strongly depended on 
the positions of the antigens that were introduced. 

6. CONCLUSION 
We have tried to reveal some of the properties of Bersini’s 
experiment on self-assertion. In the center of this experiment is the 
affinity function. We have shown that and how the results of the 
simulation runs strongly depend on that function. The function 
implicitly defines a certain region of the shape-space, the affinity 
region. This region has to be taken into account because it is exactly 
that part of the shape-space where the affinity function has positive 
values. 

Bersini used a Manhattan distance function (or metric) for his 
definition; therefore his shape-space is a Manhattan space. But this 
is not a necessary restriction, rather the affinity function can be 
generalized in different ways, for instance using Euclidian metric as 
we have done in the definition of equation (23). The function need 
not have a maximum at the center of that region as in Bersini’s 
original function, it may have the maximum at an arbitrary point 
inside the affinity region. 

We believe that Bersini’s affinity function has further interesting 
properties which are worth an investigation. For instance, the two 
zones, at least the tolerant zone, may have an internal structure, i.e. 
subzones with varying concentrations of the antibodies. We assume 
that the concentrations of antigens and antibodies may have a typical 
temporal course which is different for those in the reactive zone and 
the tolerant zone and in particular for the antibodies in the separating 
lines. One could also wonder what would happen if an antigen with 
very high concentration is introduced into the shape-space, once the 
separation of the space has been established. It should have some 
influence and, according to the algorithm, could even lead to a 
reshaping of the separation. Finally, a more practical problem is: 
Can the Bersini experiment possibly be used as a data mining 
method? Which could be its advantages, how would it deal with 
standard problems in that field? For this purpose, however, it should 
be extended to higher dimensions. 
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