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ABSTRACT
Test campaigns usually require only a restricted subset of paths in
a program to be thoroughly tested. As random testing (RT) offers
interesting fault-detection capacities at low cost, we face the prob-
lem of building a sequence of random test data that execute only a
subset of paths in a program. We address this problem with an orig-
inal technique based on backward symbolic execution and constr-
aint propagation to generate random test data based on an uniform
distribution. Our approach derives path conditions and computes
an over-approximation of their associated subdomain to find such
a uniform sequence. The challenging problem consists in building
efficiently a path-oriented random test data generator by minimiz-
ing the number of rejects within the generated random sequence.
Our first experimental results, conducted over a few academic ex-
amples, clearly show a dramatic improvement of our approach over
classical random testing.

1. INTRODUCTION
Random Testing (RT) is the process of selecting test data at random
according to an uniform probability distribution over the program’s
input domain. Uniform means that every point of a domain has the
same probability to be selected. Although RT has traditionally been
considered as a blind approach of program testing [14], the results
of actual random testing experiments confirmed its effectiveness
in revealing faults [6, 9]. Among other advantages [11], one key
advantage of RT over other techniques is that it selects objectively
the test data by ignoring the specification or the structure of the
program under test [3]. For a long time, RT has been opposed
to partition testing which aims at selecting one or more test data
from each subdomain of a partition of the input domain [17]. As a
typical example of partition testing, path testing requires to find a
test suite so that every control flow path is traversed at least once.
As every feasible1 path corresponds to a subdomain of the input
domain, path testing consists in selecting at least one test datum
from each subdomain.

Test campaigns usually require only a subset of paths to be thor-

1A path is feasible iff it can be activated by some test data

oughly tested as (exhaustive) path testing is most of the time impos-
sible. In fact, as soon as the program contains a loop, the number
of paths is potentially unbounded, and deciding whether a path is
feasible or not is an undecideable problem in the general case [16].
Usual white-box testing approaches requires only a subset of paths
to be selected to cover a given structural criterion such as all state-
ments or all decisions [20]. Moreover, it is well known that some
control flow paths are irrelevant for the computation of the func-
tion implemented by the program as they will never be activated
during the operational life of the program. For example, consider a
program where some robustness code has been added just to avoid
its usage in unsuitable conditions. Hence, this leads us naturally to
the idea of performing random testing by selecting first a subset of
paths, in order to benefit from the advantages of random testing in
a partition testing approach.

In this paper, we introduce an original technique to generate ran-
dom test data based on a uniform distribution for only a subset of
paths. Our approach, called Path-oriented Random Testing (PRT),
derives the path conditions of the selected paths by using a back-
ward symbolic execution [13] and computes an over-approximation
of their associated subdomain by using constraint propagation [10,
12]. The challenging problem consists in building efficiently a u-
niform random test data generator by minimizing the number of
rejects within the generated random sequence [15]. A reject is pro-
duced whenever the randomly generated test datum does not satisfy
the path conditions. Our approach addresses this problem by using
subtle constraint propagation and constraint refutation combined
with random test data generation. We implemented our PRT ap-
proach by using the clp(fd) constraint library of SICStus Prolog [2]
and get some first experimental results showing that PRT outper-
forms traditional RT. In addition, we provide an algorithm that can
detect some non-feasible paths in the set of selected paths. This
also shows a qualitative improvement over traditional RT.

Outline of the paper. Section 2 gives an overview of our approach
on a motivating example. Section 3 recalls some background on
symbolic execution while Section 4 details our constraint propaga-
tion approach to build an uniform test data generator for a subset of
paths. An algorithm to perform PRT method is given and analysed.
Section 5 reports on the experimental results we obtained with our
implementation and Section 6 presents further work.

2. A MOTIVATING EXAMPLE
We start by giving an overview of the PRT approach over tradition-
al RT on a motivating example. Consider the C program of Fig.1
and the problem of building an uniform test data generator for path
���������. By looking at the decisions of the program, we



ush foo(ush x, ush y) �
1. if (� �� ��� && � �� ���) �
2. if (� � �� ��)
3. . . .
4. if (� � � � ��)
5. . . .

Figure 1: Program foo (ush stands for unsigned short integers)

can see that � and � must range in ������ to satisfy our objective
but other decisions cannot be tackled so easily. By using a uniform
random test data generator that independently pick up a value �� in
������ and a value �� in ������ and rejects the pairs ���� ��� that do
not satisfy the constraints �� � �� � �� � �� � �� � 	�, we get a
uniform random generator that solves our problem. However, this
traditional RT approach is highly expensive as it requires rejecting
a lot of randomly generated pairs. In fact, by manually analyzing
the program, we can determine that the average probability of re-
jecting a possible pair is not far from ��

���
with this RT approach.

Indeed, executing path ��������� is an event which has a
very low probability as only �
 input points over ���� satisfy the
two decisions. In contrast, our PRT approach exploits subtle con-
straint propagation and constraint refutation to minimize this prob-
ability and then it reduces the length of the generated test suite.
By using constraint propagation over finite domains on this exam-
ple, we get immediately that any solution pair ��� �� must range
over the rectangle �� � �� � ����� � � �������� which a correc-
t over-approximation of the �
 solutions. Building a random test
data generator for �� is an easy task as we can select �� � inde-
pendently. This would not have been true if �� had the shape of
a triangle, for example. However, by combining domain bisection
and constraint refutation, we can get an even better approximation:
�� � �� � �� � � �������� � �� � �� � � ����	�� where the
subdomain �� � �� � � 	
������ has been refuted while just a s-
ingle spurious pair was added (� � �� � � ���). Note also that
one can still easily build a random test data generator for �� by
selecting � independently from � as �� can be divided in an u-
nion of rectangles of the same area. In fact, we design our PRT
method while keeping this latter constraint in mind. Finally, we
can determine that the average probability of rejecting a possible
pair which is just around ��

���
(�
 input points over the 	
 of ��

satisfy the two decisions). By using the PRT approach, the size of
the randomly generated test suite is dramatically decreased while
the overhead introduced by constraint propagation and constraint
refutation remains tractable [10].

3. BACKWARD SYMBOLIC EXECUTION
In this section, we explain how to derive path conditions associated
to a subset of selected paths in the program under test. This process
is based on backward symbolic execution that was first formalized
by Clarke and Richardson in [13]. This technique is based on the
selection of paths of the control flow graph and the computation of
symbolic states.

3.1 Control flow graph
The control flow graph of a program � is a connected oriented
graph composed of a set of vertices, a set of edges and two distin-
guished nodes, � the unique entry node, and 	 the unique exit node.
Each node represents a basic block and each edge represents a pos-
sible branching between two basic blocks. A path of � is a finite
sequence of edge-connected nodes of the control flow graph which
starts on �. As an example, consider the program power.c given
in Fig.2 along with its CFG. This program computes ��. Note that

double P(ush x, ush y)
{

w = abs(y) ;
z = 1.0 ;
while ( w != 0 )

{
z = z * x ;
w = w - 1 ; 

}

if ( y<0 )
z = 1.0 / z ;

return(z) ; 
}
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w = abs(y) ;
z = 1.0; 

z = z*x ;
w = w-1 ;

Z = 1.0/z;

return(z)

while( w != 0)

if( y<0)

Figure 2: Control flow graph of program power.c

this program contains a non-feasible path (��������	), as in
many imperative programs [19].

3.2 Symbolic states
Symbolic execution works by computing symbolic states for a giv-
en path. A symbolic state for path ��
�� � � ��
� in � is a triple
���
�� � � � �
�� ���� ������� ���� �� �� where �� is a sym-
bolic expression associated to the variable � and
����
�� � � �� � �� � � � � � �� is a set of constraints, called
path conditions. � ���� � denotes the set of variables in � . A
symbolic expression is either a symbolic value (possibly undef) or
a well parenthesized expression composed over symbolic values.
In fact, when computing a new symbolic expression, each internal
variable reference is replaced by its previously computed symbolic
expression.

In the program of Fig.2, the symbolic state of path ��������	
can easily be obtained by computing the following sequence of
symbolic states :
��, ������� ��� � �� ���������� �������� ��� 	
���

����, ������� ��� � �� ��� ���� ��� ��� ������ 	
���

�����	, ������� ��� � �� ��� ���� ��� ��� ������ ���� � � ��

�����	����, ������� ��� � �� ��� ���� ��� ��� ������ � � ������ � �

��

where � (resp. � ) is the symbolic value of the input variable �
(resp. �). Note that symbolic expressions and path conditions hold
only over symbolic input values (except in the presence of floating-
point computations [1]).

Solving the path conditions yields either to demonstrate that a giv-
en path is non-feasible or to find a test datum on which the selected
path is executed. In the previous example, it is trivial to see that the
(non-linear) path conditions � � � � ��	�� � � � have no solu-
tion, showing that the path ��������	 is non-feasible. Unfor-
tunately, automatically solving a set of non-linear constraints over
unbounded integers is a classical undecideable problem. Hence,
we have to perform some kind of approximation if one wants to
automate this process.

3.3 Forward/backward analysis



Symbolic states are computed by induction on their path by a for-
ward or a backward analysis [13]. Each statement of each node
of the path is symbolically evaluated using an evaluation function
which computes the symbolic states. Forward analysis follows the
statements of the selected path in the same direction as that of actu-
al program execution, whereas backward analysis uses the reverse
direction. Backward analysis is usually preferred when one only
wants to compute the path conditions, as it saves memory space.
Indeed, backward analysis does not require the symbolic expres-
sions to be stored when computing the path conditions. The idea is
just to replace local references by symbolic expressions within the
path conditions. We illustrate this point on the backward symbolic
execution of path ����������	.
�	��� ������� ��� � ��� � � ��

���	��� ������� ��� � ��� � � � � � � �

���
���	��� ������� ��� � ��� � �� � � � � � � � � � � ��

�����
���	��� ������� ��� � ��� ���� � �� � � ���� � � � �

� � � � ��

3.4 Symbolic execution for a set of paths
Path conditions for a set of paths can be derived just by consid-
ering the disjunction of conditions computed for each path. Let
���� ��� ��� be a set of paths, then ����� � ����� � � � � �
����� is the path conditions associated to ���� ��� ���. Note
that these path conditions are in Normal Disjunctive Form (OR of
AND). If the input domain is the Cartesian product of integer vari-
able domains, then symbolic manipulations can be performed on
these path conditions to simplify the resolution process. In this pa-
per, we will not go into more details on this process as it is outside
the scope of the paper.

4. PATH-ORIENTED RANDOM TESTING
BASED ON CONSTRAINT PROPAGATION

In this section, the constraint propagation process is first explained
and then its usage to build a domain on which uniform path-oriented
random test data generation can easily be performed is described.
In the rest of the paper, we consider that each input variable belongs
to a type-dependant finite integer domain and there is only a finite
number of input variables. These two hypotheses help us to focus
on the technical problems of path-oriented random testing. Exten-
sions are discussed in conclusion. This contrasts with other RT
approaches where the input domain is considered to be formed of
bits sequence, whatever be the types of variable [11]. We also sup-
pose that path conditions for a subset of paths have been computed
by backward symbolic execution. Hence, these constraints are giv-
en under Normal Disjunctive Form. We do not make any other
assumptions as our approach is generic for any finite domains con-
straint system. We discuss of pseudo-random number generators
just to make clear what uniformity means on computers.

4.1 Constraint propagation
The goal of constraint propagation is to shrink the finite variation
domain of each variable in order to get a sound over-approximation
of the solutions of a set of constraints. This process however does
not guarantee the existence of solutions as it can only eliminate
inconsistent values.

During constraint propagation, constraints from the path conditions
are incrementally introduced into a propagation queue. An iterative
algorithm manages each constraint one by one into this queue by
filtering the domains of variables of their inconsistent values. Fil-

tering algorithms consider usually only the bounds of the domains
for efficiency reasons. When the domain of a variable is pruned
then the algorithm reintroduces in the queue all the constraints
where this variable appears (awaked constraints) to propagate this
information. The algorithm iterates until the queue becomes emp-
ty, which corresponds to a state where no more pruning can be per-
formed (a fixpoint). When selected in the propagation queue, each
constraint is added into a constraint–store which memorizes so all
the considered constraints. The constraint–store is contradictory if
the domain of at least one variable becomes empty. In this case the
corresponding path is shown to be non-feasible. Using constraint
propagation in software testing is not a new idea [4, 8], but, accord-
ing to our knowledge, it has not yet been used in random testing.

As shown in the example of Fig.1, constraint propagation permits to
get �� � �� � ����� � � �������� as an over-approximation of the
solution set of: � � ������� � � ������� � � � ����� �� �
	�.

Constraint propagation over finite domain variables computes only
hypercubes: each variable of an 
-dimensional space belongs to a
range ��
����� of values. Sometimes values can be removed
from ranges such as in the presence of disequality constraints (e.g.
� �� �) but, in our PRT approach, we will ignore such removals as
only ranges are suitable for our purpose. So, we will consider that
a finite ordered domain ��� ��� � � � � ����� �� is always represented
and approximated by the range ������. The interesting point is that
constraint propagation over ranges is really very efficient. In fact
this process is just linear on the number of constraints.

4.2 Random test data generation
A random test data generator is said to be uniform when each point
of the input domain of a program has the same probability to be
chosen. However, it is well known that uniformity can only be
approximated on deterministic machines (such as usual computer-
s) and only pseudo-random numbers generators can be employed.
Most of the time, pseudo-random numbers generators make use
of linear congruent rules such as �� � ������� � ������ �
���� ��� � to generate numbers. So, generating a 
	
 number
is an event not totally independent of the previous generation and
the probability of a given number to be selected is not equivalent
for each number. By this, we lost strict uniformity. However, these
generators appear as being very good in practice (not far from u-
niformity). Then, they are suitable for our purpose. The design of
such generators is outside the scope of this paper and a complete
and recent survey of this topic can be found in [7].

4.3 Random Testing over an hypercube
An hypercube is the 
-dimensional extension of the �-dimensional
cube. Performing random testing based on an uniform distribu-
tion over an hypercube domain is trivial as any of its points can be
randomly selected by selecting its coordinates independently. Let
us assume a two-dimensional input space ��� ��, then RT can be
implemented just by selecting � at random and then � at random,
without paying attention on the value obtained for �. These two
events are independents. This property is true for some shapes but
not for all. Consider for example a triangle domain, such as the one
shown in figure 3. Suppose this triangle domain is limited by the
three lines � � �� � � ��� � � �. Let ��� �� be two randomly se-
lected integers such as �� � �� and ��� �� two randomly selected
integers such as �� belongs to ����� and �� belongs to �����, then
the probability of the event ���� ��� is selected is equal to ����
whereas the probability of the event ���� ��� is selected is equal to
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Figure 3: The triangle domain

����. As �� �� ��, we have lost uniformity. In fact, these two
events are not independents over the triangle domain whereas they
always are over an hypercube domain.

4.4 Two invariance principles of RT
Our PRT approach makes use of two well-known fundamental in-
variance principles of uniform random number generators. The first
principle just states that any uniform random generator for a given
domain � can also be employed as an uniform random generator
for any of the subdomains of �. More formally:

PROPERTY 1 (FIRST INVARIANCE PRINCIPLE). Let � be a se-
quence of uniformly distributed tuples of values for a domain �,
then for any subset �� of �, it is possible to extract from � a se-
quence �� of uniformly distributed tuples for �� by rejecting the
tuples of � that do not belong to ��. The remaining sequence �� is
still uniformly distributed over ��.

This first invariance principle is illustrated in Fig.4. To obtain a u-
niform sequence of values for ��, it suffices to examine each of the
tuples of the sequence for � and to reject those tuples that do not
belong to ��. Of course, the smaller �� is w.r.t. �, the larger the
uniform sequence for � must be. By looking back at the triangle
example, the first invariance principle just says that we get a ran-
dom test data generator for the triangle domain by taking a uniform
test data generator for the encompassing rectangle and rejecting the
pairs that do not belong to the triangle.

The second principle is more subtle as it states that a random test
data generator can be built in a hierarchical manner:

PROPERTY 2 (SECOND INVARIANCE PRINCIPLE). Let � be
a domain of 
 tuples, let � be a divisor of 
 and ��� � � � � �� be
a partition of � such that each �� possesses the same number of
tuples, then an uniform random sequence for � can be built by
building first a uniform random sequence over ��� � � � � ��, and
then picking up a single tuple in each �� at random. The resulting
sequence of tuples is still uniformly distributed over �.

D’

D

Figure 4: The first invariance principle

The important point here is that all the domains �� have the same
number of tuples. Fig. 5 illustrates the second invariance princi-
ple over the triangle domain. To build an uniform sequence over
the triangle domain, we can first break its encompassing rectan-
gle into ��� � � � � ��� equivalent subdomains then build a random
sequence of these subdomains and finally select a point in each
subdomain.
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Figure 5: The second invariance principle

By combining the two principles, we can optimize the process of
building a random tuples generator for the triangle domain. It suf-
fices to remove the subdomains that do not intersect the domain
��. For example, in the Fig. 5, we can first remove the subdomains
��� ��� ��� �� and then build a random tuples generator by first
building a random sequence over ��� ��� �	� �
� � � � � ��� . The
algorithm we implemented is based on these same ideas. The key
point of our PRT approach is that it employs constraint refutation
to remove subdomains as we do not have a geometrical view of the
solution set of the constraint system. We just have the symbolic



expressions of the path conditions.

4.5 Constraint refutation to test domain inter-
section

Constraint refutation is the process of temporarily adding a con-
straint to a set of constraints and testing whether there is no solu-
tion by constraint propagation. When there is no solution, then the
added constraint is shown to be contradictory with the rest of the
constraint system. When there could be a solution, then we cannot
deduce anything as constraint propagation is incomplete in gener-
al. This process can be implemented very efficiently as constraint
propagation over ranges is linear w.r.t. the number of constraints.

Consider again the triangle example and the constraint set � 	
�� � 
 ��� � 	 � that correspond to the triangle domain. Constr-
aint propagation over these constraints give � � �� � ������ � �
������. Then adding the constraint corresponding to �� � �� �
����� � � ������� and performing constraint propagation leads to
exhibit a contradiction. As a result, �� can be removed from the
list of subdomains. By repeating this process until all the subdo-
mains of � be tested, we get that ��� ��� ��� �� can be removed,
as expected.

It is worth noticing that constraint refutation is an efficient but in-
complete process. As said previously, constraint propagation over
finite domains does not guarantee satisfiability. Consider the fol-
lowing constraint system over finite domains: � � ����� � �
����� � � ����� � �� �� � �� �� � �� � . On this example con-
straint propagation does not perform any pruning on the domains,
although the constraint system is clearly unsatisfiable. Hopeful-
ly, these situations are not so frequent in practice and inconsistent
subdomains can often be refuted.

Using constraint refutation has another advantage as it is useful to
detect some non-feasible paths. In fact, non-feasible paths corre-
spond to unsatisfiable constraint systems. Hence, in the PRT ap-
proach, if all the subdomains of the partition are shown to be in-
consistent, then that means the corresponding path is non-feasible.
This contrasts with traditional RT which can never detect non-feasible
paths. Note however that the PRT approach can miss to detect some
non-feasible paths due to the incompleteness of constraint propaga-
tion.

4.6 Dividing the hypercube into equivalent sub-
domains

When a path is feasible, constraint propagation always results in an
hypercube that is a correct over-approximation of the solution set
of the path conditions. The PRT approach builds a random test data
generator for the exact path-conditions solution domain within this
hypercube. Special attention must be paid to the way this hyper-
cube is broken into subdomains in order to preserve the uniformity
of the generator. As the hypercube is only made of integer tuples,
we need to introduce some tricks to preserve uniformity. Let � be a
given parameter, called the division parameter, our PRT algorithm
is based on the division of each domain variable into � subdomains
of equal area. When the size of a domain variable cannot be divid-
ed by �, then we enlarge its domain until its size can be divided by
�. If the input domain is of dimension 
, then this trick yields to
partition the (augmented) hypercube into �� subdomains.

For the triangle domain of Fig.3, consider a division parameter
equal to �. Then we have to divide the rectangle domain � �

������ � � ����� into �� � �	 subdomains of equal area. But,
� does not divide ��, therefore we propose to enlarge the domain
of � and the domain of � with a value each. Finally, we get the �	
following subdomains: �� � �� � ����� � � �����, �� � �� �
����� � � �����,..,��	 � �� � ������� � � �������.

In practice, we recommend to select a small division parameter
such as � � �� � or � as the gain will be maximal2 while the over-
head will remain reasonable. In addition, the number of spurious
tuples introduced by the process will remain neglictible.

4.7 An algorithm to perform path-oriented ran-
dom testing

By making use of the two invariance principles described above we
can then set up an algorithm able to perform path-oriented random
testing (PRT). The algorithm takes as inputs a set of variables along
with their finite variation domain, a constraint set corresponding to
the path conditions (under Disjunctive Normal Form), the division
parameter �, an integer � that represent the length of the expected
random sequence. The algorithm returns a list of � uniformly dis-
tributed random tuples that all satisfy the path conditions. The list
is void whenever the corresponding paths are all non-feasible.

Algorithm 1: The Path-oriented Random Testing Algorithm

Input : ��������� � � � � ��������, ���� � � � � ���, , �, �
Output :  �� � � � �  �

! � � ;
���� � � � � ���� := Divide(��������� � � � � ��������,�);
forall �� � ���� � � � � ���� do

if �� is inconsistent w.r.t.  then
remove �� from ���� � � � � ���� ;

end
end
Let ��

�� � � � � �
�

� be the remaining list of domains;
if � 	 � then

while � � � do
Pick up � at random from ��

�� � � � � �
�

�;
Pick up  � ���� � � � � ��� at random from �;
if  is satisfied by  then

add  to ! ;
� := � � �;

end
end

end
return ! ;

The PRT algorithm makes use of the Divide function which par-
titions the hypercube in �� subdomains as described above. The
PRT algorithm is only a semi-correct procedure, meaning that it is
not guaranteed to terminate, but when it terminates, it provides the
correct result. Indeed, in the second loop, � is decreased iff  sat-
isfies , which can happen only if  is satisfiable. In other words,
if  is unsatisfiable and if this has not been detected by the constr-
aint propagation step (� 	 �), then the PRT algorithm will surely
not terminate. Note that similar problems arise whenever classi-
cal random testing with rejects is employed as nothing prevent an
unsatisfiable goal  to be selected and in this case all the test cas-
es will be rejected. In practice, a concurrent time out procedure is
2The smaller the value of � is, the larger the subdomains are



necessary to force termination. This process is not detailed here but
it is mandatory on actual implementations.

The PRT algorithm produces a sequence of � random test data that
is uniformly distributed over the solution set of . In our experi-
ments, we checked the uniformity hypothesis with the classical "�

test.

5. EXPERIMENTAL RESULTS
5.1 Our PRT and RT implementations
To evaluate Path-oriented Random Testing (PRT), we compared its
results with respect to classical Random Testing (RT). We built t-
wo programs that both take path conditions and a set of domains as
input parameters and provide a random test suite as a result. These
two programs were implemented in less than one hundred lines of
SICStus Prolog code. The random number generator is provided by
a library based on a Richard A. O’Keefe’s Prolog implementation
of the AS 183 algorithm from Wichmann and Hill [18]. In addi-
tion, our PRT implementation exploits the constraint library clp(fd)
which provides constraint propagation over finite domains.

5.2 Programs to be tested
We evaluated PRT w.r.t. RT on three programs: the foo program
given in Fig.1, the power program given in Fig.2, and the well-
known trityp program of the Software Testing literature. The
program trityp, initially proposed by Myers [14] and fully stud-
ied by DeMillo and Offut [5], takes three non-negative integers as
arguments that represent the relative lengths of the sides of a tri-
angle and classifies the triangle as scalene, isocele, equilateral or
illegal. Although it implements a very simple specification, this
program is difficult to handle for test data generators as it contain-
s several imbricate conditional structures and a lot of non-feasible
paths (43 over a total of 57 paths in the version of [5]). Moreover,
it is usually considered as representative of the more general class
of decisional programs (programs without iterative computations)
that is mainly employed in the development of realtime embedded
software.

All the results given in Tab.?? were computed on a 2.0Ghz Pentium
M personal computer with 1Go of RAM.

5.3 Experiments on the foo program
Tab.1 reports on the results obtained for the path ���������
in the foo program by regularly increasing the length of the ex-
pected random test data sequence. Tab.1 shows the number of test
data generated with the PRT approach with three distinct values of
the division parameter and traditional RT. In the first column, we
asked PRT and RT to generate a sequence of �� test data and get
that RT generated 9942 test data (rejecting ���� � �� test data)
whereas PRT generated only 	� test data with a division parameter
� equal to �, �� test data with � � � and �� test data with � � �.
Note that we repeated three times the experiments and took the best
results in all the cases (RT and PRT) to avoid the factor of bad luck
that can be observed on a single experiment. Note also that we con-
firmed the uniformity of the resulting random sequence by using
the "� test with a parameter of ����. In PRT with � � �, 1 sub-
domain over 4 was shown to be unsatisfiable whereas in PRT with
� � �, 5 subdomains over 9 and in PRT with � � � 11 subdomain-
s over 16 were shown to be unsatisfiable. In this experiment, the
CPU time required to get the random sequence (including unsatisfi-
ability detection) is always less than 1sec so it is not indicated. The

Expected 50 100 150 200 250 300 350 40

RT 9942 17085 25751 35246 42682 51611 60429 723
PRT (� � �) 60 133 206 253 321 376 465 50
PRT (� � 
) 57 113 179 229 288 351 411 46
PRT (� � 	) 55 110 166 226 280 330 397 44

Table 1: Length of the generated test suite on program foo

next experience will discuss this CPU time in more details. The ex-
perimental results shown in Tab.1 confirmed our manual analysis
on the foo program about the probability of rejecting test data that
do not satisfy the path conditions. In all the cases, PRT remain-
s linear on the length of the generated sequence and so is clearly
competitive with traditional RT.

Tab.2 shows the CPU time required to generate long sequences of
random test data on the foo program. With an Prolog-interpreted
RT program, the CPU time required for random sequences of length
greater than 10000 could not be computed as our implementation
runs out of memory. Therefore, the RT program was compiled
to optimize memory consumption while PRT remained interpret-
ed3. Anyway, the results show that PRT (in interpreted mode) is

Expected 5000 10000 15000 20000 25000 30000 35000

Compiled RT 27.7s 56.8s 83.2s 109.6s 140.3s 160.3s –
PRT (� � �) 0.3s 0.5s 0.6s 0.7s 0.9s 1.0s 1.1s
PRT (� � 
) 0.3s 0.4s 0.5s 0.6s 0.7s 0.9s 1.0s
PRT (� � 	) 0.3s 0.4s 0.5s 0.6s 0.7s 0.9s 1.0s

Table 2: CPU time required for generating random test suite
on program foo

almost two order of magnitude better than traditional RT (in com-
piled mode). The PRT approach outperforms traditional RT, at least
on this example. We can object that traditional RT could have been
implemented in C to optimize reject checking but this approach
would have gained nothing but a constant factor.

5.4 Experiments on the power program
We selected a single long path within the power program and
computed its path conditions by using backward symbolic execu-
tion. The selected path (����������������	) iterates 1000
times on the loop of the program in order to build a large constr-
aint system. In fact, it contains more than 1000 constraints. With
this experiment, we would like to study how the PRT approach be-
haves when numerous constraints are involved in the computations.
Note that the consistency of any of the computed subdomains were
checked w.r.t. these 1000 constraints. Input variables were con-
strained to belong to 0..50000.

The experimental results show that PRT with � � � generates a
random sequence of ��� test data in less than 1sec of CPU time.
Here, 2 subdomains over 4 were removed but more importantly,
the constraint propagation step yields to instantiate the second in-
put parameter of the power program and then there was not a sin-
gle reject. Indeed, all the randomly chosen test data were kept to
sensitize the selected path. The same request for a compiled ver-
sion of the RT program never answers as the event � � ���� has a
very low probability to happen (we stopped the process after 1hour
of computation).

3It is generally accepted that there is one order of magnitude be-
tween compiled and interpreted code



5.5 Experiments on the trityp program
For the trityp program, we manualy built first a list of control
flow paths that covers the all decisions criterion. It contained 7
paths. In this process, we do not pay any attention to the path fea-
sibility as in many structural testing tools. As a result, the list may
contain some non-feasible paths. We restrained the domain of input
variables to be in ������ and compared PRT and RT when gener-
ating random sequences of increasing lengths. The experimental
results are given in Tab.3. Note that in both cases (RT and PRT)
nothing guarantees the all decision criterion to be covered as the
list may contain non-feasible paths. It is well known that RT can-
not easily cover the trityp program as there is at least one event
which has a very low probability: generating an equilateral trian-
gle. Of course, a similar drawback is expected for the PRT ap-
proach as it is mainly an RT approach. A randomly chosen value
is never propagated on the constraint network as this would bias
the random test data generator! The PRT approach with � � �
does not eliminate any subdomain but as it makes use of constraint
propagation to eliminate some of the non-feasible paths, the com-
plete process outperforms again traditional RT. In fact, among the �
paths, � are shown to be non-feasible. For the PRT method, to start
finding inconsistent subdomains, the division parameter � must be
instantiated to ��. In this case, �	� subdomains are inconsistents
over a total of ����. As this value depends on the problem, we
have not used it in our experiments, so the results are just present-
ed with � � �. This experiment shows that PRT is suitable not
only for a single path but also when a subset of paths is given as
input. Of course, in this case, constraint propagation is less effi-
cient as disjunctions are handled in a lazy manner in the constraint
solver. In fact, it waits until one of the disjuncts is entailed by the
rest of constraints. However, even in this case, PRT outperforms
traditional RT as shown by Tab.3.

6. FURTHER WORK
In this paper, we introduced a new approach that combines both the
advantage of partition testing and random testing. This approach,
called Path-oriented Random Testing (PRT), implements RT over
only a restricted subset of the control flow paths of a program to
be tested. The challenging problem is to preserve the uniformity
of the random generator only for a subdomain of the program’s in-
put domain. We have shown that PRT outperforms traditional RT
by minimizing the number of rejects needed by any RT approach
of this problem. Moreover, by exploiting subtle constraint propaga-
tion and refutation, the PRT approach also permits to detect some of
the non-feasible paths, something which is out of the scope of tradi-
tional RT. Our further work will focus on techniques to improve the
scope of current PRT methods. In particular, dealing with pointer-
s and dynamic structures in PRT appears to be very challenging as
we do not possess yet any constraint solvers on these constructions.
Moreover, consider pointers as inputs of programs leads to consid-
er unbounded input domains which is challenging for RT methods.
More generally, for a random test data generator, maintaining uni-
formity on a subdomain defined by a set of constraints is a difficult
and not yet solved problem. A lot of work remains to be done to
understand what are the links between this problem and other RT
approaches.
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Expected 10000 20000 30000 40000 50000 60000 70000 80000

RT 17.6s 34.9s 52.6s 70.0s 87.7s 105.3s 123.1s 140.4s
PRT with � � � 0.8s 1.8s 1.9s 2.5s 3.2s 3.8s 4.4s 5.0s

Table 3: CPU time required for generating random test suite on program trityp


