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ABSTRACT

This paper investigates reinforcement learning (RL) in XCS.
First, it formally shows that XCS implements a method
of generalized RL based on linear approximators, in which
the usual input mapping function translates the state-action
space into a niche relative fitness space. Then, it shows that,
although XCS has always been related to standard RL, XCS
is actually a method of averaging RL. More precisely, XCS
with gradient descent can be actually derived from the typi-
cal update of averaging RL. It is noted that the use of aver-
aging RL in XCS introduces an intrinsic preference toward
classifiers with a smaller fitness in the niche. It is argued
that, because of the accuracy pressure in XCS, this results
in an additional preference toward specificity. A very sim-
ple experiment is presented to support this hypothesis. The
same approach is applied to XCS with computed prediction
(XCSF) and similar conclusions are drawn.

Categories and Subject Descriptors

F.1.1 [Models of Computation|: Genetics Based Machine
Learning, Learning Classifier Systems

General Terms

Algorithms, Performance.

Keywords
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1. INTRODUCTION

Reinforcement learning (RL) deals with the problem of an
agent that has to learn to perform a certain task by inter-
acting with an unknown environment. The agent does not
know anything about the structure of the environment, it
only knows the current environmental state s. It can per-
form an action a selected from a set of available actions,
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and as a consequence of performing a in s it receives a re-
ward r, an indication of how well the agent is behaving in
terms of problem solution. In reinforcement learning, the
agent learns by trying to maximize the amount of reward
received. To accomplish this, the agent usually computes
a value function Q(s,a) which maps state-action pairs into
an estimate of expected cumulative future reward. Rein-
forcement learning algorithms work on two main assump-
tions: that Q(s,a) is represented as a lookup table and that
each state-action pair is visited an infinite number of times.
However, in large problems lookup tables become easily in-
feasible, both because of the memory requirements, and be-
cause it is often impossible to visit every state-action pair
an infinite number of times. This introduces the problem of
generalization: how to compute a compact approximation
of Q(s,a), while reusing previous experience in those areas
of the problem space that are rarely visited. Generaliza-
tion in reinforcement learning is usually solved by methods
of function approximation and the value function Q(s,a) is
approximated by a parametrized function.

Learning classifier systems are a method of reinforcement
learning which provides a different approach to generaliza-
tion. In learning classifier systems the value function Q(s, a)
is represented by a set of possibly overlapping condition-
action-prediction rules, called classifiers, which associate to
the problem subspace (identified by the condition) and to
the classifier action an expected payoff. Classifiers apply-
ing in the same state s, whose condition matches s, and
advocating the same action a combine their predictions to
provide an estimate of Q(s,a). Effective generalization is
obtained by evolving populations of maximally general clas-
sifiers that apply in as many situations as possible while
providing a good approximation of Q(s,a). Classifier pre-
diction has been usually represented as a parameter associ-
ated to the classifier but recently Wilson [27] has introduced
the concept of computed prediction. The typical prediction
parameter is replaced by a prediction function p(s,w) and
a parameter vector w. When a state s is encountered, the
predictions of the classifier applying in s and having action a
are first computed and then combined to provide an approx-
imation of Q(s,a). Computed prediction introduces a new
dimension to the quest for effective generalization, while the
genetic algorithm still searches for the best problem parti-
tioning, computed prediction improves the approximation of
Q(s.a).

The study of the relations between learning classifier sys-
tems and reinforcement learning have been widely studied.



In the recent years, these works have been mainly focused
on Wilson’s XCS [11, 5, 9, 20]. This most probably because
XCS has a stronger relation to RL than other models, in that
it uses a modification of Watkins’s Q-learning [16] to update
the classifier prediction parameter. In particular, it has been
shown that XCS can be formally equated to a rule-based
version of Q-learning [11] in which the genetic algorithm is
used as the search engine for the best problem partitioning.
Later, in [5], XCS was compared to (standard) generalized
Q-learning and it was noted that the typical gradient term
is missing for the classifier prediction update. The gradient
was added to XCS and it was shown to improve XCS perfor-
mance in multistep problems. The same approach was also
applied to XCS with computed prediction (XCSF) in [12],
but no relevant improvements were reported in this case.
The analysis in [5] was extended by Wada et al. [20, 19]
where it was noted that the derivation of gradient descent
provided in [5] was not consistent with standard generalized
Q-learning. Accordingly, another update was proposed [20]
and tested on a strength based XCS [9]. However the results
did not show improvements over the original XCS.

In this paper, we further investigate the relationships be-
tween XCS models and generalized reinforcement learning.
First, we show that both XCS and XCS with computed pre-
diction (XCSF) can be formally viewed as methods of gener-
alized reinforcement learning based on linear approximation.
We consider the two major approaches to generalized rein-
forcement learning, standard RL [16] and averaging RL [16,
8, 14], which was not considered in the comparisons per-
formed in previous studies. Using the equivalence between
XCS models and linear reinforcement learning, we derive the
update formula for XCS and XCSF for standard and averag-
ing RL. Standard RL in XCS and XCSF results in the XCS
update introduced in [20] and in a similar update for XCSF.
We show that XCS and XCSF with gradient descent [5, 12]
actually implement averaging RL and not standard RL as
previously argued in [5]. We also note that averaging RL in
XCS and XCSF introduces, in the minimization of the over-
all prediction error, an additional gradient term which po-
tentially favor classifiers with a small fitness niche-wise. We
suggest that the interaction between this additional gradient
term and the accuracy based fitness introduces an intrinsic
preference toward specific classifiers. Experimental assess-
ment is not a goal of this work. Accordingly, we present two
illustrative experiments involving XCS and XCSF with stan-
dard and averaging RL appears to support the hypotheses
we drawn from the theoretical derivations.

2. REINFORCEMENT LEARNING

In reinforcement learning an agent learns to perform a
task through trial and error interactions with an unknown
environment which provides feedback in terms of numerical
reward [16]. At time ¢ the agent senses the environment
to be in state s¢; based on its current sensory input s; the
agent selects an action a; which it then performs in the en-
vironment. Depending on the state s¢, on the action a:
performed, and on the effect of a; in the environment, the
agent receives a scalar reward ri4+1 and a new state s¢4+1. The
agent’s goal is to mazximize the amount of reward received
or ezpected payoff [16]. The agent achieves this by learn-
ing an action-value function Q(s¢, a¢) that maps state-action
pairs into the corresponding expected payoff. For instance,
Q-learning [21] starts from a random Q(-,-) and, at time ¢,
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it updates the current payoff estimate Q(s¢,at) as,

Qst,ar) — Q(st, ar) + B(Q(st, ar) — Qs ar)) (1)

where, 8 is the learning rate (0 < 8 < 1) and Q(st,at) is
the new estimate of Q(st, a:) computed based on the current
experience as “riy1 + ymaxqeea Q(st41,a)” with a discount
factor v (v € [0,1)).

2.1 Generalized Reinforcement L earning

Reinforcement learning assumes that the action-value
function is represented as a look-up table with one entry for
each state-action pair. However, look-up tables are infea-
sible in problems involving many states since they require
more memory and, most important, more on-line experi-
ence to converge. To tackle large problems an agent must
be able to generalize over its experiences, i.e., to produce ac-
curate approximations of the optimal action-value function
from a limited number of experiences, possibly using a small
amount of storage. In reinforcement learning generalization
is typically implemented by methods of function approxi-
mation: the action-value function Q(s, a) is not represented
as a table but approximated by a function f parametrized
with a vector 8. These methods are also characterized by
an input mapping ¢(-) that translates the state-action space
to a feature space. For instance, in tile coding [16] ¢(-)
maps a continuous state into a binary vector representing
the state membership to a set of overlapping tiles. Thus,
the action-value function Q(s, a) is approximated by a func-
tion f of ¢(-) and @:*

Q(s,a) = f(¢(s,a), ). (2)

The problem of learning Q(s,a) thus translates into the

problem of estimating the parameter vector . This is usu-

ally implemented by gradient descent: at time ¢, 8 is mod-

ified following, with step (;, the direction that reduces the
error Fy in f, i.e.

OFE;

0=0—0———. 3

s 3)

The typical update of the action-value function Q(s,a) is

thus replaced by the update of 6.

2.2 Linear Methods

Linear methods are probably the most important class
of approximators used in reinforcement learning [3, 15, 16].
They assume that the feature vector ¢ (s, a) and the param-
eter vector 6 are of the same size so that the approximated
value of Q(s,a) is simply computed as,

f(¢(57a)70) = ¢(57a)9' (4)

Most of the linear methods in reinforcement learning define,
at time t, the error function F; as,

2 (Qlst,a) — F((s0,00).6))

Ey

= (5)
where Q(st7 at) is the new estimate of the expected payoff
for performing action a; in s¢ (Equation 1). Given the above
error function, gradient descent updates each parameter 6;
as,

0; — 0; + B(Q(Sv a) - ¢)(37 a)a)d)i('sv a)v (6)

!Note that, based on the problem, either 6 or ¢(-) may also
be function of the action a. However, without lacking in
generality, the action may be omitted from the notation [14].




where ¢,(s,a) is the i-th element of the feature vector
¢(s,a), i.e., the gradient of f(¢(s¢,at),0) with respect to
0;. Equation 6, due to Widrow-Hoff [22] and known as Delta
Rule or Least Mean Square rule, can be shown to find, under
adequate assumptions, a local minima of

R 2
S5 (Qsia) — F(9(s1,000,0)) )
3

that is the sum, over all the steps i, of the error function in
Equation 5.

This standard updating scheme [24] (or LMS updat-
ing [14]) has been rather successful in practice [15, 23] and it
has been proved to converge for several reinforcement learn-
ing scheme, e.g., TD(\) [16, 17]. But it can lead to the
divergence of the range of f when applied to other learn-
ing scheme such as value-iteration and Q-learning (our fo-
cus here) [1, 18]. And even TD(0) can be shown to diverge
under adequate assumptions [18]. There is actually a gen-
eral problem affecting reinforcement learning with function
approximation: the training examples fed into the approx-
imator are not independent from the approximator output.
When 6 is adjusted to minimize the error in a state s it
is possible that the same adjustment increases the error in
other areas of the state space, usually related to s in typ-
ical multistep problems; so that this error can be fed back
into subsequent updates and it can cause the range of f to
diverge to infinity. To deal with this issue a number of meth-
ods have been introduced (see [14] for a review). Among the
others linear averagers [8] exploit a different error function
and therefore a different updating scheme which is always
guaranteed not to diverge [8], although it may converge to
a non optimal action-value function [24].

Linear averagers [8] minimize the error

B = %Z (@(sera) — )" 6u(s1,a0) ®)

where 6; and ¢;(s¢,a:) are the i-th component of 6 and
&(st,at); this leads to the update,

0; — 0; + ﬁi(Q(Sn at) — 6;))pi(se, ar), (9)
which minimizes the difference between the state value and
the actual parameter, instead of the approximated value
f(@(st,at),0) in Equation 6, and overall minimizes,

%Z:ZZ: (Q(St7at) - 92‘)2 ¢i(st, at),

Linear averagers belong to a broader class of reinforcement
learning algorithms, called averagers, which includes near-
est neighbor methods, kernels, and local weighted regres-
sion, but not popular methods such as tile-coding and back-
propagation [16, 8, 13]. The area of reinforcement learning
devoted to the study of averagers is usually referred to as
averaging reinforcement learning.

(10)

3. THE XCSCLASSFIER SYSTEM

XCS works as a typical reinforcement learning algorithm
though it is based on a rule based representation [11]. In
XCS, classifiers consist of a condition, an action, and four
main parameters [25, 7]: (i) the prediction p, which esti-
mates the relative payoff that the system expects when the
classifier is used; (ii) the prediction error €, which estimates
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the error of the prediction p; (iii) the fitness F', which esti-
mates the accuracy of the payoff prediction given by p; and
(iv) the numerosity num, which indicates how many copies
of classifiers with the same condition and the same action
are present in the population.

At time ¢, XCS builds a match set [M] containing the clas-
sifiers in the population [P] whose condition matches the
current sensory input s¢; if [M] contains less than 0nme ac-
tions, covering takes place and creates a new classifier that
matches s; and has a random action. For each possible ac-
tion a in [M], XCS computes the system prediction P(s¢,a)
which estimates the payoff that the XCS expects if action a
is performed in s;.2 The system prediction P(s¢,a) is com-
puted as the fitness weighted average of the predictions of
classifiers in [M] which advocate action a:

>

clp€[M](a)

F

P(s¢,a) = Pk X
chie[l\/l](a) Fi

(11)

where, [M](a) represents the subset of classifiers of [M] with
action a, py identifies the prediction of classifier cli, and Fi
identifies the fitness of classifier cl,. Then XCS selects an
action to perform; the classifiers in [M] which advocate the
selected action form the current action set [A]. The selected
action a; is performed, and a scalar reward r¢+1 is returned
to XCS together with a new input s¢+1. When the reward
re41 is received, the estimated payoff P(t) is computed as
follows:

P(t) = P , 12

(t) =rin +7 max (5t41,0) (12)
Next, the parameters of the classifiers in [A] are updated
in the following order [7]: prediction, prediction error, and
finally fitness. Prediction p is updated with learning rate
(0<p<1):

p—p+B(P(t)—p)

Then, the prediction error e and classifier fitness are up-
dated as usual [25, 7]. On regular basis (dependent on pa-
rameter 04q), the genetic algorithm is applied to classifiers
in [A]. It selects two classifiers with probability proportional
to their fitnesses, copies them, and with probability x per-
forms crossover on the copies; then, with probability u it
mutates each allele. The resulting offspring classifiers are
inserted into the population and two classifiers are deleted
to keep the population size constant.

(13)

4. GRADIENT DESCENT IN XCS

The relation between reinforcement learning and XCS has
been widely studied in the literature [11, 5, 20, 19]. The first
analysis in [11] shows that (i) the system prediction P(s,a)
in Equation 11 actually represents the value of Q(s,a) using
the classifiers in [A]; while (ii) the prediction value of P(t)
in Equation 12 actually represents the new estimate Q(s, a).
The comparison was extended in [5] to the case of general-
ized reinforcement learning. In [5], it is noted that (i) the
classifier prediction in XCS corresponds to the parameters
0; in Equation 2; (ii) although XCS implements generalized

2System prediction is usually denoted as P(a) in XCS and as
P(s¢,a) in XCSF; here we always use the latter to emphasize
that system prediction depends on the current input s; since
the match set [M] is actually a function of st.



Q-learning, its prediction update (Equation 13) does not in-
clude the gradient term; (iii) the gradient term for classifier
cly, is computed as,
aP(St, at)
aclk

Fy,

D B

Finally, in [5] it is also shown that the addition of the gradi-
ent component improves XCS performance over a set mul-
tistep problems; although more advanced gradient descent
techniques (such as residual gradient) seem not to cause a
similar improvement.

Later, [20] compared ZCS and XCS to Q-learning with
function approximation. In [20] it is argued that the first
comparison presented in [5] is not completely correct. In
fact, [20] notes that the Q-learning update adjusts Q(s,a)
using the difference between the new estimate Q(s, a) and
the current estimate Q(s,a). But, XCS adjusts each clas-
sifier prediction (which contributes to Q(s,a), but does not
represent it) according to the difference between the new
estimate of Q(s7 a) and the current classifier prediction. To
provide a fair comparison between Q-learning and XCS, [20]
proposed a different classifier prediction update,

8P(St, CLt)
a(P(t) Del
which is more similar to the Q-learning update. However,
this type of update did not produce improvements as those
reported for the gradient in [5]. It is essential to note that
neither [20] nor [5] distinguish between standard and averag-
ing RL. So that while the two approaches might be regarded
as radically different, as we show in this paper, they just re-
fer to two different approaches to generalized reinforcement
learning.

(14)

p—p+ P(st,at)) (15)

5. XCSASLINEAR RL

We now show that XCS actually is a method of gener-
alized reinforcement learning in which the input mapping
¢(-) translates the state-action space into a relative fitness
landscape. First, we define two functions,

. 1 if ¢l;.C matches s¢
Ci(se) = { 0 otherwise

. 1 ifcli.a =a:
Aiar) = { 0 otherwise

so that system prediction P(s¢,a:) in Equation 11 can be
rewritten as,

(50) Ax(ar) Fi
Zp”z Gy (o) Ay (a0 F,

Given the correspondence (i) between classifier predictions
and the parameters 6; [5, 20] and (ii) between system pre-
diction P(s¢,a:) and the action value function Q(s,a) [11,
20], then by defining,

P st,at

(16)
[P]

C’k(st)Ak(at)
2Py Ci(s0)Aj(ar) Fy

and defining @ as the vector containing the predictions of all
the N classifiers in the population,

Or(se,ae) =

(17)

0:<p07p17“'7pN>7 (18)
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we have that the system prediction P(s¢,a:) is computed as,
P(s¢,at) = ¢(se,a4)0.

Thus, the system prediction in XCS (Equation 16) imple-
ments the typical linear reinforcement learning approach
(Equation 4). In this case, the input mapping function
¢(st,a¢) maps the state action pair (s¢,a¢) into the gra-
dient components of the classifiers cly€ [A]; these gradient
components are a measure of the fitness contribution of cl,
to [A] (Equation 14). Therefore, XCS can be viewed as a
method of generalized reinforcement learning based on lin-
ear approximators. In this perspective, XCS is similar to
tile coding [15]. In tile coding, the function ¢(s¢, a:) maps
the state-action space into a set of ¢ overlapping tilings. In
XCS, the function ¢(s¢, a:) maps the state-action space into
a gradient landscape. Note that, a similar discussion can be
also found in [2, Section 2] where equations 11 and 16 are
related to softstate aggregation [16].

6. REINFORCEMENT LEARNING IN XCS

In this section, we consider the two classes of approaches
to generalized reinforcement learning, (the standard one in
Equation 7 and the averaging one in Equation 10) and we
derive the corresponding classifier prediction update. We
show that while standard reinforcement learning maps into
the most recent gradient descent approach discussed in [20],
averaging reinforcement learning maps into the first gradi-
ent descent approach introduced in [5]. Most important, we
show that the latter approach, based on averaging reinforce-
ment learning, actually causes an intrinsic preference toward
specificity.

6.1 Standard RL in XCS

To derive the classifier prediction update for standard re-
inforcement learning, we rewrite the error function in Equa-
tion 7 using XCS notation as,

22

which corresponds to the following error function E: to be
minimized at time ¢,

P(st,ar))? (19)

— P(5t7at))2. (20)

So the gradient term for the update of 6 in Equation 3 (i.e.,
classifier prediction in XCS [5, 20]) can be rewritten as,

oF, P (51, a1)
20; ~(P() = Plse,a) =57
= —(P(t) - P(st, at))a(zk 032,:(&, ar))

—(P(t) — P(st,at))pi(st, at)

while the parameter update is,
0; «— 0; + B(P(t) — P(st,at))di(se, at)

which in XCS corresponds, at time ¢, to the following clas-
sifier prediction update for classifiers cl;€[A],

(21)

F;
pi = pi + B(P(t) = P(st, a1)) == (22)
24 Fi
firstly introduced in [20].



6.2 AveragingRL in XCS

We now apply the same approach to the case of averaging
reinforcement learning. We begin by rewriting Equation 10
in XCS notation,

23S bilsna (P) — 0))°

which at time ¢ leads us to the minimization of the following
error,

(23)

Bi= 5 3 65(sna)(P(0) - 6,)° (4)

so that the gradient term for updating the parameters 6
(Equation 3) is computed as,

OF,

90, = _(P(t) - 0i)¢i(8t7 at)7 (25)
the corresponding parameter update is,
0i — 0i+ (P(t) — 0:)pi(se, ar), (26)

so that the update of classifier prediction in XCS is per-
formed, at time ¢, on all the classifiers in [A], as follows,

_h
Z[A] Fj‘

This equation corresponds to the formulation of gradient de-
scent for XCS introduced in [5, 6] which actually implements
averaging reinforcement learning in XCS.

Most important, it is interesting note that Equation 23
can be actually rewritten as,

L) B) PR

t (Al 2oy, B

Thus, averaging reinforcement learning applied to XCS min-
imizes, over all the encountered action sets [A]¢, the fitness
weighted difference between the target prediction value P(t)
and the predictions of the classifiers in [A];. Accordingly,
since the update based on averaging reinforcement learn-
ing minimizes the term in Equation 28, the corresponding
prediction update (Equation 27) has an intrinsic preference
toward classifiers with a smaller gradient component, i.e.,
F;/ Z[ Ay, Fi- In XCS such classifiers are either overgeneral
or overspecific, therefore the gradient component for aver-
aging RL in XCS actually introduces an intrinsic preference
toward overgeneral or overspecific classifiers. On the other
hand, the accuracy based genetic pressure in XCS provides
a pressure toward accurate classifiers so that the interac-
tions between the averaging update and the genetic algo-
rithm should result in an intrinsic pressure toward speci-
ficity. This would explain under a different perspective the
improvements reported in [5, 6] for the XCS with averaging
RL. In fact, such improvements were also reported when the
pressure toward specificity was enhanced using additional
heuristics [10].

6.3 XCSasRL

We now analyze what type of reinforcement learning does
XCS implement. In generalized reinforcement learning, the
parameter update minimizes a target error function. Thus,
the question is what type of error function the update of
classifier prediction in XCS minimizes. For this purpose, we

pi — pi + B(P(t) — pi) (27)

(P(t) - (28)
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consider the prediction update procedure in XCS, which at
time ¢ updates the classifiers cl; in [A] as,

pi — pi + B(P(t) — pi),
and we rewrite it as an update over all the classifiers in [P],
pi — pi + (P (t) — pi)Ci(st) Ailar)
which corresponds to the following derivative term,

OF;
8pi

= —(P() - p)Ci (D) Ai(0).
and thus to the following error,

B =5 Y (P = 1) G0 4;(0)

so that overall we have that classifier prediction update in
XCS minimizes,

% DD (P() ~ ) *C5(1) A (1)
that is,

DI LORINE (29)
t [Al

Thus, the classifier update in XCS minimizes, over all the
encountered action sets [A]¢, the difference between the tar-
get prediction value P(t) and the prediction of classifiers
in the action set [A]s. Thus in XCS the prediction update
minimizes only the prediction error of the classifiers in each
niche and but it does not take into account classifier fitness,
introduced when averaging RL is considered.

6.4 An lllustrative Example

As an illustrative example, we apply the three versions
of XCS discussed in this section, XCS [25], XCS with pre-
diction update based on standard RL (6.1), and XCS with
prediction update based on averaging RL (6.2), to the
20-multiplexer using the standard setting in [26]. All the
three models are identical except for the prediction update.
Figure 1 compares (a) the performance and (b) the num-
ber of macroclassifiers. XCS and XCS with averaging RL
reach optimal performance; in contrast XCS with standard
RL performs poorly. These results are coherent with those
reported in the literature [5, 19]: XCS with averaging RL
(also called gradient descent in [5]) performs well; XCS with
standard RL performs poorly similarly to the results dis-
cussed in [19]. XCS with averaging RL converges slower
than XCS and in the beginning it evolves larger populations,
containing classifiers that on the average are more specific
than those evolved by XCS. This is consistent with the dis-
cussion in Section 6.2 where we noted that the prediction
update for averaging RL in XCS potentially introduces an
intrinsic preference toward more specific classifiers.

7. THE XCSF CLASSIFIER SYSTEM

The introduction of computed prediction requires three
simple modifications to XCS. First, classifier prediction pa-
rameter p is replaced with a parameter vector w, that is
used to compute classifier prediction. Second, a prediction
function p(s¢, w) is introduced which defines how classifier
prediction is computed based on the current input s; and
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Figure 1: The three versions of XCS applied to the
20-multiplexer: (a) performance; (b) % of macro-
classifiers. Curves are averages over 20 runs.

parameter vector w. Finally, the update of classifier pre-
diction (Equation 13) is replaced by the update of w based
on an estimated payoff value P(t) and the current classifier
prediction value p(s¢, w). The system prediction for action
a is now defined at time ¢ as,

P(s¢,a) = Z p(st, Wi) X 5

clp€[M](a)

Fi

cl; €[M](a)

= 60

where wy, is the parameter vector associated to classifier cly,
F}, is the fitness of cli, and [M](a) is the subset of classifiers
in [M] with action a. Classifier prediction p(s¢, wy) is usu-
ally computed as the linear combination of the input vector
s¢ and the parameter vector wg, i.e., sswg. The expected
payoff P(t) is computed as:

P(t) = resr + ymax P(s+1, ) (31)
The expected payoff P(t) is used to update the weight vector
w of the classifier in [A] using a modified delta rule as,

(P = p(s, wi))s:(3)

P 32

wi (i) — wi(i) +

where G(t) is computed as 1/|s¢|?, n is the correction rate,
and |s¢|? is the norm of the input vector s; [27].
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8. REINFORCEMENT LEARNING
IN XCSF

We now apply the same approach used for XCS to XCSF.
First, we show that also XCSF can be viewed as a method of
generalized reinforcement learning based on linear approx-
imation. Then, we derive the update for standard and av-
eraging reinforcement learning in XCSF. Finally, we derive
the error function that the prediction update in XCSF min-
imizes.

8.1 XCSF asLinear RL

The system prediction for XCSF (Equation 30) can be
rewritten as,

P(stvat) = Zp(5t7wk)
[P]

C’k(st)Ak (at)Fk
> Cilst)Aj(an) Fy’

which is an example of reinforcement learning based on av-
eragers: the system prediction is computed as the fitness
weighted average of a set of local linear approximators, i.e.,
the functions p(s¢, wi). By defining, 7 (t) = p(s¢, wi) and,

0, = (. ..,m(t),...) (33)
FCr(se)Ar(ar)

(s, a = (..., e 34

o) = b e Goaer Y

where k € {1,... N}, the system prediction for XCSF can

be rewritten as,
P(8t7 at) - 0¢(5t7 at)7

therefore, also XCSF can be viewed as a method of rein-
forcement learning based on linear approximators. In this
case, the input mapping function ¢(s¢,a:) translates the
state-action space into the same fitness based landscape.

8.2 Standard RL in XCSF

To derive the parameter update for standard RL in XCSF
we start from the error E,

1
Ee=5(P(t) - P(st,at))?
and derive the term for each parameter wy (i) of XCSF as,
8Et o _ _ 8P(st7 at)
Gwn() LW Plena) Tl
St(i)Fka(St)Ak(at)

—(P(t) = P(st,a1))
21 Ci(s)A;(ar) F;

so that standard reinforcement learning update in XCSF
corresponds to the following update of the parameters wy(7)
of the classifiers in [A],

wi(i) = wi (i) + B(P(t) — P(st, ar))s:(i) (35)

Fi
Z[A] F; ’
which is the version for XCSF of the classifier update pro-
posed in [20].

8.3 AveragingRL in XCSF

Given the previous definitions, averaging reinforcement
learning in XCSF minimizes,

%ZZ(P(t) —Wi(t))2¢i(8t7at) (36)



that corresponds at time ¢ to the error E; defined as,

B =5 SO (P@) = m(0)*i(s1,a)
so that,
8Et — — StWk)St(1 L
owi(i) (F) Wl )Z[A] F

and the update of classifier parameters for averaging rein-
forcement learning in XCSF is,

Fi
Z[A] Fj‘

Similarly to the case of XCS, also in XCSF the update for av-
eraging reinforcement learning results in an additional gra-
dient descent term (Equation 14) to the original updated
(Equation 32) introduced in [27]. Since averaging reinforce-
ment learning in XCSF minimizes Equation 36, as in XCS,
the parameter update introduces an intrinsic preference to-
ward classifiers with a smaller gradient component.

84 XCSFasRL

We now start from the update of classifier parameters in
XCSF and derive the error that the update minimizes. First,
we rewrite Equation 32 as,

wi (i) — wr(i) + B(P — p(st, wi))s: (i) Cr (st) A (ar). (38)

Following the same approach we used for XCS, we derive
the following formulation of the overall error in Equation 10
for XCSF,

wii(i) = wi(i) + B(P(t) — sew)se (i) (37)

33 (P - sewn)®

toclpelAls

As XCS, XCSF minimizes the difference over all the en-
countered action sets between the expected payoff P(t) and
the classifier prediction, which in this case is computed. The
original XCSF update (Equation 32) minimizes Equation 39
which misses the additional gradient term that appears in
Equation 37. Thus, the parameter update of XCSF does
not introduce the same intrinsic preference toward classi-
fiers with a smaller gradient component that is present in
the update for averaging reinforcement learning.

8.5 Anlllustrative Example

We now present an illustrative example, as we did for
XCS. We apply the three versions of XCSF we discussed in
this section, XCSF [27], XCSF with standard RL (8.2), and
XCSF with averaging RL (8.3), to a simple problem taken
from the XCSF literature, the approximation of the sine
function [27]. All the three versions of XCSF are identical
to [27] except for the update of classifier parameters which
is replaced by the standard (Equation 35) and the averaging
update (Equation 37). The parameters are the same for the
three systems and they are set as in [27].

Figure 2 compares the prediction error and the average
classifier generality for the three models. The generality of
a classifier is computed as the fraction of the domain that
the condition matches [27]. All the three versions of XCSF
evolve accurate solutions: in fact they all reach a prediction
error below the error threshold €0. The prediction error
of XCSF with averaging RL converges slower than XCSF;

(39)
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Figure 2: The three versions of XCSF applied to
the sine problem: (a) prediction error; (b) average
classifier generality. Curves are averages over 10
runs

50000

also the average classifier generality for XCSF with aver-
aging RL is generally smaller than that of XCSF. Again,
this result supports the discussion in Section 8.3 where we
noted that, as in XCS, averaging RL in XCSF introduces an
intrinsic preference toward more specific classifiers. Inter-
estingly, XCSF with standard RL can evolve accurate ap-
proximations, whereas the results reported in [19] show that
the same type of update (even when the genetic algorithm
is not active) can result in poor performance.

9. CONCLUSIONS

In this paper, we have tried to contribute a step further in
the understanding of the relations between XCS models and
generalized reinforcement learning. We based our work on
the previous studies [11, 5, 20, 9] which relate XCS either
to tabular reinforcement learning [11] or to standard gen-
eralized reinforcement learning [5, 20, 9]. We have shown
that both XCS and XCSF can be formally viewed as meth-
ods of linear reinforcement learning. We considered the two
major approaches to generalized reinforcement learning, the
standard one [16] and the averaging one [8], which was not
considered in the previous studies. Using the equivalence
between XCS models and linear reinforcement learning, we
have derived the update formula for XCS models with stan-
dard and averaging approaches. We have shown that clas-



sifier update in XCS models [25, 27] actually implements
methods of averaging reinforcement learning, not standard
one as previously considered. More precisely, averaging RL
in XCS models is equivalent to XCS models with gradient
descent as introduced in [5, 12]. Using the same equivalence,
we noted that the introduction of gradient descent in XCS
models results in an intrinsic preference toward classifiers
with a small fitness with respect to classifier niche. We sug-
gest that the interaction between this intrinsic preference
and the usual accuracy based genetic algorithm results in
a preference toward more specific classifiers. Although ex-
perimental assessment is not the goal of this paper, we have
presented two simple experiments involving XCS and XCSF
which support the hypotheses we drawn from the theoreti-
cal derivations. But more experiments must be performed
as future research direction to validate the contents of this
paper further.
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