
SCORM Run-Time Environment As a Service

Gennaro Costagliola, Filomena Ferrucci, Vittorio Fuccella
Dipartimento di Matematica e Informatica, Università di Salerno

Via Ponte Don Melillo, I-84084 Fisciano (SA)
+39 089 963319 Fax: +39 089 963303

{gcostagliola, fferrucci, vfuccella}@unisa.it

ABSTRACT
Standardization efforts in e-learning are aimed at achieving
interoperability among Learning Management Systems (LMSs)
and Learning Object (LO) authoring tools. Some of the
specifications produced have reached quite a good maturity level
and have been adopted in software systems. Some others, such as
SCORM Run-Time Environment (RTE), have not reached the
same success, probably due to their intrinsic difficulty in being
understood adequately and implemented properly. The SCORM
RTE defines a set of functionalities which allow LOs to be
launched in the LMS and to exchange data with it. Its adoption is
crucial in the achievement of full interoperability among LMSs
and LO authoring tools. In order to boost the adoption of SCORM
RTE in LMSs, we propose a Service Oriented Architecture (SOA)-
based reference model for offering the SCORM RTE
functionalities as a service, external to the LMS. By externalizing
functionalities from LMSs, our model encourages the independent
development of e-learning system components, allowing e-
learning software producers to gain several benefits, such as better
software re-use and easier integration and complexity
management, with a consequent cost reduction. The proposed
model is validated through a prototype system, in which a popular
LMS, developed with PHP language, is enhanced with the support
of SCORM RTE functionalities, provided by an external Web
service based on Java technology.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Domain-specific architectures;
K.3.1 [Computing Milieux]: Computers and Education –
Computer-managed instruction (CMI) .

General Terms
Design, Standardization.

Keywords
Service Oriented Architecture, SOA, SCORM Run-Time
Environment, Computer Managed Instruction, CMI, Learning
Objects

1. INTRODUCTION
In recent years, great efforts have been made to define

standards, reference models and guidelines for e-learning. These
efforts are aimed at obtaining a stronger interoperability among
Learning Management Systems (LMSs). In the context of these
systems, the term interoperability refers to the possibility of
running Learning Objects (LOs) produced with any authoring tool
on any LMS compliant to the standard specifications. Once full
interoperability among LMS and authoring tools is achieved, it
will be easier to share LOs, and, consequently, re-use them, with
remarkable time and resource saving for the content developers.

Some of the specifications produced, such as Learning
Object Metadata and Content Packaging, have reached quite a
good maturity level and have been adopted in software systems.
Some others, such as SCORM Run-Time Environment [1], have
not reached the same success, probably due to their intrinsic
difficulty in being adequately understood and properly
implemented [2]. The difficulty concerning the adoption of
standard specifications has been the main motivation for the
investigation of approaches which insure the re-use of standard
functionalities [3]. To this extent two main solutions have been
explored:

1. Providing LMS developers with frameworks and
reference implementations of standard functionalities.

2. Proposing architectures and reference models to adopt
in real systems in order to establish a widely accepted
decomposition for e-learning systems. Once established,
these models should facilitate the independent
development of the identified components.

Reference implementations give scarce opportunities for
software re-use, since their components are tightly coupled with
the whole system of which they are a part. Frameworks overcome
this problem, being loosely coupled with the system in which they
are instanced. In previous work, we proposed a solution for
adopting SCORM RTE based on a suitable framework, called
CMIFramework [4]. Several problems still arise with frameworks.
First of all, in most cases they are adoptable only in systems
developed with the same technology: an O-O framework
developed in Java cannot be used in a .NET or LAMP-based LMS.
Secondly, even though the use of a framework allows for the easy
extensibility of a system with new functionalities and has more
customization margins, when instanced in a system, frameworks
become part of it, increasing its size. The drawbacks in this case
are related to the maintenance, testing and workload of the
resulting system, since most enterprises, educational organizations
cannot afford high systems handling [5].

Copyright is held by the author/owner(s).
ICWE'06, July 11-14, 2006, Palo Alto, California, USA.
ACM 1-59593-352-2/06/0007.

Among the architectural models proposed for e-learning
systems, solutions based on Service Oriented Architecture (SOA)
are more and more widely adopted. Offering a way to externalize
functionalities from the LMS, they allow LMS producers to gain
several benefits, such as better software re-use and easier
integration and complexity management, with a consequent cost
reduction. Furthermore, these solutions are language independent
and interoperable. Basing our findings on a literature survey, we
can argue that the efforts produced so far have been devoted to
demonstrating the importance of adopting SOA in e-learning
systems, to offer high-level decompositions and to show how to
span functionalities among the identified components. Offering
functionalities as services external to the LMS often poses
technical and practical problems depending on the specific service
offered. The lack of existing systems or prototypes based on the
proposed architectures prevents us from effectively validating
them. Furthermore, there is no agreement on the decomposition.
As a consequence, we are quite far from obtaining a standardized
architectural model of a generic and comprehensive e-learning
system, which could effectively help in the re-use of
functionalities. A more effective method could be to follow a
bottom-up approach in the definition of this model, concentrating
the efforts on defining how to offer a single set of functionalities
using a component external to the LMS.

This paper is aimed at describing how the SCORM RTE
functionalities can be offered as a service, through the definition
of a SOA-based reference model. The SCORM RTE addresses an
important issue, namely the traceability of the student learning
process. In particular, to enable the traceability of a student’s
activities, it defines the format of messages exchanged between
the LO and the LMS. It is worth noting that the effectiveness of
the e-learning paradigm can be heavily affected by the quality of
the traceability process. Indeed, the collected information can be
exploited to personalize knowledge contents, thus improving
learning performances and the welfare of the students. Moreover,
to carry out an accurate evaluation of each student, instructors can
benefit from some information on course attendance, such as the
time spent in completing a lesson or a test.

The high cost of implementing the RTE specifications
suggests the necessity to externalize its functionalities from the
LMS. Having a reference model that explains how to achieve this,
can be useful for LMS producers to avoid such costs and to
develop the LMS independently from the external module, which
can be provided by third party efforts.

Starting from a technical discussion of the requirements of
the model, we propose a high-level decomposition of an LMS
system in order to establish the separation of roles between the
basic LMS and the identified external service. Then, a
decomposition at a lower level is presented, in order to be helpful
for the developers who need to understand which modules they
have to implement in their system to support our model. Finally,
the proposed model is validated through a prototype system, in
which a popular LMS, developed with PHP language, is enhanced
with the support of SCORM RTE functionalities, provided by an
external Web service based on Java technology.

The rest of the paper is organized as follows: the next section
presents a summary of the SCORM RTE specifications. Section 3
outlines the proposed model. The prototype system is presented in
section 4. In section 5 several works related to ours will be

discussed. Some final remarks and some comments on future
work conclude the paper.

2. THE SCORM RUN-TIME
ENVIRONMENT

The SCORM RTE defines a set of functionalities which allow
LOs to be launched in the LMS and to exchange data with it.
Several documents from other producers of standards and
guidelines for e-learning, such as AICC [6], and IEEE LTSC [7],
propose a very similar model, even though several differences are
present among the documents issued by different producers and
often among different versions of the same specification. Almost
all of them are aimed at defining the following common aspects
regarding the LO – LMS communication:

• Launch: the set of rules under which an LO can be
launched in a Web-based environment

• API: the interface of methods to be invoked by an LO in
order to communicate with the LMS

• Data Model: the data set on which the communication
is based

According to the SCORM, only a limited set of LOs can
communicate with the LMS. These LOs are called SCOs, and their
communication capability is due to the fact that they contain a
specialized software module, called ECMAScript, which consists
of several Javascript functions in the ECMAScript standard
format.

The core of the RTE specification contains the description of
the SCO - LMS communication mechanism. The way in which it
takes place is shown in figure 1, which depicts a Web based
scenario where a SCO has already been launched in a Web
browser window and the LMS runs within a Web Server.

Figure 1 - SCORM RTE Architecture

The SCO, equipped with the ECMAScript module, can
communicate with another module running on the client side: the
API Instance. The latter, even though it runs on the client side,
must be provided by the LMS. Therefore, it has often been
implemented through a browser plug-in, an Active-X object, or,
more frequently, through a Java applet. Java applets technology
fits the needs of the RTE model well, since it can provide a
module deployed on a server (the LMS), but running on the client
(the Web browser). The API Instance module exposes an interface
of methods to the SCO. By invoking them, the SCO can exchange

data with the LMS server. In practice, the API Instance works as a
broker between the SCO and the LMS, since the former lacks the
capability to connect with the LMS server directly, due to its
nature of a plain document readable through a Web browser.

The SCO has the duties of starting and terminating the
communication session and of leading the data exchange with the
LMS. On the LMS side, an instance of the communication data
must be kept. As mentioned before, the SCO can perform the
communication invoking several ECMAScript methods exposed
by the API Instance. With reference to the 2004 version of the
SCORM, the methods for starting and terminating the
communication are, respectively, initialize() and terminate(). The
methods to set and get the run-time data on the LMS are,
respectively, getValue(<element_name>) and
setValue(<element_name>, <value>).

The API Instance must handle error conditions which can
occur during the communication, and notify the SCO about them
by returning a specific value on a method invocation.
Furthermore, the API Instance provides the SCO with further
methods for obtaining information on the errors, in case any of
them have occurred.

The Data Model is the set of data exchanged between the
SCO and the LMS during the communication. For each element,
the name, the data type, the access mode (read only, write only,
read/write), the multiplicity and other information have been
defined. This set of data includes, but is not limited to,
information about the learner, interactions that the learner has had
with the SCO, objectives, success status and completion status of
the SCO. The set of data that can only be read by the SCO (RO) is
typically information which must be passed from the LMS to the
SCO to be shown to the user, such as the learner’s name and
identifier. The set of data that can be both read and written (RW)
is information which must be available at the SCO at its launch
and updated by the SCO at the end of the session. An example of
this information is the progress level of the lesson. Finally, an
example of data which can only be written (WO) by the SCO, is
the time spent by the learner in the session. Generally, there is an
instance of the Data Model (the run-time data) for each (learner,
SCO) couple, if the learner has accessed the SCO at least once.
The same instance can be shared throughout the session of the
learner on the SCO, otherwise a new instance can be generated,
according to the needs of the LMS.

3. THE ARCHITECTURE
This section defines the SOA-based architecture for offering the
RTE functionalities. Our solution is valid for a generic LMS. A
real-world application, based on our model, is contained in the
next section. We propose a decomposition performed at two
different levels: at a higher level, the separation of concerns
between the LMS and the external service is specified; at a lower
level, the modules composing each service are identified. Only
the basic functionalities of the RTE model, such as the launch of
LOs and the LO-LMS communication, together with basic LMS
functionalities, such as the management of LO, are considered.
Other services which can be found in a common LMS or other
standard functionalities, which are not pertinent to our research,
are not considered in this work. This choice does not prevent us
from applying our model to wider systems.

3.1 Definition of the Services
The main objective of this phase is the definition of the services to
build and of the logic encapsulated in each of them. Most of our
work in this phase consists of establishing how to span the RTE
functionalities among the identified services. Our aim is to
alleviate the duties of the LMS as much as possible in the handling
of RTE functionalities. Most of the work will be provided by an
external service, which will be referred to as RTE Service.

In order to support the SCORM RTE, the basic functionalities
of an LMS are the following:

- managing users (above all, learners and tutors) and
keeping an LO database

- launching and dismissing LOs on learner’s demand

- communicating with the LO, providing the
learner’s user-agent with an instance of the API
Adapter

- handling the run-time data: the LMS must create an
instance of it using names and types defined in the
Data Model, keep it up-to-date during the
communication and save it for future sessions.

The handling of users, including registration, authentication
and authorization services, must be a duty of the LMS. Digital
repositories of LOs can be external to the LMS. Other solutions
integrate them on the same server as the LMS which launches
them. We prefer to deal with the separate servers option because it
is flexible enough to include the integrated one: once an external
service is identified to keep LOs, it can still be placed on the same
server as the LMS. We will refer to the service which keeps LOs
and provides them to the LMS as LO Repository service.

According to the RTE model, among the operations provided
to the learner by the LMS, there are the launch, the suspension, the
resume and the dismissal of an LO. The communication between
the LO and the LMS must start on the launch or resume events and
must end on the suspend or dismiss events.

While it is quite clear that the RTE Service is in charge of
hosting the server-side module which handles the communication
with the LO, more doubts can arise as to which service should
provide the API Adapter to the user-agent. The reader must recall
from section 2 that it is up to the LMS to provide the API Adapter
to the user-agent. This module must be downloaded and run on
the client-side. Due to these requirements, a common solution is
to implement the API Adapter as a Java applet, which can be
packed in a JAR file and downloaded through the HTTP protocol.
We will refer to the instance of the API Adapter running on the
user-agent as API Instance. To avoid complications, the following
reasons suggests the inclusion of the API Adapter as a module of
the RTE Service:

- The API Instance must interact with the server-side
module responsible for the communication. Putting
the API Adapter on a separate service from this
module gives no practical benefits and would
compel us to define a standard protocol for the
communication.

- A security limitation of Java applets prevents them
from establishing network connections with other
servers than the one from which they have been
downloaded. This limitation, however, can be

overcome by using signed applets or changing
user-agents security policies.

The last considerations concern how and where to keep the
communication run-time data and, if they are kept by a service
external to the LMS, how to make this data available to the latter
during the communication. It is widely accepted that run-time data
is not part of the LMS database. In the past, a poor design choice,
adopted in some systems, was to design the LMS database in
conformity with the Data Model of the SCORM RTE. This choice
should be avoided for the following reasons: firstly, the Data
Model has a hierarchical structure, which does not fit well with
the relational model that is almost always used by LMSs;
secondly, the definition of the data model has been subject to
changes across the versions of the SCORM specifications. To be
up-to-date, a re-engineering of the systems designed with the data
conformant to the Data Model would have been necessary. In
light of the previous observations, our choice is to keep the run-
time data on the RTE Service. In the next section we will explain
how to make the run-time data available to the LMS when needed.

Figure 2 - Services Model

The above reasoning led us to identify the services model for
RTE functionalities showed in figure 2. It identifies the services
and the operations for each of them. Including only the RTE
functionalities, the LMS must only supply the operations for the
learner to make use of the LOs. The LO Repository Service
provides the operations related to the administration of the LO
repository, such as listing, searching and downloading of the LOs
contained in it. The RTE Service is responsible for all the
operations to perform the RTE communication with the LO, for
making the run-time data available to the LMS and, finally, for
making the API Adapter available for download to the learner’s
user-agent.

3.2 Low-Level Decomposition and Message
Patterns Definition
The main objective in this phase is to define the low-level
architectural decomposition of an LMS system which offers RTE
functionalities, using the services identified in the previous
section. The interactions among them, with the specification of
the message exchange patterns, are shown.

Figure 3 shows the “actors on the scene” and their
interactions. They are the LMS, the RTE Service, the LO
Repository Service and the user-agent. The interactions among
them are the following:

1. The channel through which the User-Agent downloads
the API Adapter from the RTE Service

2. The channel for requests and responses from the User-
Agent to the LMS to perform operations (launch,
suspend, resume and dismiss) related to the LOs

3. The channel used by the LMS to locate the requested LO
on the LO Repository Service and to forward the user-
agent’s request to the given URL

4. The channel used by the API Instance (running on the
User-Agent) to perform the RTE communication with
the RTE Service

5. The channel through which the RTE Service and the
LMS communicate to allow the LMS to access run-time
data when needed

Figure 3 - Interactions Among Services

Channels from 1 to 4 can use a simple HTTP
request/response message pattern. The message pattern for
channel 5, instead, requires a more detailed explanation on the
events which cause the LMS to access the run-time data. In our
model, the run-time data is kept by the RTE Service. According to
the RTE model, the run-time data can be read and written by the
LO during the communication through the invocation of the
methods getValue() and setValue() respectively, exposed by the
API Instance. The run-time data must also be read and written by
the LMS. This happens on the occurrence of several events, for the
following reasons:

1. After run-time data is instanced and just before the
communication starts, the data must be initialized with
LMS-specific settings

2. After the communication is finished the LMS can read
the run-time data to up-date its internal database with
information gathered during the communication

3. Whenever a setValue() or getValue() or commit() is
performed, the LMS could undertake some customized
actions.

It is worth noting that, since the RTE communication is
performed between the API Instance and the RTE Service, the
LMS is unaware of the events listed above. Thus, the channel 5 is
used to inform the LMS of the occurrence of these events. Due to
our requirements, the most suitable message exchange pattern is
the event-driven one: the LMS first registers at the RTE Service,
sending a message to a module called RTE Registry, requesting
notification for all the events. This registration should be
performed whenever a user-agent asks for an LO to be launched.
The RTE Registry must authenticate the LMS and reply with the
authentication result. In case of success, the RTE Service sends a
synchronous message to the LMS carrying the run-time data, on
each of the previously identified events. This data can be read by
the LMS and then sent, eventually modified, back to the RTE
Service through a synchronous message again. To perform this

message exchange, the LMS must equipped with a service
callback endpoint. We will refer to this module as the LMS
Callback Endpoint. The communication between the RTE Service
and the LMS can be based on SOAP formatted messages and must
be conversational: some information, such as the learner’s and LO
identifiers, must be sent from the LMS to the RTE Service on the
registration, and must be remembered later, when the following
messages have to be handled. In other words, the messages must
be part of a session.

A complete picture of all the SOA architecture, with the
details of all the modules of the services mentioned so far, is
shown in figure 4. For convenience, a layered architecture has
been chosen to separate modules of the Web-based Interface,
from those of the Business Logic and Data layers. The Web-
based Interface layer contains both the Web resources, which can
be accessed using a classical HTTP request/response message
pattern and the deployed Web services.

Figure 4 – Architecture

Before concluding, it is opportune to show a complete example
using an interaction diagram. Let us consider the following
situation: a learner, already logged on the LMS, requests an LO (in
this example, an on-line test) to the LMS. The LMS, before
launching it, registers to the RTE Service, and then forwards the
request to the LO Repository Service. The LO is then downloaded
by the User-Agent and the RTE communication starts (the LO
invokes the initialize() method on the API Adapter). The RTE
Service, through its Communication Module, receives the
message, instances the run-time data and sends this instance using
a SOAP message to the LMS. The LMS initializes the run-time
data with the name of the learner and the scores to assign to each
response of the learner on the test items. Once the learner has
executed the test, the LO calculates the final score and sends it to
the RTE Service using the setValue() method. The RTE Service
sends the run-time data again to the LMS, which reads the score
and saves it in its database with the learners’ records. Later on, the
LO is dismissed and the communication is terminated. The
interaction diagram in figure 5 shows the interactions described in
the example above. To keep it simple, the internal interactions of
each service are omitted.

Figure 5 - Example of Interaction Diagram

4. CASE STUDY: A SCORM RTE MODULE
FOR MOODLE
In this section we show how the reference architecture presented
in the previous sections has been applied to add SCORM RTE
functionalities to Moodle [8], a popular Open Source LMS
developed using PHP server-side language. A prototype of the
RTE Service has been implemented using Java 2 Enterprise
Edition (J2EE) technology. The choice of such cross-technology
system is not the fruit of coincidence, but has been made in order
to show the language independency of our solution. Furthermore,
the RTE Service, developed as a prototype, can be completed to
offer its services to more than one LMS, based on whatever
technology, at the same time.

4.1 The RTE Service
The RTE Service has been built as a J2EE Web Application,
packaged in a WAR file. It can be deployed in any J2EE Web
container.

The availability of CMIFramework, a framework for easily
adopting Computer Managed Instruction functionalities in LMSs
(developed at the University of Salerno) has allowed us to make
little effort in developing the RTE Service. Among the others,
CMIFramework provides the following components:

• An implementation of the API Adapter as a Java applet

• Full implementation of the modules involved in the LO-
LMS communication

• Run-time data persistence handling module

• A module, implemented as a Java Servlet, which
provides methods to override in order to handle the
events of the communication.

Thanks to the availability of the above modules, it has been
necessary to develop only the RTE Registry from scratch, as a
Web Service, using Apache Axis [9]. Axis SOAP library has been
used to compose the messages to carry run-time data to and from
the LMS, on the occurrence of the events described before. To
elaborate, the RTE Event Manager has been developed by
overriding the onInitialize() and onTerminate() methods, provided
by the server side module of CMIFramework. In these methods,
the code to compose SOAP messages has been added. The
information carried by these messages include: the event type, a
session identifier, to keep a conversational state and the entire
run-time data, represented as a list of (name, value) couples. It is
worth noting that the caching of the communication has been
used: in our implementation we have avoided the API Instance
and the RTE Service to communicate on every single setValue()
and getValue() method invocation. Instead, the run-time data has
been changed locally on the API Instance, thus sending it to the
RTE Service only on the termination of the communication.

4.2 Moodle: the LMS
Moodle comes with a mechanism to develop extensions to the
basic LMS: a new module can be developed and integrated
modifying a template provided with the Moodle documentation.
Actually, a SCORM player for Moodle already exists, but it is
entirely built as an internal module. Our prototype, however, is
aimed at demonstrating how to provide SCORM RTE
functionalities using an external service.

Moodle has an internal LO repository, thus, the operations of
searching an LO, getting its URL and so on, are based on the
simple invocation of Moodle API methods. Furthermore, the
forward operation with which the LMS launches an LO, has been
implemented as an action internal to the Web server which hosts
the LMS system. The support for external LO repositories has
been announced for the 2.0 version of Moodle and is expected for
the end of 2006.

In light of the previous arguments, our development activity
has consisted of the following two steps:

1. Preparing the environment in which the LOs are
launched

2. Developing the LMS Callback Endpoint from scratch.

The activities related to the first point have consisted in
simple PHP page coding: a PHP Web page has been created. The
API Instance has been inserted in it as an applet to download from
the Web server which hosts the RTE Service. Furthermore, this
page has been designed to contain a form with the buttons to
launch, resume, suspend and dispose a previously selected LO.
The function which handles the launch operation, contains the
code to send a SOAP message to register to the RTE Service, as
described in the previous section. Applying a common pattern,
suggested by the RTE specifications, the LO downloaded from
LMS is launched in a child Window of the user-agent. In this way,
the API Instance keeps running while the learner uses the LO.

The development of the LMS Callback Endpoint has been
quite simple: a free library of PHP functions [10] has been used to
manage the SOAP messages received from the RTE Service. A
single function has been created to decode the message, read the
event type, perform operations on the run-time data and send all
the data back.

4.3 The LMS - RTE Service Communication
An interesting point concerning the communication between

the LMS and the RTE Service is the handling of the conversational
state. In our implementation we have adopted the 1.0 version of
the SOAP Conversation Protocol [11]. This protocol makes it
easy to conduct stateful conversations between two parties.
Basically, the state is kept sending the following information in
the header of SOAP messages:

• A conversation Id, in order to mark messages
exchanged in the same conversation

• A callbackLocation, which is a URI that specifies the
address from which the sender is listening to callbacks.

The callback location is sent only on the first message of the
conversation, to provide the counterpart with the callback
endpoint URI. The following code segments represent an extract
from the SOAP messages sent by the LMS to the RTE Service to
register for event notification and the response, in case of
successful authentication. As the reader can see, they both carry
the conversation Id in the header. The request carries the location
of the callback endpoint, as well. In our simple prototype, the
body of the request message specifies the authentication
credentials of the LMS, while the body of the response message
signals that the authentication is ok and the LMS will be notified
of the occurrence of the RTE events.

<env:Envelope xmlns:env="…”>
 <env:Header>
 <StartHeader xmlns="…">
 <conversationID>
 1018048628974
 </conversationID>
 <callbackLocation>
 http://192.168.0.34/LMSCallbackEndpoint
 </callbackLocation>
 </StartHeader>
 </env:Header>
 <env:Body>
 <rte:registrationRequest xmlns:rte="…">
 <rte:LMSName>MyLMS</rte:LMSName>
 <rte:password>MyLMS</rte:password>
 </rte:registrationRequest>
 </env:Body>
</env:Envelope>

<env:Envelope xmlns:env="…”>
 <env:Header>
 <ContinueHeader xmlns="…">
 <conversationID>
 1018048628974
 </conversationID>
 </ContinueHeader>
 </env:Header>
 <env:Body>
 <rte:registrationResponse xmlns:rte="…">
 <rte:response>ok</rte:response>
 </rte:registrationResponse>
 </env:Body>
</env:Envelope>

The following code segments represent an extract from the
SOAP messages sent from the RTE Service to the LMS on the
initialize() method invocation event and its response. The
messages are rather similar each other: they both contain the
whole run-time data. In addition, the request carries the data of
the event which caused the LMS to be notified.

<env:Envelope xmlns:env="…”>

 <env:Header>
 <ContinueHeader xmlns="…">
 <conversationID>
 1018048628974
 </conversationID>
 </ContinueHeader>
 </env:Header>
 <env:Body>
 <rte:eventNotify xmlns:rte="…">

<rte:method>initialize</rte:method>
<rte:runTimeData>
 <rte:element_name>

cmi.learner_id
 </rte:element_name>
 <rte:value >

556-00981
 </rte:value>

 <!-- more data -->

 </rte:runTimeData>
 </rte:eventNotify>
 </env:Body>
</env:Envelope>

<env:Envelope xmlns:env="…”>
 <env:Header>
 <ContinueHeader xmlns="…">
 <conversationID>
 1018048628974
 </conversationID>
 </ContinueHeader>
 </env:Header>
 <env:Body>
 <rte:eventNotifyResponse xmlns:rte="…">
 <rte:runTimeData>
 <rte:element_name>
 cmi.learner_id
 </rte:element_name>
 <rte:value >
 556-00981
 </rte:value>

 <!-- more data -->

 </rte:runTimeData>
 </rte:eventNotifyResponse>
 </env:Body>
</env:Envelope>

5. RELATED WORK
Some researchers propose a SOA-based architecture for defining a
decomposition of a generic e-learning system [e.g. 3, 12, 13].
Authors in [12] propose a service architecture to integrate LMS
and Learning Content Management System functionalities. All the
identified modules are services that offer their functionalities
using Web Services technology. Authors in [3] propose an
architecture of a generic e-learning system, whose functionalities
are provided by a set of Web Services, external to the main LMS
application. In [13] a Grid-based layered architecture for the
support of collaborative learning is proposed.

Other SOA-based architectures are more focused on the
search of LOs, which may or may not use standard functionalities.
In [14] a Web Services-based architecture is proposed in order to
allow LMS servers to share learning-related information, such as
learning material, learner data and learning strategies. Each of the
previous category of information is kept by a different sub-system.
According to [15] Web Services can be used in the field of
content repositories, in order to obtain an infrastructure for the
centralized search and discovery of SCORM-based learning

contents. The work proposed in [16] is based on the LTSA [17]
architecture, which is adapted to a SOA-based model. The authors
intend to use this model to allow for a flexible integration of
educational components. LOs can be discovered using the
metadata annotation of the LOM [18] and then assembled together
in a Web-services based platform.

Other work is more concerned with obtaining a standard
environment based on the SCORM RTE model. A very technical
paper is [19], where SOAP is used to perform the communication
between the LMS and the API Adapter. There is no evidence that
this could provide a better solution than using simple HTTP
messages. An interesting matter concerns the launch of RTE
compliant LO on PDA devices. For these environments, due to
several hardware and software limitations, the architecture of the
SCORM RTE is unsuitable. In [20], the authors claim that the use
of Web Services should help to access the services provided by
SCORM API. Unfortunately a finite and concrete solution for RTE
service is postponed to further studies. In a previous work [21],
we have proposed several modifications to the approach described
by the SCORM RTE. The use of the API Adapter, which could not
run in devices with limited capabilities, is substituted by the use
of a suitable Middleware component in a Web Services-based
architecture.

A work closely related with ours is [5]. It presents a
framework for the adoption of the whole SCORM model in a
SOA-based architecture. Most of the functionalities are provided
by external services. A service which offers the functionalities
specified in the RTE model is called Tracking Service. In the
authors’ opinion, such a service should be local to the LMS, for
performance reasons. This argument is valid in their architecture,
due to their decision to fuse RTE functionalities with other
tracking functionalities. Otherwise, in our opinion, there would
not have been valid reasons for preventing the externalization of
the RTE functionalities from the LMS.

6. CONCLUSION
In this paper we presented a SOA-based architecture which can

be adopted by LMS systems in order to support the SCORM RTE
functionalities, using a service external to the LMS. We are
confident that our proposal could represent a step ahead towards
the definition of a more comprehensive standard architecture for
an e-learning system built using loosely-coupled components. The
availability of this standard architecture will allow the
independent development of the components constituting the e-
learning system, gaining all the benefits related to the adoption of
this solution.

A prototype based on Web service technology has been
developed, in which a popular PHP-based LMS uses an external
service, built and deployed with J2EE technology, to offer RTE
functionalities, thus showing the language independency of our
solution. The LO-LMS communication caching mechanism allows
us to significantly reduce the message exchange between the LMS
and the external service, thus keeping the performances of the
whole system high. A performance comparison between
integrated systems and services-based systems is left for further
studies, even if we think that the latter are inevitably destined to
supplant the formers.

Future work is aimed at finding solutions to externalize other
functionalities from the LMSs, starting from the standard ones,
which lend themselves to be offered by components external to

the LMS and loosely-coupled with it. We think such kind of
bottom-up approach is suitable to obtain a final environment that
defines the functionalities that can be externalized and those that
must be integrated into the LMS. To this extent, our proposal
could be a step forward.

7. REFERENCES
[1] The Scorm Run-Time Environment ver 1.3.1,

http://www.adlnet.org/scorm/history/2004/documents.
cfm

[2] Nakabayashi, K., Kubota, Y., Yoshida, H., Shinohara,
T., Design and Implementation of WBT System
Components and Test Tools for WBT content
standards, Proceedings of ICALT ’01 (Madison, USA,
Aug 2001), 213-214

[3] Vossen, G., Westerkamp, P., E-learning as a Web
service, Proceedings of Seventh International
Database Engineering and Applications Symposium,
(July 2003), 242 – 249

[4] Costagliola, G., Ferrucci, F., Fuccella, V., A
Framework for the Support of the SCORM Run-Time
Environment, Proceedings of the 2006 International
Conference on SCORM 2004 (Taipei, Taiwan, Jan
2006), 21-26

[5] Chu, C.P., Chang, C.P., Yeh C.W., Yeh Y.F., A Web-
service oriented framework for building SCORM
compatible learning management systems,
Proceedings of International Conference on
Information Technology: Coding and Computing,
(2004), 156 - 161 Vol.1

[6] CMI Guidelines for Interoperability AICC rev. 4.0,
http://www.aicc.org/docs/tech/cmi001v4.pdf, 2004

[7] IEEE LTSC, WG11: Computing Managed Instruction,
http://ltsc.ieee.org/wg11/index.html

[8] Moodle, A Free, Open Source Course Management
System for Online Learning, http://moodle.org/

[9] Apache Web Services – Axis,
 http://jakarta.apache.org/axis /

[10] XML-RPC for PHP Homepage,
http://phpxmlrpc.sourceforge.net

[11] SOAP Conversation Protocol ver 1.0,
http://dev2dev.bea.com/pub/a/2002/06/SOAPConversa
tion.htm

[12] Xiaofei L., El Saddik, A., Georganas, N.D., An
implementable architecture of an e-learning system,
Proceedings of IEEE Canadian Conference on
Electrical and Computer Engineering (May 2003),
717 - 720 vol.2

[13] Wang G.L., Li Y.S., Yang S.W., Miao C.Y., Xu J., Shi
M.L., Service-oriented grid architecture and
middleware technologies for collaborative e-learning,
Proceedings of IEEE International Conference on
Services Computing (July 2005), 67 - 74 vol.2

[14] Tamura Y., Yamamuro, T., Distributed and Learner
Adaptive e-Learning Environment with Use of Web
Services, Proceedings of the International Conference
on SCORM 2004 (Taipei, Taiwan, Jan 2006), 11-15

[15] Hussain, N., Khan, M.K., SCASDA: SCORM-based
Centralized Access, Search and Discovery
Architecture, Proceedings of the International
Conference on SCORM 2004 (Taipei, Taiwan, Jan
2006), 137-140

[16] Pahl, C., Barrett, R., A web services architecture for
learning object discovery and assembly, Proceedings
of the 13th int. World Wide Web conference on
Alternate track papers (May 2004), 446-447

[17] IEEE LTSC, WG1, Architecture & Reference Model,
http://ieeeltsc.org/inactive/arch/

[18] IEEE LTSC, WG12, Learning Object Metadata,
http://ltsc.ieee.org/wg12/

[19] Shih, T.K., Chang, W. C., Lin, N.H., Lin, L.H., Hsu,
H. H., Hsieh, C. T., Using SOAP and .NET web
service to build SCORM RTE and LMS, Proceedings
of Advanced Information Networking and Applications
(Xi’an, China, Mar 2003), 408-413

[20] Lin, N.H., Shih, T.K., Hui-huang, H., Chang, H. P.,
Chang, H. B., Ko, W. C.; Lin, L.J., Pocket SCORM,
Proceedings of 24th International Conference on
Distributed Computing Systems Workshops (Tokyo,
Japan, March 2004), pp. 274-279

[21] Casella, G., Costagliola, G., Ferrucci, F., Polese, G.,
Scanniello, G., A SCORM Thin Client e-learning
Systems Based on Web Services, To appear in
International Journal of Distance Education
Technology

