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ABSTRACT 
The generic Multi-objective Evolutionary Algorithm (MOEA) 
aims to produce Pareto-front approximations with good 
convergence and diversity property. To achieve convergence, 
most multi-objective evolutionary algorithms today employ 
Pareto-ranking as the main criteria for fitness calculation. The 
computation of Pareto-rank in a population is time consuming, 
and arguably the most computationally expensive component in 
an iteration of the said algorithms. This paper proposes a Multi-
objective Evolutionary Algorithm which avoids Pareto-ranking 
altogether by employing the transitivity of the domination 
relation. The proposed algorithm is an elitist algorithm with 
explicit diversity preservation procedure. It applies a measure 
reflecting the degree of domination between solutions in a steady-
state replacement strategy to determine which individuals survive 
to the next iteration. Results on nine standard test functions 
demonstrated that the algorithm performs favorably compared to 
the popular NSGA-II in terms of convergence as well as diversity 
of the Pareto-set approximation, and is computationally more 
efficient.  

Categories and Subject Descriptors 
I.2.M Computing Methodologies 

General Terms 
Algorithms 
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1. INTRODUCTION 
The optimization of multiple conflicting objectives is a common 
denomination for many problems in engineering. In the presence 
of conflicting objectives, no single solution achieves optimality in 
all objectives. Pareto-optimality, proposed by eminent economists 

Pareto and Edgeworth, captures the inevitability of trade-off 
between non-commensurable objectives in a criterion commonly 
employed in multi-objective optimizations [1]. A solution is 
Pareto-optimal if no other solution could be found in the feasible 
region which performs better in at least one objective and 
equivalent or better in the rest. According to the criterion a multi-
objective optimization has a set of Pareto-optimal solutions. The 
image of this set of solutions in the objective space, the Pareto-
front, displays the objective trade-off characteristics for the 
problem.  
Such MOEAs employ fitness functions based on the Pareto 
domination relation to achieve selection pressure towards the 
Pareto-optimal front. Domination is defined as follows [1]. For a 
set of objectives F = {f1, f2 ,…fm,… , fM} and solutions Xi and Xj , 
solution Xj dominates Xi  if and only if:  

1. nmMmi
mf

j
mf ≠∈≤ ],,1[ allfor    

2. Mni
nf

j
nf ≤≤< 1for     

Otherwise, the two solutions are said to be non-dominated.  The 
Pareto-optimal set consists of solutions which are non-dominated 
with respect to all other feasible solutions.  
The common practice in MOEAs is to construct a Pareto-rank, or 
domination-rank, which expresses the candidate solutions’ extent 
of domination in the population. This population may be taken 
from the current population and/or an archive population. Among 
solutions with identical Pareto-rank, selection is conducted based 
on a crowding measure. While Pareto-rank promotes convergence 
to the Pareto-front, crowding measure promotes diversity on the 
front. NPGA [2], PESA-II [3], PAES [4], NSGA-II [5], SPEA2 
[6], HPMOEA [7], and OMOEA-II [8] are some of the more 
recent representatives of high-performing MOEAs designed on 
these principles.  
Pareto-ranking promotes convergence of the algorithm, but is 
widely recognized as an expensive procedure. In the algorithms 
mentioned previously, Pareto-rank assigns candidate solutions a 
score from the number of candidate solutions which dominate 
and/or are dominated by it. The ranking process is arguably the 
most computationally-expensive building block of an MOEA, 
even in highly-efficient NSGA-II [5], forming the lower bound on 
the computational complexity of the MOEA.  
Improving the efficiency of MOEAs is a concern of several recent 
papers. Jensen [9] proposed modified data structures and search 
algorithms to increase the efficiency of Pareto-ranking procedures 
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in some of the more established MOEAs. Although the approach 
shows promise, tangible results are minimal. Researchers have 
proposed algorithms which altogether avoid expensive Pareto-
ranking. The Artificial Life community has proposed algorithms 
circumventing the need for expensive Pareto-ranking [10-12]. 
Because of the computational model, explicit Pareto-ranking may 
be replaced by simple binary-tournament-style interaction of 
individuals. SEAMO [13], proposed in 2004, implements a 
steady-state evolutionary algorithm with simple replacement 
strategy based on pair-wise comparison of generated child against 
a subset of the population. Although the performance is 
comparable to NSGA-II on some test functions, SEAMO does not 
fare well in the challenging test problem ZDT6 [14]. 
In this paper the authors propose a MOEA which relies on a 
steady-state replacement strategy based on a measure of 
domination degree instead of domination extent. The algorithm is 
not a steady-state evolutionary algorithm. The term steady-state 
refers to the serial manner in which each of the children produced 
in the current iteration is considered for propagation to the next 
iteration. The steady-state replacement strategy exploits the 
transitivity of the domination criteria to achieve selection pressure 
towards the Pareto-front with lower computational cost.  
The paper is organized as follows. In section 2 a study on the role 
of Pareto-ranking including a review of representative MOEAs 
with a highlight on the fitness assignment scheme and selection 
procedure is given. In section 3 the proposed algorithm is 
described, followed by the simulation results on nine well-known 
test problems in section 4. The results show that the proposed 
algorithm provides a simple and inexpensive alternative to Pareto-
ranking, and performs extremely well on the test problems. 

2. PARETO-RANKING IN MOEA 
Selection is a key factor in an Evolutionary Algorithm. Since 
Goldberg’s suggestion [15], MOEAs have been designed with a 
selection strategy dependent on Pareto-ranking along with niching 
mechanism. In this section we present a review of a number of 
well-known baseline MOEAs with a focus on the selection 
criteria. A baseline MOEA here denotes an MOEA comprising 
the underlying framework of population initiation, selection, off-
spring generation and population replacement.  
In the early nineties, Horn et al. (NPGA [2]) proposed an 
algorithm with restricted selection strategy. Population 
replacement is accomplished by binary tournaments with 
reference to a randomly selected subset of the current population. 
If either of the randomly-picked candidates is dominated by any 
member of the reference set, the other is selected to proceed to the 
next generation. If both or neither are dominated by the reference 
set, a fitness sharing score based on diversity breaks the tie. The 
effect of this approximation is increased computational efficiency 
but decreased Pareto-approximation quality compared to 
algorithms employing a complete population wide Pareto-ranking. 
The (1+1) PAES [4] maintains a single-member population 
evolved through mutation and a non-dominated solution archive. 
Niching is achieved by dividing the phenotype space adaptively 
into identical-sized hyper-cubes. Inclusion into the archive is 
decided by pair-wise comparison between parent and offspring, 
with domination as the main criteria and grid location as the 
second criteria.  

In (1+ λ ) PAES and )( λμ +  PAES fitness is calculated based 
on a domination score and grid location. Domination score of -1 is 
assigned to solutions dominated by any member of the archive, 
while the score is equal to the number of solutions in the archive 
dominated by the solution. Solutions with better domination score 
always have better fitness regardless of its grid location. Binary 
tournament for parent selection and inclusion into the archive are 
based on this fitness score.  
SPEA2 [6] also maintains an archive of non-dominated solutions. 
A strength figure, defined as the number of dominating solutions 
in the combined archive and current population, is computed for 
each member of the population. A solution is assigned a fitness 
denoting the sum of the strength of other solutions in the 
combined population which dominate it, and a density figure 
which is the inverse of the distance to the k-th nearest neighbor in 
the combined population. Binary tournament with replacement is 
applied to the combined population to obtain candidates for 
recombination and mutation. The archive at the next iteration 
includes solutions with fitness lower than 1 (non-dominated with 
respect to the combined population). A constant archive size is 
maintained, by including solutions with the next best fitness 
values or by pruning the current members of the archive 
according to the distance measure, as required.  
In [16], the fitness of a solution is determined as the number of 
solutions in the current population which dominates it. Deb et al. 
in [5] proposed a highly efficient non-dominated sorting 
algorithm to compute this non-domination rank. Non-dominated 
sorting iteratively finds the layers of non-dominated fronts. 
NSGA-II applies the non-domination rank to the parent selection 
and generation replacement. A fast crowding-distance-estimation 
is employed to break ties in parent selections in binary 
tournaments. The population at the next iteration is obtained by 
selecting solutions from the combined offspring-parent population 
layer by layer from the best non-dominated front onwards, with 
the crowding measure to break ties between solutions on the same 
front.  
Recognizing the complexity of fitness assignment based on 
population wide Pareto-ranking, Mumford proposed a steady state 
evolutionary algorithm (SEAMO [13]) with limited comparisons 
in the generation replacement strategy. The steady state algorithm 
compares each generated offspring with the parents. A 
comparison between parents and offspring is conducted and the 
dominated individual is discarded. In the case of non-domination 
the algorithm selects randomly from the population an individual 
which is dominated by the offspring. This individual is then 
replaced by the offspring. An additional selection rule allowing a 
non-dominated offspring to replace the parent when the offspring 
is more desirable could be inserted to enhance the spread of the 
solutions. 
Studies conducted in the performance of the multi-objective 
algorithms ([5-6], [13-14]) show that NSGA-II and SPEA2 are 
among the most competitive algorithms for a set of difficult test 
problems. Population wide comparison aided by elitism seems to 
be crucial to the convergence property of the algorithm. NPGA 
performs poorly because it approximates Pareto-rank with 
comparisons against a fraction of the population.  
Even in the absence of Pareto-ranking, population-wide 
comparison based on the Pareto-domination criteria 
unsurprisingly seems to improve the performance of the 
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algorithm. In [13] a variety of population replacement strategy 
was examined. It was observed that Pareto-front approximation 
obtained was improved when the entire population instead of only 
the parents was considered in deciding whether or not to include 
the offspring.  
Pareto-rank is a population-dependent measure. The phenomenon 
above can be understood if we consider the non-transitivity of the 
non-domination relation. Domination in the Pareto-optimality 
sense imposes a partial order on the population which is transitive 
and asymmetric [1]. The induced non-domination relation, is not 
transitive. Because of this non-transitivity, pair-wise comparison 
between two solutions is strictly necessary to establish 
domination or non-domination between them except in a special 
case. This is explained via Figure 1 which shows three candidate 
solutions A, B and C in a problem with two objective functions in 
the objective space.  
                                                                                                       
               
                                                                C’                                               
                                         C   

                       2f                                B         

                                                 A 
                     

1f  

Figure 1 Non-transitivity in Pareto non-domination relation 

 
The domination or non-domination of the points A, B and C with 
respect to one another can only be obtained by comparing each 
pair, except when C is located in the shaded region, where the 
transitivity of the Pareto-domination relation may be used to infer 
the relation of A and C given the relation between A and B, and B 
and C.  
With more comparisons more information is available on how 
close a candidate solution is to the Pareto-front in comparison to 
other solutions in the population. Accordingly, the information 
gained avails a more accurate selection pressure. Whether Pareto-
ranking or some other mechanism is employed in the selection, 
when Pareto-optimality criterion is used population-wide 
comparison benefits the convergence property of the acquired 
Pareto-front approximation. In the next section a multi-objective 
genetic algorithm without explicit Pareto-ranking is proposed. It 
employs population-wide comparison, but in such a way that the 
special case mentioned above is exploited to reduce the 
computation time. Because of the population-wide comparison, 
the complexity of the algorithm is as NSGA-II )( 2MNO . 
However the constant term in the complexity is lower than that in 
NSGA-II. Over many iterations this constant factor will bring 
about a significant difference in actual computation time, as is 
demonstrated in section IV. 
At this juncture the authors would like to highlight that the focus 
of this paper is on the baseline MOEA. Many modifications and 
enhancements to the above-mentioned baseline MOEA have been 
proposed to improve the efficiency and effectiveness. The 
baseline algorithms have also been extended to address more 
specific problems in multi-objective optimization. Adaptive 

PAES [17] modify the representation scheme of the standard 
PAES and thereby improved the performance. The framework of 
NSGA-II has been used with modification in offspring generation 
mechanism in OMOEA and OMOEA-II [8], combined with a 
thermodynamic-inspired Gibb’s entropy figure to form the rank of 
a particular solution in HPMOEA[7], employed in conjunction 
with the S-measure as the secondary selection criteria in SMS-
EMOEA[18] to produce highly effective algorithms with very 
good convergence and distribution characteristics.   
Many other variants have been introduced. However, the paper is 
not concerned with enhanced versions of the algorithms. The 
design of the proposed algorithm outlined in the next section as 
well as the simulation results and performance should be viewed 
in this light. It is to be expected that the modifications and 
enhancement correctly applied to the proposed algorithm will 
yield similar improvements on the performance.  

3. THE PROPOSED APPROACH 
The baseline multi-objective genetic algorithm proposed here 
employs an elitism strategy similar to that in NSGA-II, but is 
distinct in that no Pareto-ranking is performed on the population. 
Parent selection is conducted in a simple binary tournament while 
generation replacement is achieved through a steady-state 
procedure based on the notion of the degree of domination.  

The selection strategy in general is distinct from that employed in 
Horn and Nafpliotis’ NPGA in two respects. Firstly NPGA in 
effect conducts Pareto-ranking within a subset of existing 
candidate solutions at any particular iteration whereas the 
proposed algorithm does not employ Pareto-ranking. Secondly the 
steady-state replacement model includes comparisons with all, 
instead of a randomly selected subset, of existing solutions at any 
particular iteration.  

3.1 The main loop 
Initially a population of N candidate solutions is randomly 
generated, and the objective function values of the chromosomes 
are computed. Let us denote this as FParent, an MN × array 
where N is the size of the population and M is the number of 
objectives to be minimized. Binary tournament with replacement 
is employed to select parents from the current population based 
on the Pareto-domination criteria. At this point no ranking of 
candidate solutions is necessary. The two solutions picked at 
random to enter the tournament, S1 and S2, are compared as shown 
in Figure 2:  
Crossover and mutation are applied as usual to the two parents to 
obtain two children. A child population of size N is generated 
such that no duplicates of the parent population and the child 
population are allowed. In the event that a child chromosome is 
identical to another in either the child or parent population, the 
chromosome is destroyed and crossover and mutation is repeated 
to obtain a new offspring. At the completion of the child 
population creation, the objective functions are evaluated for each 
offspring and stored as an  MN × array FChildr. The arrays FParent 

and FChildr are used to determine which child should replace which 
member of the parent population in the generation replacement 
described in the following section. The resulting N-member 
population proceeds to the next generation and the process is 
repeated until the termination criterion is fulfilled.  
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Figure 2 Parent selection criteria 1 
 

3.2 Generation replacement 
In the replacement strategy, each child is considered in 
succession. If it is dominated by any member of the parent 
population, it is discarded. If this individual is non-dominated 
with respect to all members of the parent population, the 
crowding criteria is invoked. Otherwise, for the set of members 
from the parent population which are dominated by this 
individual, a degree of domination is computed and the member 
of the parent population corresponding to the largest degree of 
domination is replaced by this child. The degree of domination is 
computed as the dynamically-scaled difference between the 
child’s objective function values and those of the dominated 
individuals in the parent population.  
In summary, generation replacement is accomplished as follows. 
For each child Cj, subtract from the rows of FParent row j of FChild 
and store the result in a  MN × matrix jΓ . For corresponding 
members of the parent population which dominate or are 
dominated by the child Cj (this may be determined by checking 
the sign of the elements in the respective rows in jΓ ), compute the 

sum of the corresponding rows in jΓ and store this in a 

1 N × array jΔ .  

Elements of array jΔ that correspond to members in the parent 
population which are non-dominated with respect to the child Cj 
are set to zero. The array jΔ is sorted and the member of the 
parent population corresponding to the largest positive number in 

jΔ  is replaced by the child Cj. If no chromosome in the parent 

population corresponds to a positive number in jΔ , the negative 
numbers are considered. If no negative number exists, i.e. if the 
entire parent population is non-dominated with respect to the 
child Cj, then the distance preservation measure is applied to 
choose the member of the parent population to be replaced by Cj. 
The crowding distance estimation in NSGA-II is employed for the 
(parent + Cj) population and the individual with the smallest 
crowding distance is removed from the population.  

The array jΔ approximates the degree of domination between the 
child Cj and members of the parent population if domination 
exists. To avoid one objective dominating another in the 
minimization of a non-commensurable set of objectives, the 
values in jΓ  are scaled dynamically (Figure 3). The scale is 

obtained as the normalized difference between the largest and 
smallest values of each respective objective function obtained in 
the current parent population.  
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Figure 3 Generation replacement with adaptive scaling 
 
An alternative strategy to determine the degree of domination is 
illustrated in Figure 4. At each replacement round involving a 
member of the child population, one of the M objectives, say 
objective k, is randomly selected. Note that only the members of 
the parent population which are dominated by the child 
population are considered. The individual scoring the worst in 
objective k is discarded (Figure 4). 
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Figure 4 Alternative generation replacement  
The generation replacement algorithm presented above was 
described for the minimization of objectives. Maximization 
problems may be handled with trivial transformation of the 
objective functions. 
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3.3  Selection without Pareto-rank 
Parent chromosome is selected in a simple binary tournament 
comparing two parent candidates based on the domination 
relationship between them instead of the extent of their 
domination in the population. When both are non-dominated with 
respect to each other, the one with the largest crowding distance is 
selected. The strategy is pursued based on the observation that the 
domination relationship between two parent candidates is 
sufficient to approximate the relative quality of the parent 
candidates in terms of their proximity to the actual Pareto-front. 
Binary tournament based on Pareto-ranking will yield the same 
winner for cases where one parent candidate dominates the other. 
A difference in the selected parent may occur where both 
candidates are non-dominated. Noting that solutions far away 
from each other are likely to produce better offspring in 
crossover, a candidate occupying the sparser region is selected in 
the proposed algorithm. This allows a greater possibility of 
selecting parents far away from each other.  
The generation replacement algorithm implements elitism by 
retaining the best members of [parent + j-th child (Cj)] population. 
The replacement strategy is steady state in that each child is 
considered in succession. The generation replacement strategy is 
insensitive to the order in which the child solution is considered. 
It takes advantage of the transitivity of the domination relation 
described as the special case in Section II. In the same iteration of 
the main loop, no member of the current population is ever 
replaced by an inferior solution in the Pareto-optimality sense. By 
exploiting this property, a steady-state replacement is able to 
weed out solutions based on the degree of domination in a simple 
manner.  
The crowding distance criterion is considered only when the 
(parent + childj) population are non-dominated. The crowding-
distance criterion is transitive and likewise replacements based on 
the criterion do not deteriorate the spread of the population within 
a single iteration of the main loop.  

4. RESULTS AND DISCUSSION 
To examine the performance of the proposed algorithm, we 
conducted a study with nine bi-objective test functions. These test 
problems are widely employed in studies of MOEAs, exhibiting 
features which often make it difficult for multi-objective GAs to 
converge to the Pareto-front.  The test problems examine the 
performance of multi-objective GA in the presence of a large 
number of decision variables, non-convex and disconnected 
regions in the Pareto-front as well as multi-modality. A summary 
of the test functions is provided in Table 1. For further description 
of the test functions the reader is referred to [19-22] and [14-15].  
The comparison with NSGA-II was undertaken because of its 
competitive performance in terms of convergence, solution 
diversity and computational efficiency. Other similar comparative 
studies evaluating the performance of NSGA-II against other 
similarly competitive algorithms are available for reference.  
The simulations were designed very closely to that in [5]. Initial 
solutions are generated randomly. The chromosomes were real-
coded. Simulated binary crossover operator [23] and single point 
mutation were employed with crossover probability of 0.9 and 
mutation probability of 0.08. 
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To investigate the effect of avoiding Pareto-rank in the parent 
selection criteria, simulations with population of size 100 for 100 
iterations are conducted for two parent selection criteria. The 
criterion in Figure 2 does not employ Pareto-rank while that in 
Figure 5 considers Pareto-rank computed using the non-
dominated sorting in NSGA-II [5].  Figure 6 illustrates the Pareto-
front approximations obtained for the test problem KUR. From 
the figure, it can be seen that no discernable difference exists in 
the Pareto-front approximations obtained with the two parent 
selection criteria. 
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Figure 6 Test problem KUR after 100 iterations: parent 

selection with and without Pareto-ranking 
 
To evaluate the performance of the overall algorithm, the 
proposed approach was run five times for each test problem, with 
a population of size 100 evolved over 250 iterations. The 
experiments were conducted in MATLAB, on a Pentium IV3.00 
GHz CPU.   
Repeated simulations suggested equivalent performance of 
generation replacement strategies described in Figure 3 and 
Figure 4. For the results quoted below parent selection criteria 
described in Figure 1 and generation replacement strategy in 
Figure 3 were employed. Figure 7 shows all non-dominated 
solutions obtained after 250 generations of the proposed 
algorithm. The CPU time for the proposed approach averaged at 
20 seconds, while that for NSGA-II is 9 minutes and 17 seconds. 
From the resulting final populations the average and variance of a 
convergence-metric and a diversity-metric defined in [5] were 
evaluated. The convergence-metric (Υ ) evaluates the proximity 
of the obtained solutions to uniformly-spread points in the true 
Pareto-front while the diversity-metric (Δ ) measures the spread 
and span of the obtained solutions. The results of this study are 
reproduced in Table 2 and 3. Results for a similar experiment on 
NSGA-II are quoted for comparison.   

 
Figure 7 Pareto-front approximation for the 9 test problems   

 
Table 2 Convergence Metric (Υ ) 

Real-Coded NSGA II ([2]) Proposed Approach 
Problem Mean Variance Mean Variance 

SCH 0.0033910 0.0000000 0.0032526 0.0000000 

KUR 0.0289640 0.0000180 0.0076588 0.0000008 

FON 0.0019310 0.0000000 0.0017750 0.0000000 

POL 0.0155530 0.0000010 0.0109732 0.0000006 

ZDT1 0.0334820 0.0047500 0.0184504 0.0000307 

ZDT2 0.0723910 0.0316890 0.0212754 0.0000920 

ZDT3 0.1145000 0.0079400 0.0091456 0.0000004 

ZDT4 0.5130530 0.1184600 0.0020248 0.0000010 

ZDT6 0.2965640 0.0131350 0.0037373 0.0000000 

 
 

The set of results in Tables 2 and 3 show that in terms of 
convergence and diversity, the elimination of Pareto-rank in the 
generation replacement does not have any negative effect on the 
Pareto-front approximation yielded by the proposed algorithm. In 
fact, the proposed algorithm performed comparably or better than 
real coded NSGA-II in the metrics defined for the 9 test problems. 
Likewise, the convergence is better or comparable to that 
obtained in NSGA-II considering the crowding distance measure 
once the (parent + childj) population is non-dominated. This 
improvement performance in terms of spread and convergence 
may be explained by the more aggressive generation replacement 
strategy used in the proposed approach. A child only replaces a 
dominated member in the parent population with the highest 
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domination degree. When the child is non-dominated by the 
members of the parent population, the crowding distance measure 
is immediately considered.  

 
Table 3 Diversity Metric (Δ ) 

Real-Coded NSGA II ([2]) Proposed Approach 
Problem Mean Variance Mean Variance 

SCH 0.4778990 0.0034710 0.0000259 0.0000000 

KUR 0.4147700 0.0009920 0.0000332 0.0000000 

FON 0.3780650 0.0006390 0.0010621 0.0000003 

POL 0.4521500 0.0028680 0.0002600 0.0000000 

ZDT1 0.3903070 0.0018760 0.0428000 0.0001963 

ZDT2 0.4307760 0.0047210 0.0352000 0.0001430 

ZDT3 0.7385400 0.0197060 0.0020600 0.0000001 

ZDT4 0.7061200 0.0646480 0.0117800 0.0000261 

ZDT6 0.6680250 0.0099230 0.0759975 0.0173058 

 
The weakness of the proposed algorithm is that like NSGA-II and 
many other baseline MOEA [24] the population may deteriorate 
across generations, i.e. at iteration j the population may contain 
solutions inferior in the Pareto-optimality sense to those at 
iteration i,where i<j.   

5. CONCLUSION 
A baseline multi-objective genetic algorithm was proposed which 
did not employ Pareto-ranking. The performance of the algorithm 
is generally not inferior to the well-known NSGA-II on nine 
difficult test problems.  This indicates that convergence to the true 
Pareto-front may be promoted by a fitness measure based on the 
estimated degree of domination where such domination exists, 
and a steady-state population replacement strategy.   
Although the population replacement strategy involves 
population-wide comparison in terms of domination, this was 
performed in a manner which exploits the transitivity of the 
Pareto-domination relation and effectually decreases the constant 
term in the )( 2MNO  complexity term. This results in potentially 
significant time saving over multiple iterations of the algorithm. 
The lower computational cost may be highly beneficial especially 
for applications where Pareto-ranking accounts for a considerable 
portion of the computation time.  
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