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Complexité de résolution d’un systéme parametré
d’équations et d’inéquations polynomiales

Résumé : On considére un systéme de n équations polynomiales et r inéquations en n
inconnues et s paramétres. Le degré des polynomes considérés est majoré par d et leurs
coefficients sont rationels de taille binaire au plus o. D’un point de vue réel, résoudre un tel
systéme revient souvent a décrire un semi-algébrique de ’espace des paramétres au-dessus
duquel le nombre de solutions réels du systéme parametré considéré est constant. D’apreés les
travaux de Lazard et Rouillier, on peut obtenir ce semi-algébrique par le calcul d’une variété
discriminante. Dans ce rapport, nous nous restreignons au cas ou le systémes d’équations
donnés en entrée est zéro-dimensionel pour une spécialisation générique des paramétres, ce
qui correspond & une situation courante dans les applications. Dans ce cas, nous proposons
une méthode déterministe pour calculer la variété discriminante minimale en réduisant le
probléme a un probléme d’élimination. De plus, nous prouvons que le degré de la variété
discriminante minimale est majorée par D := (n + 7)d"t1) et que la complexité de notre
méthode est de 0@ DO(*+5) opérations binaires sur une machine de Turing.

Mots-clés : Systéme polynomial parametré, Variété discriminante, Elimination, Complexité
déterministe
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1 Introduction

The parametric polynomial systems are used in many different fields such as robotics, op-
timization, geometry problems, and so on. In [26] the authors introduce the notion of
discriminant variety which allows them to split the parameter space in open cells where the
number of real solutions is constant . Even if it is efficient in a practical point of view, their
algorithm is based Grébner bases computations, whose complexity is not yet well under-
stood. Thus it does not allow us to give a better bound than the worst case’s one, which is
in exponential space ([19]).

In this article we prove that, under some assumptions, the computation of the minimal
discriminant variety of a parametric system is reducible to the FPSPACE problem of general
elimination [27]. The proof of the reduction correctness presented here is non trivial. The
reduction itself is simple and preserves the sparsity of the input system.

Our input is a system of polynomial equations and inequations of degrees bounded d,
which can be written as:

fl(t,I):O gl(t,I)#O
: and : (t,x) eC°x C"

fult,z) =0 gr(t,2) £ 0

where = are the unknowns and ¢ are the parameters. Moreover, for all specializations in an
open ball of the parameters space, the system has a finite number of simple solutions in the
unknowns. Such a system will be said generically simple (see Definition H).

We prove that the degree of the minimal discriminant variety of a generically simple para-

metric system is bounded by
(n +r)d"t?

Our algorithm for generically simple parametric systems runs in

0,(9(1) (n + T,)O(n—i—s)d(’)(n(n-i-s))
bit-operations on a deterministic Turing machine.

When we aim to solve a parametric system, we face two kinds of issues: either we want to
describe the solutions in terms of the parameters, or else we want to classify the parameters
according to properties of the parametric system’s solutions. Different methods have been
developped to treat these two problems.

Regarding the first one, many algorithms exist in the literature. Among them we may cite
rational parametrizations [30], triangular sets decompositions [33], comprehensive Grébner
bases [34], 22]. We may also mention numerical algorithms such as the Newton-Raphson or
the homotopy continuation method [32, BT|, which can be used after a specialization of the
parameters.

RR n° 5929



4 Guillaume Moroz

Regarding the second problem on the parameters classification, few algorithm are avail-
able, whereas many applications face it, such as parametric optimization ([I7]), robot mod-
elling ([TT]), geometry problems ([B5]) or control theory ([2]) for example. The C.A.D. [10, ]
is the most widespread method. It computes an exhaustive classification, leading to a com-
plexity doubly exponential in the number of unknowns. Some of the algorithms mentioned
above ([33, 22]) may also return such kinds of classifications. Especially in [22] the authors
compute a complete partition of the parameters space in constructible sets where the vector
of multiplicities of the system’s solutions is constant. The time complexity of their algorithm
is ¢O(n%9), However, they don’t consider inequations and their algorithm is not meant to be
implemented. The minimal discriminant variety is included in both of the precedent com-
putations. It describes the maximal open subset of the parameters space where the system’s
solutions evolve regularly. The computation of this variety is indeed sufficient for a lot of
applications.

Our method is a reduction to the general elimination problem. The elimination problem
has been widely analysed in the past decades, as it is a key step for quantifier elimination
theory (in |23, 28, @, B] for example), computation of the dimension of an ideal ([6] among
others) or implicitization theory (see [I2]). Different techniques and software have been de-
veloped. We may mention sparse resultants (see [I3] and references therein), linear system
reductions (in [6] for example), linear systems parametrized with straight-line programs (see

[28, 24]), parametric geometric resolution (J21), B0]) or Grobner bases (see [9] and |13 [T6)]

for the last improvements).

This article is divided in three parts. In the first one we reduce the problem of computing
the minimal discriminant variety to the elimination problem. In the second part, we bound
the degree of the minimal discriminant variety. And in the last part we give some examples.

Definition and notation

In the following, we assume that

fla"'afnvgla"'agTEQ[Tla"'aTS][le"'aXn]

are some polynomials in degrees d; = deg(f;) and d; = deg(g;) for 1 <i<nand1<j<r.
We denote by P, the projective closure of C* and by 7 : C* x C* — C* (resp. 7: C* xP,, —
C®) the canonical projection onto the parameters space. The exponent h (resp. h;) of a
polynomial or of an ideal denotes its homogenization by the variable Xy with respect to
the variables X1, -+, X, (resp. its homogenization by the variable X; with respect to the
variables Xg, -, Xl-, -+, X,,) . The term parameters will refer to the variables Ty, - -, Tk,
while the term unknowns will refer to the variables X1, -+, X,,.

Finally we use the following notation for the specialization of some variable. For I C

Q[Y1, -+, Yk, Z] and a € Q, we denote:
liz=a =T +(Z —a)) NQ[Y1,---, Y]

INRIA



Complezity of Resolution of Parametric Systems of Polynomial Equations and Inequations 5

In order to define the notion of discriminant variety according to our assumptions, we in-
troduce the notion of geometric reqularity.

Definition 1 Let E be a subset of the parameters space.
A parametric system S defining a constructible set C is said to be geometrically regular over
E iff for all open setU C E, 7 restricted to m=*(UU) N C is an analytic covering.

The minimal discriminant variety is now defined as follows.

Definition 2 [26] A discriminant variety of the parametric system S is a variety V in the
parameters space such that S is geometrically regular over C*\ V.

Among the discriminant varieties we define the minimal one:

Definition 3 [26] The minimal discriminant variety of S is the intersection of all the dis-
criminant varieties of S.

For the computation of the minimal discriminant variety, we will assume some properties
on the input parametric systems we consider.

Definition 4 Let S be the parametric system defined by:
filt,z) =0 gi(t,z) #0
: and : (t,z) e C* x C"
fult,z) =0 gr(t,2) £ 0

Denoting H;Zl g; by gs, assume that the ideal in the polynomial ring over the field of
fractions of the parameters

I° = <f177fn>g§o CQ(Tlv"'vTS)[le"'vXn]

1s radical and 0-dimensional.
Then S is said generically simple.

Remark 1 Note that the ideal I generated by f1, -, fn C Q[T1, -+, Ts, X1, -, X,] needs
neither to be radical nor equidimensional, although it is sufficient to satisfy the hypotheses.

Moreover, given a parametric system S defined by f1 =0,---, f, =0,91 #0,---, g, # 0, we
introduce these two polynomials:
—js is the determinant of the Jacobian matrix of fi,---, f, with respect to the un-

knowns, of degree denoted by §
—gs is the product of the g; for 1 <14 < r of degree denoted by ¢’

Note that we have § <Y "  d; —nand &' =Y _, d’

Jj=1"j"

RR n° 5929



6 Guillaume Moroz

Main results

We can now state our main results.

Theorem 1 Let S be a generically simple parametric system.
Then the total degree of the minimal discriminant variety is bounded by

di--d,(1+840)

Theorem 2 Let S be a parametric system generically simple defined by f1 = 0,---, f, =
0,91 #0,---,9- #0. Then the union of the varieties defined by the n + 2 following ideals:
- R denotes the ring Q[Ty,---, Ty

((F o s ZXogl — 1, X1 — 1) N R[Xo)) (Z1)
((ff, -, fh ZXogh — 1', X, —1) mR[XO])\XO:O (fn)
((froes fnr 9s = Xng1, ZXn1 = 1) N R[Xna]) x, 20 (Zn+1)
(<f17"'7fn7j57ZgS_1>)mR (In+2)

is the minimal discriminant variety of S.

Corollary 1 A discriminant variety of a generically simple parametric system can be com-
puted in:

UO(I)(d1 cedn (0 + 5/))0(n+s)
steps on a classical Turing machine. The variable o denotes the mazimal binary size of
coefficients of f1,---, fn and g1, -, gr.

Remark 2 If the system is not generically simple, then the the union of the varieties com-
puted is the whole parameter space, which is thus an easy way to check if the initial conditions
are verified.

Remark 3 Any elimination algorithm may actually be used to compute a discriminant va-
riety, which is welcomed when it comes to an effective computation. Among others, Grébner
bases with a block ordering [17, [T, sparse elimination [T3] or straight-line programs [Z8]
may lead to efficient computations.

Remark 4 If we allow ourself to use the model of a probabilistic bounded Turing Ma-
chine, then at the cost of the sparsity of the system, we may replace the computation of
V(Zy),...,V(Z,) by the computation of the variety of:

((f'se oo S ZX0g5 = L Xy + - 49X = 1) NQ[T1, -+, T [Xo]) 1 x0=0
where (Y1, ...,7v,) is chosen randomly in {0,...,D —1}" and D := 3dy - - - d,,.*

I The remark Bl and the corollary [l are proved Section

INRIA



Complezity of Resolution of Parametric Systems of Polynomial Equations and Inequations 7

2 Log-space reduction

2.1 Preliminaries

The goal of this section is to show how to reduce the problem of computing the minimal
discriminant variety (the discriminant problem) to the elimination problem. We know that
the elimination problem is solvable in polynomial space ([27]). Thus via the reduction
we prove that the problem of computing the minimal discriminant variety is solvable in
polynomial space.

DISCRIMINANT FUNCTION:
- IHPUt f17 Tty fnvgsvjs S Q[Tlu o 7TS7X17 T 7Xn]

- Output: . . .
P @1y G, € Q[T -+, Ts)] such that Ul_; V((gi1, ", Giw,)) is the mini-
mal discriminant variety.

ELIMINATION FUNCTION:
- Input: P, Pm € Q[T -+, Ts][ X1, -+, Xils
T,...,Ts

q1, -+, q € Q[Ty,- -, T such that V({q1,---,qt)) is the variety of the elim-

- Output: X
ination ideal (p1,- -, pm) NQ[TY, -+, Ts].

To achieve the reduction, we will first describe more precisely how the minimal discrim-
inant variety can be decomposed. In [26], the authors show that the minimal discriminant
variety of a generically simple parametric system S is the union of 3 varieties, denoted re-
spectively by Vinf, Vineq and Virir. Let us remind the definitions of these varieties under
our assumptions.

Definition 5 Let S be a generically simple parametric system defined by f1 =0,---, fn =
0and g1 # 0,---,9r # 0. The varieties Vins,Vineq and Veryw of the parameters space are
respectively defined as follow:

me = f(@s_ﬂ Hoo)
where Cg is the projective closure of the constructible set defined by S, and Ho =
(C* x P,) \ (C* x C™) is the hypersurface at the infinity.

Vineg = V((Is : 9§ + (95)) N QT3 -+, T4])

‘/crit = V((IS : ng + <]S>) N Q[Tla e 7Ts])

Theorem 3 [26)] The minimal discriminant variety of a generically simple parametric sys-
tem is the union of Ving, Vineq and Vers.

RR n° 5929



8 Guillaume Moroz

Geometrically, this theorem characterizes the different varieties in the parameter space over
which the generically simple parametric system is not geometrically reqular. More precisely,
the theorem means that over the minimal discriminant variety, three types of irregularity
may appear. The first one is the intersections of the system of equations with the Jacobian.
The second one is the intersection with the inequations. And the last one is the intersection
in the projective space of the the hypersurface at the infinity with the projective closure of
the parametric system’s zeros.

Verit is already directly the solution of an elimination problem. This is the component
for which the generic radicality condition is needed. We will now focus on reducing the
computation of each of the two varieties Vi, ¢ and Vj,eq to the elimination problem.

2.2 Reduction of V,; and correctness

Before going further, it should be clear that the computation of Vj,; can not be handled
by the standard projective elimination methods if we want to certify a singly exponential
complexity. All of these methods have no good complexity bounds essentially because of the
intersection with the particular hypersurface at the infinity as we will see later. However
this doesn’t prevent us to use results of the projective elimination theory.

Using the algebraic representation of the projection 7 of [T2|, with the notations of the
definition Bl we reformulate Vi, :

Ving = V <<ﬂ(JS)XU—O : sz) QQ[Tl,"',Ts]>

i=1

where Jg := (Is : g3°)". Note that Cg = V(Jg).
And using the reformulation of the ideal homogenization of [I2], we obtain a formulation
of Jg which match explicitly the input of the problem:

Js = (ff o Y gk XEE

This is however not yet satisfying since this formulation is not trivially reducible to a single
elimination problem. The problem here does not come from the saturation by the variables
X, which can be simply handled with the Rabinowitsch trick [29] of adding the new variable
Z and the new equation Z X; —1 to the initial polynomials. Neither is the saturation by gs a
problem since again we may add the equation Zgg—1 = 0. The complications arise actually
from the variable X,. First we have to saturate by Xy and then we have to specialize X
with 0 to finally eliminate the variables X;. And it is regrettable since this prevents us to
use the usual trick to get rid of the saturation, as we saw in introduction. Moreover we
don’t want to apply successively two ELIMINATION FUNCTION since it could lead us to an
exponential space algorithm.

Fortunately we manage to sort out this problem by proving that for the variety we want
to compute, we can commute the specialization of Xy by 0 and the elimination, which is
remarkable since this operation will allow us to use the Rabinowitsch trick to localize by

INRIA
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Xo. Note that the commutation step does not alter the computation only because of the
particular structure of Vi, .

Proposition 1 Let S be a parametric system. Then the component Vinr of the minimal
discriminant variety of S is the union of the varieties defined by the n following ideals for
1<i<n:

(<f{17 Tty f:zla ZXOgg - 17Xi - 1> N R[XO])\X():O

Remark 5 Note that the condition generically simple is not needed for the reduction of the
computation of Vi, r. Moreover the proposition remains true even if the number of equations
differs from the number of unknowns.

The proof of this proposition is based on the three following lemmas. The first one gives
some basic useful equalities, where h; denotes the homogenization by the variable X; with
respect to the variables X, -+, X;, -+, X,.

Lemma 1 [I9] Let J C Q[T1,---,Ts][Xo, -+, Xn] be an ideal homogeneous in Xo, -, Xp
and p be a polynomial of Q[Ty,- -, Ts|[Xo, -, Xn] also homogeneous in Xo, -+, X,,. Then
for all 0 < i < n we have:
(Jix,=)" =T X[°
(J ™) xi=1 = Jixi=1 1 P21
J: XZOO mQ[Tlu o 7TS] = J\XiZI mQ[Tla '7TS]
and for all 1 < i < n:

Jix,=1 NQ[T1, -+, Ts|[Xo] = (J NQ[T1, - - -, T5][Xo, Xi]) | x,=1

Proof: These are classical results that can be recovered from [I2]. 0

Now comes the first lemma toward the reduction, which proves essentially that the union of
the varieties defined by the elimination ideals of the proposition [l contains Vi, .

Lemma 2 Let J be an ideal of Q[T1, - - -, Ts|[Xo, - - -, Xn] homogeneous in X, - -+, X,,. Then,
for all 1 < i < n we have:
(JNQ[T1, -+, Ts)[Xo, Xi])1x0=0,x,=1
n
(J|X0:0 : Xzoo) N Q[Tla e 7Ts]

Proof: Let p € (JNQ[T1,---,Ts|[Xo, Xi])|x,=0,x,=1- The polynomial p is homogeneous in
Xo, ..., X, since it depends only on the variables 77, ...,Ts. Thus with the notations of the

lemma [ we have p € ((J|X0:0)|Xi:1)hi. And Jx,—o being homogeneous in Xo, -+, Xy,
one can apply the first equality of Lemma [ to deduce p € Jjx,—o : X{° which proves the
desired result. O

And finally comes the keystone lemma related to the proposition, proving the reciprocal
inclusion.

RR n° 5929



10 Guillaume Moroz

Lemma 3 Let J be an ideal of Q[T1, - - -, Ts|[Xo, - - -, X»n] homogeneous in X, - -+, X,,. Then,
for all 1 < i < n, we have:

\/(J N Q[T17 e 7TS][X07 Xi])|X0:0,Xi:1
U

m?:l (J|X0:O : ono) N Q[Tla o '7TS]

Proof: Let p € ﬂ?;l(ﬂxozo 1 X°)NQ[Ty, - -+, Ts]. By definition there exist g1,---,q, €

Q[T1,- -, Ts|[Xo, -+, Xy, and ky,- -, k, € N such that:

po= pXi'+ Xoq
: eJ
pn = pX)" + Xogn
Since the part of p; of degree k; in Xy, --,X,, belongs also to J, we can assume that
P1, -+, Pn are homogeneous in Xy, ---, X,,. Thus, we have in particular:
degy, .. x,(q;) <kj
Now we fix a total degree term order <x on the variables Xi,---, X,. Let K denote the

field Q(T1,---,Ts, Xo) and consider p1,---,p, as polynomials of K[Xq,---,X,]. Denoting
by J the ideal they generate, it follows immediately that

G:= {plu' 7pn}

form a Grobner basis of J with respect to <x since the p; have disjoint head terms. Let
¢ be an integer between 1 and n. We first show how to prove the lemma when we have a
polynomial of J such that:

- it is univariate in X; (1)

- it has all its coefficients in Q[T7, - - -, Ts, Xo] (2)

- its head coefficient is a power of p (3)
Assume for a while that r; is such a polynomial, dx, being its degree in X;. It follows indeed

that r; € J¢ the contraction ideal of J. And since p = lem{HC(g)|g € G} we have [5]:

meaning that for some k € N, p*r; € (G) C J. Finally J is homogeneous so that 7;, the
part of degree dx, of p*r;, belongs to J NQ[Ty,---,Ts][Xo, X;] and can be written as:

7= X" + Xog

with [ € N and ¢ € Q[T1, - - -, Ts][Xo, X;], which is an equivalent way of writing

pE \/(J NQTY, -, Ts)[Xo, Xi])|x0=0,x,=1

INRIA
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It remains us to show the existence of a polynomial satisfying (1),(2) and (3). To carry out
this problem, we first notice that J is zero-dimensional in K[X;, -, X,] since the set of
the head terms of its Grobner basis contains a pure power of each variable X;. So, we may
consider the finite dimensional K —space vector A = K[Xy,---,X,]/J along with e the
monomial basis of A induced by G. More precisely, denoting by T the class of x in A, we
define see e as the set of €; for 1 < j < D := dim(.A) such that e; is a term of K[X;,---, X,,]
not multiple of any head term of G. Finally we denote by S the multiplicatively closed set
{p*,k € N}. We will follow a classical method to exhibit a monic univariate polynomial
from a zero-dimensional ideal, with coefficients in K. And with results of [5] we ensure that
its coefficients are not only in K but rather in the ring S~1Q[T}, - -, Ty, Xo] C K.

Let us introduce the classical linear application of multiplication by Xj:

7 — Xiq

Then we note M; the matrix of ®; in the base e:

Xl-el tee XieD

we notice that the coefficients of M; come from the reduction of the monomials X;e; for
1 <1 < D by the Grébner basis G. And as we can see in [§], this kind of reduction only
involves division by the head coefficients of G, such that:

Xiep=ci e+ - +cpiepy
with ¢1, -+, cp, not only in K but more precisely in the ring S‘lQ[Tl, < T, Xo] € K
where S = {p* k € N}. As a straightforward consequence, if we denote by P; the monic
characteristic polynomial of M; in the new variable U, we have P; € ST1QI[Ty, - - -, Ts, Xo][U].

Besides by the Cayley-Hamilton’s theorem, P; applied to the variable X; is the null element
of A, meaning that P;(X;) belongs to J and may be written as:

PiXi))=XP+Cp X'+ 4+ Co
with Cy € STIQ[T, - - -, Ts, Xo] for 1 < k < D — 1. Finally, for some k' € N we have
rii=pNPi(X0) € TN QT -+, T, Xo][X)]
which satisfies all the conditions we wanted to achieve the demonstration. O

Finally, a proper combination of the lemmas proves the proposition [

RR n° 5929



12 Guillaume Moroz

2.3 Reduction of Vj,., and correctness

As to bound the computation of the variety induced by the inequations
Vineg = V ((Is : 95" + {9s)) NQ[T1, -+, T5])

the direct approach consists first in performing a saturation and then in using the output
along with gg as the input of an elimination algorithm. However this method may not have
a single exponential bound on the time complexity in the worst case. Hence both of these
algorithms may use a polynomial space in the size of the input, which could finally cost an
exponential space if no more care is taken.

In this section we show how to bypass the problem, notably by relaxing the condition on
the output and allowing some components of V¢ to mix in.

Proposition 2 Let S be a parametric system. If we denote by Wineq C C° the variety
defined by the following ideal:

(<f17 Tty fnugS - Xn—i—lu ZXn+1 - 1>
QQ[T15 Tty TS] [Xn+1])|X7l+1:0

then the following inclusions chain holds:
Vvineq C Wineq C V;neq V) V;nf
The first step to prove this proposition is to delay the saturation.

Lemma 4 Let p1,-,pm,q,7 € Q[Y1,---,Yx]. Let us fixr < a term order and assume that
the head monomial of q shares no variable in common with the monomials of p1,- -, DPm, 7.
Then we have the following equality:

o0

(P1, s pm) 17 +{q) = (P1, Pms @) T

Proof: The inclusion from left to right is trivial. For the other inclusion, let p € (p1,- -+, pm,q) :
r*>°. Denoting by M the head monomial of ¢ with respect to <, we obtain by division:

p=p +q p,teQYr, -,V (1)

such that no monomial of p’ is multiple of M. It remains to show that p’ belongs to
(1, pm) : °° and the proof will be complete. By hypothesis, we know that there exists
I>0and ¢y, -, cm,c€Q[Yy,---,Y;] such that:

T'lpl =cip1+ -+ mPm +Cq

We divide each of the ¢; by ¢ as in (1) and denote by ¢ the remainder of the division. We
thus obtain:

(W] / / /
Tp —CP1— T CypyPm = C(Q

INRIA



Complezity of Resolution of Parametric Systems of Polynomial Equations and Inequations 13

with ¢/ € Q[Y1,---,Yk]. We remark that the polynomial on the left part of the equality
has no monomial which is multiple of M, while the head monomial of the right part of the
equality is M times the head monomial of ¢/, which means ¢’ = 0 and this achieves the
proof. O

Corollary 2 Let f1, -, fn,g be some polynomials of Q[Ty,---,Ts|[ X1, -, Xn]. Then:

<f17"'7f7l> :goo+<g_X7l+1> = <f17"'7fnug_X7l+1>:X7ﬁl

Thanks to this result, we can now reformulate Vj,., as being the variety of:
(<f17 ) fnng - Xﬂ+1> : Xﬁi—l)‘anA:O N Q[Tla B Ts]

The reduction is not yet complete and we encounter here the same problem we had for the
computation of Vi, ¢, that is the saturation by X, 1 before the specialization of X, 1 by
0. This is just fine since the lemmas [P and B provide us tools to handle it, even if they do
not completely solve the problem yet.

For the first inclusion, we note:

IS = <f17"'7fnags _Xn+1> . Xﬁi—l

it follows that the varieties of the proposition Bl rewrite as:

‘/ineq = V(Ifxn+1:0m@[Th"'st])
Wineq =V ((Is N Q[Tlu T 7TS] [Xn+1])|Xn+1:O)

and we show easily:
(IS N Q[T17 Tty TS] [Xn+1])|Xn+1:O C If}(n+1:0 N Q[T17 e 7TS]

which, in term of varieties, proves the first inclusion of the proposition 21

For the other inclusion we will mainly use the lemma For this, we introduce the
homogenization variable Xy, and denote with the exponent h the homogenization by X
with respect to Xo, -+, X,+1- We need also the following classical lemma, which dissociates
the affine part from the component at the infinity of a homogeneous ideal.

Lemma 5 [T9] Let J € Q[T1,---,Ts][Xo, -, Xnt+1] an ideal homogeneous in Xo, -+, Xpt1.
Then the following equality holds:

VI =T+ (Xo)yn\/J: X°

RR n° 5929



14 Guillaume Moroz

In term of varieties, the equality follows from the observation that V(J) is the union of
V(J) N Heo and V(J) \ Heo.
We now homogenize I° by X, and we get:
h
Wineg = VI®" N Q[T -+, Te][Xo, Xnt1]1x,11=0,X0=1)
Using lemma B we get directly:

n

h oo
Wineq C A% ﬂ((IS )|Xn+1:0 :Xj )QQ[Tlv"'st]
j=0

Then we show that (1° h)| X,+1—0 contains an ideal which begins to look like what we want:

" = ((fryeees fa) 9T+ (g5 — Xnpd)"

h 0o 0o
(I%)ixpm0 D (Sl f0) rgs X504+ (Xogs)
> Js + (Xogs)
Then, the lemma H allows us to split the ideal Jg + <Xogg> in:

\/Js + (Xogh) = \/Js + (Xogk) + (Xo) N \/(JS + (Xoglh)) : Xg§°
I I

such that we now have the following inclusion:

Wineg C V[ [|U1: X5°) N (Iy : X5°) NQ[Ty, -+, T4
3=0

From there, denoting again Q[T1,...,Ts] by R, we remark for 0 < j <n:
L:XPAR S (Js)xemo: X°NR
And:
L:X*NR D (Js+{(g4): X : X°NR

D ((Js)xo=1 + (95)) : X°NR
> I°:X°NR
> I°NR

Which allows us to conclude with:
Wineg € V (I 0 (Vg (Js x,=0) : X3°) NQIT3, -+, T2 )

C Vvineq U V;nf
This proves the theorem

INRIA
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3 Degree issues

The study of the degree of the minimal discriminant variety relies strongly on the Bezout-
Inequality [23], [I8]. What we call degree of an ideal I (resp. a variety V') and denote deg(I)
(resp. deg(V)) is the sum of the degrees of the prime ideals associated to v/T (resp. the sum
of the degrees of the irreducible components of V). With this definition, from [23, 8] we
have for I,J C Q[T4,...,Ts, Xo,..., Xn] and f € Q[T1,...,Ts, Xo, ..., Xy]:

deg(I +J) < deg([)deg(J)
deg(l: ) < deg(I)
deg(I NQ[Ty,...,T]) < deg(])
deg(l) = deg(V(I))

Degree of V,,;

Here we use the prime decomposition of v/Js to bound the degree of V;,s. This decompo-
sition will also allow us to prove Remark HEl
First we remind that from proposition [T

Ving =V ((ﬂ Jsino> ﬂQ[Tl,"',TmXo])

i=1 | X0=0

where Jg = (fl', -+, f1) : g™ Xg°
Continuing with the properties of the degree we have:

deg(JS) < deg (<f1hvvf7];>) <dy---dy

Let PB1,...,Br be the prime ideals associated to v/Jg. Then we have:

Pin--NPr =+/Js
deg(P1) +--- +deg(Pr) < di---dy
Now let denote by A1,...,A; the indices of the prime ideal which do not contain any power

of X; for some 1 < i < n. It follows that:

(V7o : X =P, 0 NPy,
i=1

such that .
deg(Vinf) = deg (mi:l vV Js 1 X0 N Q[Ty,---,Ts, XO]IXO:O)

<dy--d,

RR n° 5929
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We use the decomposition of v/Jg to prove the remark Hl

Proof: (of Remark H)

We extend Lemma [[ where we replace X; by a homogeneous linear form in Xg, -+, X,,
which leads to the following property. If J is an ideal of Q[T1,- - -, Ts][Xo, - - -, X,] homoge-
neous in Xo, -+, X,, and L € Q[Xy,---, X,] is a homogeneous linear form in Xg, -, X,
then:

J!LOOQQ[Tl,"',TS,Xo] = (J+<L—1>)QQ[T1,,TS,X0]

From there, we know that the prime ideals which contain a power of X; for all 1 < i <n
contain in fact all the homogeneous linear forms of Q[Xy,---,X,]. Let denote by F the
Q-spacevector of homogeneous linear forms of Q[X, - -+, X,,]. Thus we have for all L € E:

J
ViJs Lo =P, : L™
i=1

Let B denote the bounded lattice {0,...,D — 1}" of E, where D = 3d;---d,. And A be
defined by:

J
A= U (m)\z n E)
i=1
Such that for L € B\ A, we have: _
Ny B L% = N2y P

And since each Py, N E is a strict linear subspace of E, it follows that A is the union of
7 < H?:l d; = % strict linear subspaces of £ . Each B, N E intersects the lattice B in at

most D"~ ! points. Thus the probability of choosing L in B N A is % < % And for all
L € B\ A we have:

k
me =V (ﬂ %z : meQ[Tlu"'uTsaXO]Xo—0>

=1

=V ((ﬂ P+ (L — 1)) Q[T -- .,Tijo]xo_())

= V(i fI. ZXoglh —1,L - 1)
QQ[TM te 7TS, XO])|X0:0)

INRIA
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Degree of Vj,,., and V.

The degree of the two other components are obtained easily. By definition:

Vineg = V(({(fi,-+: fn) 1 95 + (95) NQ[T1, -+, T4])
‘/crit = V((<f177fn> Qg*o‘f' <]S>)Q[T177Ts])

Thus with the properties of the degree, we have respectively:

dy---d,o'
dy - dpd

deg(Vineq)

<
deg(‘/crit) S

Hence we proved the theorem [I

Degree of representation of the elimination

To compute the ELIMINATION FUNCTION in a deterministic way, we follow the ideas of
[6] which uses the affine effective Nullstellensatz to reduce the problem to a linear algebra
system of non homogeneous linear form. One could use the ideas of [28, 20, 21] to perform
this elimination, whose complexity bounds rely on the projective effective Nullstellensatz of
[25]. However these bounds only hold in a bounded probabilistic Turing machine.

Here we will use the Brownawell’s prime power version of Nullstellensatz (see [§]), which
is a variant of the affine effective Nullstellensatz:

Theorem 4 [§] Let J C k[xo,- -, 2z,] be an ideal generated by m homogeneous polynomial
of respective degrees do > -+ > dy, > dy and M = (xg,- -+, x,). Then there are prime ideal
B, -, By containing J and positive integers eq, - - -, e, such that:

MOPS - P> C J, and

eo+ Y eideg(Pi) < (3/2)dy -+ -dy,
1=1

where p = min(m, n)

Using the proposition 3 of [23], we know that if 9 is a prime ideal, then there is n + 1
polynomials fi,---, fn+1 such that:

V(flu"'ufn-‘rl) :V(%)

with deg(f;) < deg(P) forall 1 <i<n+1
Thus we deduce the following:

RR n° 5929
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Proposition 3 Let I C Q[Ty,---,T][X1, -, Xy] generated by f1,-- -, fm indexed such that
their degrees satisfy do > -+ > d, > di. Then, with p = min(m,n) we introduce:

m giEQ[Tlu"'aTS][Xlu"'an]
F .= Zgifi| and
i=1 deg(gifi) < (3/2)"dy -+ - dy,

Then we have:
VINQ[Ty, -, Ts)) =V(FNQT, --,Ts])

Proof: We homogenize the polynomials f1, - - -, f,,, by H with respect to 11, -+, Ts, X1, -+, Xn,
and denote by J the ideal they generate. Then with B, - - -, P, being prime ideals containing
J and verifying the theorem of Brownawell, it follows that the result holds when intersect-
ing J and PB4, ---, B, by Q[T4,---,Ts, H|. Finally we use the Heintz’s proposition reminded
above on each P; and specialize H by 1 to conclude. O

Now consider the coefficients of the polynomials g1, .., gm, g as unknowns. Assume further-
more that gi,-- -, gm, contains all the monomials in 77, ---, T, X1, -+, X, of degree less or
equal to (3/2)#d; - - - d,,, and that g contains the monomials in T4, - - -, T only. Thus, finding
the coeflicients satisfying the formula:

Zgifi —g=0
i=1
reduces to the problem of finding null space generators of a matrix of size lower or equal to
(m +1)((3/2)dy -+ d) ") % ((3/2)dy -+~ dy,) ")

Hence the complexity of the corollary [ follows.

4 Example

We show here an example of minimal discriminant varieties application in our framework.
It will allow us to prove that the real parametrization of the Enneper surface matches its
real implicit form. In [T4] the author solves this problem with a combination REDLOG,QEPCAD
and QERRC. Through the process, he has to simplify formulas whose textual representation
contains approximatively 500 000 characters. We will see that our framework allows us to
use minimal discriminant varieties to solve this problem. Notably, this allows us to keep
formulas small. The following computations are done with the Maple package DV, which
uses FGb to carry out the elimination function. We also use the factorization functions of
Maple to take the square-free part of the polynomials given in the input, and to simplify the
output. Finally RS and the Maple package RAG allows us to treat the discriminant varieties
we compute. All these software are available in the Salsa Software Suite [T].

INRIA
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When E and F' are two lists of polynomials, T" a list of parameters and X a list of

unknowns, we denote by
DV (E,F,T,X)

the discriminant variety of the parametric system S : (p = 0)per A (¢ # 0)4er.

4.1 Definition of the Enneper surface

The real Enneper surface £ C R? has a parametric definition:

€ = {(z(u,v),y(u,v), 2(u,v)) | (u,v)€R?}

r(u,v) = 3u+ 3uv? —ud
y(u,v) = 3v+3uv—v3
2(u,v) = 3u?— 30?

We will also consider the graph of the Enneper surface £ C R® defined as follows:
&y = {(z(u,v),y(u,v), 2(u,v),u,v) | (u,v) € R*}
Beside, a Grébner basis computation returns easily its implicit Zarisky closure £ |12, [[4]:
E={(z,y,2) R’ | p(z,y,2) =0}

p(r,y,2) = —196832°% 4 590492%y? — 10935223 — 1180982422 + 590492* 2 — 59049x2y*
—5686222y%23 — 118098x2y%2 — 12962220 — 349922225 — 1749602224
+3149282223 + 196835 — 10935y%23 + 118098y*22 + 59049y*2 + 12961226
—34992y%2° 4+ 174960722 4 314928y223 + 642" — 1036827 + 4199042°

4.2 Discriminant varieties

The main idea to compare &y and £ is in a first step to compute the union of their discrim-
inant varieties, V. In a second step we compare £; and £ on a finite number of well chosen
test points outside of V. Finally, the properties of the discriminant variety ensure us that
the result of our comparison on these test points holds for every points outside of V.

More precisely, £, and € are both algebraic varieties of dimension 2. Thus we choose a
common subset of 2 variables, z and y for example, which will be the parameters for the
two discriminant varieties:

Vlzy = DV( [I —x(u,v),y _y(uvv)az_z(uav>] ’ H ’ [‘Tvy] ) [Zvuav] )
V2$y = DV( [p(z,y, 2)] s [yl 2] )

The number of equations equals the number of unknowns in both case and our algorithm
returns a non trivial variety for both systems. This ensures us that the two systems are
generically simple. Here are the results of the computations, which lasted less than 1 second
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on a 2.8 GHz Intel Pentium cpu:

V™ = V(yb + 60y* + 768y2 — 4096 + 3z2y* — 3122%y> + 76822 + 3x*y? + 602 + 26)
UV (2% + 482* + 3x%y? — 3362292 + 322y* + 76822 4 4096 + 768> + 48y* + ¢%)

Vy¥ = V(yb + 60y* + 768y> — 4096 + 3z%y* — 31222y + 76822 + 3xty? + 602t + 20)
UV (2% + 482* + 3x%y? — 3362%y% + 322y* + 76822 4 4096 + 768> + 48y* + ¢%)
UV(z—y)UV(y) UV(z+y)UV(z)

We denote by ., : R* — R? the canonical projection. Then the properties of the
discriminant variety ensure us that for each connected component C of R? \ (V;*¥ U V,'Y),
(77 (C) N E, myy) and (7, (C) N E,Tay) are both analytic covering. Moreover, € C €. Thus
if C is a connected component of R? \ (V;"Y UV;™), we get the following property:

HpEC,W;;(p)HS zw;;(p)HE@VpE C,w;yl(p) Nné :w;yl(p)ﬁf

This allows us to prove that £ and & are equal above R? \ (V™Y U V;'Y): we take one
point p in each connected component of R? \ (V;"¥ U V™), and check that the number of
real solutions of 7 (p) N € and of 7! (p) N € is the same. We use the RAG package to get
one point in each connected component and RS to solve the corresponding zero dimensional
real systems. This allows us to prove that

oy R\ (VP UVSY) NE = m ) (R*\ (MY UV))NE

In order to get more information, we repeat this process using respectively the dis-
criminant varieties on the parameter set {z,z} and {y,z}. This leads to the following
computations:

Vi == DV( [;v—x(u,v),y—y(u,v),z—z(u,v)] ) H ) [$7Z] ) [yuuvv] )

Vy# = DV( [p(;C?yaZ)] ) H ) [$7Z] ) [y] )
and

Vlyz =DV( [z —2(u,v),y —y(u,v),z — z(u,v)] , [ ], [y, 2], [z,u,0])

VY :=DV( [p(z,y,2)] 1 2l =)

The result is shown on Figure [l
Then we compute as above one point in each connected component of the complementary,
and this allows us to prove that:

Toe REN (VP2 UVE)) N E = ml (R*\ (VP2 UVFH))NE

and
Ty R\ (VPP UV NE =m J(R*\ (V2 UV7)NE
Using the following notations:
Vo= m (VY U V)
VrE .= 7.r;zl(‘/lmz U ‘/sz)
Vs = o NV U
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Vlmy U ‘/217! Vlacz U szz

-10 -5 5 10

VYR U vyE

Figure 1: The discriminant varieties for the three possible sets of parameters
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it remains us to check what happens above each component of
V¥ NVEENVYE
An idea is to set apart the linear components from the others. We introduce
Vi =V(x+y)UV(z—y)UV(z)UV(y) UV(z)

and denote respectively V¥ \ Vi, V*#\ Vi, and V¥* \ Vj, by Vv, Vez and VY=, Using the
RAGIib, we verify that

Vo A 7 A v

has actually no real points.

It remains us to check what happens on each of the 5 linear components of V. The
intersection of &, or £ with a linear component P may be seen as a linear substitution of a
variable. This operation produces 5 pairs of varieties of dimension 2 (Table[ll). To check their
equality, we use the same strategy as above and compute the 5 discriminant varieties with
1 parameter,3 unknowns of Kji,..., K5, respectively Vi, , ..., Vk,, and the 5 discriminant
varieties with 1 parameter,1 unknown of Li,..., Ls, respectively Vi,,...,Vr,. We check
that K; = L; for each point by connected component of the complementary of Vi, U Vy,,
in less than 1 second. And at last we intersect again the varieties with their discriminant
varieties, which reduces the problem to compare 5 pairs of zero dimensional systems. Thus
we check that the equality holds for the finitely many points considered. Finally this allows

us to conclude that £ = £.

5 Conclusion

We provided a deterministic single exponential bit-complexity bound for the computation
of the minimal discriminant variety of a generically simple parametric system. Note that
the complexity of our algorithm relies on the elimination problem’s complexity. Thus in a
probabilistic bounded Turing machine, the work of [28] for example leads to a polynomial
complexity bound in the size of the output. Or if we are only interested in the real so-
lutions, then the use of the single block elimination routine of [@, B improves directly the
deterministic complexity bound of our method.

The reduction presented in this article is easy to implement in conjunction with a software
performing elimination, as those used in 15, [T6], [13] or [2T] for example.

It would be worth studying the complexity of the computation of the minimal discrimi-
nant variety when we have more equations than unknowns.
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&g
W V) Vi) Vi) VD) V-3
59 NnNw K4 K> K3 Ky Ks
0 — z(u,v) x — x(u,v) x — x(u,v) x — xz(u,v) x — z(u,v)
System y —y(u,v) 0 —y(u,v) y —y(u,v) -z —y(u,v) z —y(u,v)
z— z(u,v) z — z(u,v) 0— z(u,v) z — z(u,v) z — z(u,v)
Parameter z z T x x
Unknowns Y, U, U T, U, v Y, Uy V Z,U, v Z, U,V
Minimal VK1 = VK2 = VK3 = VK4 = VK5 =
Discriminant| V(2)UV(z—=3) | VQ)UV(z2+3) | V(@)UV(2?+2)| V(z+4)UV(z—-4)UV(a? -38)
Variety UV(z —9) UV(z+9) UV (22 + 2)
3
W V(z) V(y) V(z) V(y + ) V(y —z)
AW I Lo Ls La Ls
System
(safr= | safr(0.5,2) | safr(p(.0,2)) | safr(p(s,9,0)) | safr(p(w—z,2)) | safr(p(z,,2))
squarefree)
Parameter z z x
Unknown Y x i z z
Minimal VL1 = V(Z + 9) VL2 = V(Z - 9) VL3 = VL4 = VvL5 =
Discriminant| UV(z) UV (z —3) | UV(z) UV (z — 3) V() V(zr+4)UV(z—4)UV(2? —8)
Variety UV(z —9) UV(z+9) UV(z)

Table 1: Discriminant varieties of the sub varieties

€z suoyvnbau] puv suovnbiy prwoulijo fo swapshig origpuwning fo uoignjosayy fo fipxajduio))
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