
An Approach to Generate Test Cases from Use Cases
Javier J. Gutiérrez
University of Seville

Avd. Reina Mercedes sn.
41040 Seville, Spain

+34954553867

javierj@lsi.us.es

María J. Escalona
University of Seville

Avd. Reina Mercedes sn.
41040 Seville, Spain

+34954553867

escalona@lsi.us.es

Manuel Mejías, Jesús Torres
University of Seville

Avd. Reina Mercedes sn.
41040 Seville, Spain

+34954552769

risoto / jtorres@lsi.us.es

ABSTRACT
The system testing allows to verify the behaviour of the system
under test and to guarantee the satisfaction of its requirements.
This work describes a complete process to generate test cases
from use cases for web applications. This process also resolves
the lacks detected in existing approaches.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]

General Terms
Languages, Verification.

Keywords
System testing, functional testing, generation of test cases.

1. INTRODUCTION
The software systems need to improve their quality guarantee
because of their growing complexity. A tool that assures the
quality of software systems is the system testing. The system
testing assures that the functionality of the system under test
(SUT) satisfies its requirements. A system test case substitutes an
actor and simulates its behaviour. This definition shows that the
design of the system testing is based on the functional
requirements of the system.

Nowadays, it is usual to express the functional requirements of a
web system through UML use case diagrams and text templates.
Existing papers [3], [6], expose that use cases and text templates
are adequate for web systems. Thus, use cases are an appropriate
artefact to start the generation process of test cases for web
systems.

We exposed how to apply existing works in the generation of test
cases in a web application in a previous paper [5]. This paper
introduces a new approach to generate test cases from
requirements expressed by use cases.

Actually, we know two reports that analyse and compare
approaches for generating system test cases from requirements.
First report [2] analyzes 12 approaches. Second report [4]
analyzes 13 approaches, 4 of them also included in Denger report.
A list of references to all analyzed proposals may be found in [4].
Approaches analyzed in both reports have several common
characteristics: approaches work with functional requirements,
functional requirements are expressed with use cases, use cases
are expressed in natural language and approaches are incomplete.

The goal of the generation process is to obtain several test cases
to check that all the information included in the use cases have
been successfully implemented in the web system under test. The
generation of a test case involves the definition of, at least, three
different elements: the test values, the interactions with the
system under test and the expected result. The elements obtained
at the end of the generation of test cases are a set of executable
test cases (with test values, interactions and expected results).

2. CASE STUDY
The system under test is a real web application that allows to
manage an on-line link catalogue. We use the UML Testing
Profile notation [7] to test artefacts. The use selected case is
shown in table 1.

2.1 Generation of instances of use cases
First, we create a behavioural model of the use case. The UML
Testing Profile does not indicate any notation for test objectives,
so we use activity diagrams. Figure 2 shows this model.

Table 1. Template for the use case "Add new link".

Name UC-01. Add new link
Main
sequence

1 The user selects the option: add a new link.
2

The system selects the “top” category and
shows the form to introduce the information
of a link (SR-02).

3

The user introduces information of the new
link and presses the insert button.

4 The system stores the new link.
Errors /
alternatives

4

If the link name or URL link is empty, the
system shows an error message and asks for
the value again

Post
condition

The new link is stored into the system

Next, we use Roundtrip pattern [1] to identify all possible paths.
A path in the behavioural model is a scenario in the use case.
Table in figure 1 shows some example test objectives.

2.2 Generation of test values
We use operational variables [1] to denote each concrete link that
a user introduces into the system. The Category Partition method
[8] is a widely used technique in existing approaches [4]. We
apply this method to divide all possible links into several
partitions, as showed in figure 2. We have used the Testing
Profile to represent the division into partitions.

Figure 1. Behavioural model.

Figure 2. Test categories and test values.

Concrete test values of each category have been randomly chosen
and are also shown in figure 3.

2.3 Generation of test cases
The test cases are generally described at a high level, therefore it
is hard to implement test scripts. For example, the activity 02 of
figure 2 could not be directly implemented. None of the existing
approaches shows how to refine test objectives. We have used the
sequences diagrams proposed in UML Testing Profile. The
language used is an abstract language based on Canoo WebTest
(webtest.canoo.com) notation. The latest is the tool used to
implement our test cases.

Figure 3. Test case for main scenario

Figure 3 shows the first objective (figure 1) and the validation
actions that will be defined in next point.

2.4 Generation of expected results
Till now, we have developed test actions and test values.
However to complete our test suite we need to define what the
test case has to check and what are its expected results. The
expected result for a successful operation is to reload the main
page shown in figure 2. The expected result for an invalid link is
an error message. The way to implement validation actions is to
assert the HTML code received from the server.

3. CONCLUSIONS
This paper has presented a new approach to generate test cases
from use cases. We have shown how this process is applied in a
web system using use cases. All the test information has been
modelled with the UML Testing profile. This profile does not
describe any notation for the modelling of test objectives. We
have improved it using activities diagrams derived from the use
cases. It is possible and valuable for web systems to generate test
cases from use cases. It is possible to start the testing process as
soon as the first requirements are available or stable. It avoids
postponing all the testing process till the end of the software
creation, when the accumulated delays impede a deep testing. The
testing design in early phases also allows to detect errors,
omissions and ambiguities in the requirements when it is still easy
to correct them. A prototype tool has been built. It may be
downloaded from www.lsi.us.es/~javierj/

4. REFERENCES
[1] Binder, Robert V. 2000. Testing Object-Oriented Systems.

Addison-Wesley. USA.
[2] Denger, C. Medina M. 2003. Test Case Derived from

Requirement Specifications. Fraunhofer IESE Report.
[3] Escalona MJ. 2004. Models and Techniques for the

Specification and Analysis of Navigation in Software
Systems. Ph. European Thesis. University of Seville. Spain.

[4] Gutiérrez, J, Escalona MJ, Mejías M, Torres J. 2005.
Analysis of Proposals to Generate System Test Cases From
System Requirements. CAiSE’05 Forum. Porto. Portugal.

[5] Gutiérrez JJ, Escalona MJ, Mejías M, Torres J. 2005. A
practical approach of Web System Testing. Advances in
Information Systems Development: Bridging the gap between
Academia and Industry. pp. 659-680. Ed. Springer Verlag
Karlstad, Sweeden.

[6] Koch, N. Software Engineering for Adaptative Hypermedia
Applications. Ph. Thesis, FAST Reihe Softwaretechnik
Vol(12), Uni-Druck Publishing Company, Munich. 2001.

[7] Object Management Group. 2002. The UML 2.0 Testing
Profile. www.omg.org

[8] Ostrand, TJ, Balcer, MJ. 1988. The Category-Partition
Method. Communications of the ACM. 676-686

