
How Fast Can a Very Robust Read Be??

Rachid Guerraoui1,2 and Marko Vukolić1

1School of Computer and Communication Sciences, EPFL, CH-1015 Lausanne, Switzerland
2Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA

{rachid.guerraoui, marko.vukolic}@epfl.ch

Technical Report LPD-REPORT-2006-008
May 08, 2006

last revision May 24, 2006

Abstract. This paper studies the time complexity of reading unauthenticated data from a distributed
storage made of a set of failure-prone base objects. More specifically, we consider the abstraction of
a robust read/write storage that provides wait-free access to unauthenticated data over a set of base
storage objects with t possible failures, out of which at most b are arbitrary and the rest are simple
crash failures.
We prove a 2 communication round-trip lower bound for reading from a safe storage that uses at most
2t + 2b base objects, independently of the number or round-trips needed by the writer. We then prove
the lower bound tight by exhibiting a regular storage that uses 2t+b+1 base objects (optimal resilience)
and features 2 communication round-trips for both read and write operations.

General Terms: Algorithms, Performance, Reliability, Theory

Keywords: Storage emulations, Arbitrary failures, Optimal resilience, Time-complexity

? Elements of this paper appeared in a paper with the same title in the Proceedings of the 25th ACM Symposium

on Principles of Distributed Computing (PODC’06).

1 Introduction

We study robust storage implementations that provide wait-free [10] access to unauthenticated
data in an asynchronous environment over a set of S base storage objects: t of these might fail,
out of which b (b > 0) might be arbitrary [11] (also called Byzantine [13]) failures. The storage
we consider implements the celebrated single-writer multi-reader (SWMR) register abstraction in
a hostile environment [12].

Motivated by the availability of networks of commodity disks, such implementations have been
widely studied in the last decade. Whereas original storage implementations tolerated only crash
failures of the base objects (i.e., the case where b = 0) [3], more recent implementations tolerated
arbitrary object failures (b 6= 0) [1,4–9,11,17]. The optimal resilience for such implementations was
shown to be S = 2t + b + 1, assuming b = t [17], but can easily be extended to the general b 6= t
case.

Maybe surprisingly given the large body of literature in the area, there is no general result
on the time complexity of reading in such a storage. This is particularly surprising since the read
operation is considered the most frequent in practice. Typically, we would like to determine the
latency of the read operation, which can be measured as the number of communication round-trips
(or simply rounds) needed in the worst case between the reader and the base objects, before a value
can be returned.

The complexity of writing has actually been carefully studied. The tight lower bound on the
worst-case complexity of the write operation was shown to be 2 rounds when at most 2t+2b of these
objects are used; if more than 2t + 2b base objects are available, then a single round suffices [1]1.
This lower bound is general, since it was established for any safe storage; a storage that simply
ensures that a read returns the last written value if it is not concurrent with any write [12]. In fact,
it was also shown in [1] that this bound is tight, even for a stronger regular storage: one that is not
only safe but also only returns written values, even if there is a concurrent writer [12].

There is no such general picture for a read operation. In fact, the complexity of reading was
studied, but only in some specific cases. For instance, it was shown that, for any safe storage,
when readers do not modify the state of the base objects, the optimal read complexity with less
than 2t + 2b base objects is b + 1 rounds [1]. It was also shown that the optimal complexity of an
atomic read, providing the illusion of instantaneous access [12], is one round when (a) more than
R(t + b) + 2t + b base objects are available (where R is the number of readers) and if the write
also takes one round [7], or (b) the read does not encounter any contention, asynchrony or many
failures [8, 9].

But what is the general complexity of a read operation? The contribution of this paper is to
address this fundamental question for the worst case, and in particular for an optimally resilient
storage.

– We prove a 2-round lower bound for reading from a safe storage that uses at most 2t + 2b base
objects, independently of the number or rounds needed by the writer.

– We then prove the lower bound tight even for a regular storage that is optimally resilient and
uses 2t + b + 1 base objects.

We address this question first by considering a data centric storage [16] in which the base
objects represent (active) disks (i.e., atomic read-modify-write objects) that do not communicate
among each other, nor initiate unsolicited messages to the clients (i.e., push messages). Later in the
paper, we show how to migrate our lower bound to a server centric model where the data is stored
within first class processes that can send unsolicited messages (Section 6). The model we describe
in Section 2 allows us to easily extend our data centric model into a server centric one.
1 [1] also assumes b = t, but, again, it is not difficult to extend its results to the general b 6= t case.

1

We proceed through three major steps.

1. We first prove in Section 3 that S = 2t+2b base objects are insufficient for a safe SWSR wait-free
storage implementation in which every read takes one round-trip (we say it is fast). Roughly,
our proof derives a contradiction from three runs that are indistinguishable to the reader. In
the first run, a read is concurrent with the write and all base objects are correct; in the second
one, the write precedes the read but malicious base objects forge their state to simulate the
concurrency of the first run; finally, in the third run, malicious base objects forge their state
to simulate the above mentioned concurrency, although the write is never invoked. As the read
must return the same value in all three runs, without invoking additional communication round-
trips, safety is violated in either the second, or the third run. In our proof, we do not make
any assumption on the time-complexity of the write operation. We assume however that data
is not authenticated [19]; data authentication is considered a source of overhead [14, 18], and
we would typically like to avoid using authentication when seeking optimal time-complexity. If
we permit data authentication, then regular storage can be implemented fairly simply, while
achieving both optimal resilience and fast reads/writes [15].

2. We then describe in Section 4 an optimally resilient SWMR safe storage algorithm that features
optimal (worst-case) time complexity for both read and write operations: 2 rounds. This algo-
rithm is interesting in its own right as it contradicts the conjecture of [1] suggesting that b + 1
rounds are needed in order to read from a safe storage. The algorithm uses novel techniques
to combine optimal resilience with optimal time-complexity. Roughly, unlike in traditional safe
storages we know of, in both of their communication rounds, readers both change the state of
the base objects and read their current state. The writer does the same in its first round, along
with simply writing in the second round. Basically, by allowing readers to change the state
of the base objects, twice in a row, we allow the readers to carefully filter the responses from
malicious base objects that may be trying to mislead the reader.

3. Finally, we show in Section 5 how to modify our safe implementation and obtain a regular one
without sacrificing neither optimal resilience nor optimal time-complexity. Our regular imple-
mentation relies however on the fact that base objects keep all the values they receive from
the writer (which is not the case with our safe implementation). Although some very practical
storage systems rely on the same assumption [8], this might raise issues of storage exhaustion
and needs careful garbage collection. Comparable data-centric regular wait-free storage imple-
mentations that do not rely on this assumption are either not optimally resilient [2], or do not
feature the optimal (worst-case) time-complexity of the read operation [9].

2 Model

The distributed system we consider consists of three disjoint sets of processes: a set objects of
size S containing processes {s1, ..., sS} and representing the base storage elements; a singleton
writer containing a single process {w}; and a set readers of size R containing processes {r1, ..., rR}.
The set clients is the union of the sets writer and readers. We assume that every client may
communicate with any process by message passing using point-to-point reliable communication
channels. However, objects cannot communicate among each other, nor send messages to clients
other than in reply to clients’ messages. (We will come back to this assumption later in the paper
in Section 6.)

For presentation simplicity, we also assume a global clock, which, however, is not accessible to
either clients or objects, for these have an asynchronous perception of their environment.

2

2.1 Runs and Algorithms

The state of the communication channel between processes p and q is viewed as a set msetp,q =
msetq,p containing messages that are sent but not yet received. We assume that every message has
two tags which identify the sender and the receiver of the message. A distributed algorithm A is a
collection of deterministic automata, where Ap is the automata assigned to process p. Computation
of non-malicious processes proceeds in steps of A. A step of A is denoted by a pair of process id
and message set < p, M > (M might be ∅). In step sp =< p, M >, process p atomically does the
following (we say that p takes step sp): (1) removes the messages in M from msetp,∗, (2) applies
M and its current state stp to Ap, which outputs a new state st′p and a set of messages to be sent,
and then (3) p adopts st′p as its new state and puts the output messages in msetp,∗. Moreover, a
non-malicious object si may put the output messages in msetsi,c in step sp =< p,M > only if si

received in sp a message m ∈ M sent by the client c (we relax this restriction in Section 6, when
discussing the server centric model). A malicious process p can perform arbitrary actions: (1) it
can remove/put arbitrary messages from/into msetp,∗ and (2) it can change its state in an arbitrary
manner.

Given any algorithm A, a run of A is an infinite sequence of steps of A taken by non-malicious
processes, and actions of malicious processes, such that the following properties hold for each non-
malicious process p: (1) initially, for each non-malicious process q, msetp,q = ∅, (2) the current
state in the first step of p is a special state Init, (3) for each step < p,M > of A, and for every
message m ∈ M , p is the receiver of m and ∃q, msetp,q that contains m immediately before the step
< p,M > is taken, and (4) if there is a step that puts a message m in msetp,∗ such that p is the
receiver of m and p takes an infinite number of steps, then there is a subsequent step < p,M > such
that m ∈ M . A partial run is a finite prefix of some run. A (partial) run r extends some partial run
pr if pr is a prefix of r. At the end of a partial run, all messages that are sent but not yet received
are said to be in transit.

We say that a non-malicious process p is correct in a run r if p takes an infinite number of steps
of A in r. Otherwise a non-malicious process p is crash-faulty. We say that a crash-faulty process
p crashes at step sp in a run, if sp is the last step of p in that run. Malicious and crash-faulty
processes are called faulty. In any run of our model, at most t objects might be faulty. At most b
out of these t objects may be malicious. In this paper we assume b > 0. An algorithm that assumes
a total number of objects S equal to 2t + b + 1 is said to be optimally resilient.

For presentation simplicity, we do not explicitly model the initial state of a process, nor the
invocations and responses of the operations of the atomic storage to be implemented. We assume
that the algorithm A initializes the processes, and schedules invocation/response of operations (i.e.,
A modifies the states of the processes accordingly). However, we say that p invokes op at step sp,
if A modifies the state of a process p in step sp so as to invoke an operation (and similarly for a
response).

2.2 Robust Storage

A storage abstraction is a READ/WRITE data structure. It provides two operations: WRITE(v),
which stores v in the storage, and READ(), which returns the value from the storage. We assume
that each client invokes at most one operation at a time (i.e., does not invoke the next operation
until it receives the response for the current operation). Only readers invoke READ operations and
only the writer invokes WRITE operations. We further assume that the initial value of a storage
is a special value ⊥, which is not a valid input value for a WRITE operation. We say that an
operation op is complete in a (partial) run if the run contains a response step for op. In any run, we
say that a complete operation op1 precedes operation op2 (or op2 succeeds op1) if the response step

3

of op1 precedes the invocation step of op2 in that run. If neither op1 nor op2 precedes the other,
the operations are said to be concurrent.

An algorithm implements a robust safe (resp., regular) storage if every run of the algorithm
satisfies wait-freedom and safety (resp., regularity) properties. Wait-freedom states that if a client
invokes an operation and does not crash, eventually the client receives a response (i.e., operation
completes), independently of the possible crashes of any other client. Here we give a definition of
safety and regularity for the SWMR storage.

In the single-writer setting, the WRITE operations in a run have a natural ordering which
corresponds to their physical order. Denote by wrk the kth WRITE in a run (k ≥ 1), and by valk
the value written by wrk. Let val0 = ⊥.

We say that a partial run satisfies safety if every READ operation rd that is not concurrent
with any WRITE operation returns valk such that wrk precedes rd and for no l > k wrl precedes
rd, or val0 in case there is no such a value; a READ concurrent with a WRITE is allowed to return
any value.

Similarly, we say that a partial run satisfies regularity if the following properties hold: (1) if a
READ returns x then there is k such that valk = x, (2) if a READ rd is complete and it succeeds
some WRITE wrk (k ≥ 1), then rd returns vall such that l ≥ k, and (3) if a READ rd returns valk
(k ≥ 1), then wrk either precedes rd or is concurrent with rd.

In the following, under the notion of implementation, we assume, by default, a wait-free storage
that stores unauthenticated data in an asynchronous communication model.

2.3 Fast READ

Basically, we say that a READ operation is fast if it completes in a single communication round-
trip. In every communication round-trip (we simply say round) rnd of an operation op invoked by
the client c:

1. The client c sends messages to all objects. This is indeed without loss of generality because we
can simply model the fact that messages are not sent to certain objects by having these objects
not change their state or reply.

2. Objects, on receiving such a message, reply to the reader (resp., writer) before receiving any
other messages (as dictated by our model).

3. When the invoking client receives a sufficient number of such replies, the round (rnd) terminates.

Note that, since any number of clients can crash, we can construct partial runs in which no
client receives any message from any other client. In our proof in Section 3 we focus, without loss of
generality, on such partial runs. Moreover, since up to t objects might crash in our model, ideally,
in every round rnd the invoking client can only wait for reply messages from S − t correct objects.

A READ rd is fast if rd completes in the step in which the first round of rd terminates. We
say that a storage implementation I is a fast READ implementation, if every complete READ
operation in every run of I is fast. For a fast READ implementation, we can say without ambiguity
that the messages sent by a reader, on invoking a READ, are of type read, and the messages sent
by a process to the reader, on receiving a read message, of type readack.

3 Lower Bound

We prove in this section that there is no safe storage implementation with at most 2t + 2b objects
in which every READ is fast. In our proof, we assume that a set of readers is a singleton.

4

Proposition 1. There is no fast READ implementation I of a single reader (SWSR) safe storage
that makes use of less than 2t + 2b + 1 objects.

Preliminaries. Recall first that w denotes the writer, r1 the reader, and si for 1 ≤ i ≤ S denote
the objects. Suppose, by contradiction, that there is a safe storage implementation I that uses at
most 2t + 2b objects, such that, in every (partial) run of I every READ operation completes in a
single round (i.e., every READ is fast).

We partition the set of objects into four distinct subsets (which we call blocks), denoted by
T1 and T2, each of size exactly t, and B1 and B2 of size at least 1 and at most b. Note that we
assume S ≥ 2t+2, without loss of generality since the number of objects for any implementation I
must conform with the optimal resilience lower bound of S ≥ 2t + b + 1 [17] (recall that we assume
b > 0). Therefore, without loss of generality, we can assume that each of the blocks T1, T2, B1 and
B2 contains at least one object. We refer to the initial state of every correct object as σ0.

We say that a message m of a round rnd of an incomplete operation op skips a set of blocks BS
in a partial run (where BS ⊆ {T1, T2, B1, B2}), if (1) no object in any block BL ∈ BS receives m
in round rnd of op in that partial run, (2) all other objects receive m in round rnd of op and reply
to that message, and (3) all these reply messages are in transit. We say that a complete operation
op skips a set of blocks BS in a partial run, if (1) no object in any block BL ∈ BS receives any
message in any round of op in that partial run, (2) all objects that are not in any block BL ∈ BS
receive the message from the invoking client in every round of op and reply to such message, and
(3) the invoking client receives all these reply messages and, finally, returns from the invocation.

Block diagrams. We illustrate the idea behind the proof in Figure 1. We depict a round rnd of an
operation op through a set of rectangles, arranged in a single column. In the column corresponding
to some round rnd of an operation op, we draw a rectangle in the particular row, if all objects in
the corresponding block BL have received the message from the client in round rnd of op and have
sent reply messages, i.e., we draw a rectangle in the row corresponding to BL if round rnd of op
does not skip BL.

Proof. To exhibit a contradiction, we construct a partial run of the safe implementation I that
violates safety. More specifically, we exhibit a partial run in which some READ returns a value that
was never written.

– Let run1 be the partial run in which all objects are correct except T1 that crashes at the
beginning of run1. Furthermore, let rd1 be the READ operation by the reader (r1) and no
other operation is invoked in run1. In run1, r1 crashes and rd1 skips B2, T1 and T2. After B1

sends readack to r1, run1 ends. We refer to the state of object B1, at the end of run1 as to σ1.
– Let run2 extend run1 by appending a WRITE wr1 invoked by the correct writer to write a

value v1 6= ⊥ in the storage. By our assumption on I (I is wait-free), wr1 completes in run2, say
at time t1 after invoking a finite number (k) of rounds. Therefore, wr1 skips T1, and completes
(at latest) after the writer receives the replies in round k from correct objects (B1, B2, and T2).
We refer to the state of the correct object B2 at time t1 as to σ2.

– Let run′2 be the partial run that ends at t1, such that run′2 is identical to run2 up to time t1,
except that in run′2 object T1 does not crash, but, due to asynchrony, all messages sent by the
writer to T1 during wr1 remain in transit. Since the writer cannot distinguish run2 from run′2,
wr1 skips T1 and completes in run′2 at t1.

– Let run′′2 be the partial run identical to run′2 up to time t1, except that, in run′′2, (1) the reader
does not crash in run′′2, but, due to asynchrony, all messages that were in transit in run′2 are
delayed in run′′2 until after t1, and (2) object T2 crashes at t1. By our assumption on the wait-

5

σ1σ0

T1

B2

T2

B1

rd1()

rnd1

(a) run1

σ2

σ0 σ1

T1

B2

T2

B1

rd1() wr1(v1)

rnd1 rnd2 rndk...

...

...

...

rnd1

(b) run2

σ0 σ1

σ2

σ0T1

B2

T2

B1

wr1(v1)

rnd1 rnd2 rndk...

...

...

...

rnd1rnd1

rd1()=vR

(c) run3

σ2

σ1 σ0

σ0T1

B2

T2

B1

wr1(v1)

rnd1 rnd2 rndk...

...

...

...

rnd1

rd1()=vR=v1

@

(d) run4

σ2

σ0

σ0T1

B2

T2

B1

rnd1

rd1()=vR=v1

@

(e) run5

σi

@ - object is malicious

- object/client crashes

- object receives and replies to a message in a round

- state of the object

(f) Legend

Fig. 1. Illustration of the runs used in the proof of Proposition 1

6

freedom of I, rd1 completes in run′′2 at t2 after receiving readack messages from correct objects
(B1, B2 and T1) and returns some value vR, skipping T2.

– Let run3 be the partial run identical to run′′2, except that, in run3, T2 does not crash, but, due
to asynchrony, all messages exchanged between r1 and T2 during rd1 are delayed until after t2.
Since r1 cannot distinguish run3 from run′′2, rd1 completes in run3 at t2 and returns vR. Note
that in run3 all objects are correct.

– Let run4 be the partial run similar to run3, except that, in run4: (1) rd1 is invoked only after
wr1 completes (after t1) (2) B1 is malicious and forges it state to σ1 at the beginning of the run
(as if it received a round 1 message of rd1 from the reader, as in run3), before wr1 is invoked,
(3) after t1, a READ rd1 is invoked and (4) at t1, B1, before replying to rd1, forges its state to
σ0, the initial state of correct objects. Other messages are delivered as in run3, in particular,
messages exchanged between r1 and T1 are transit in run4. Note that wr1 cannot distinguish
run4 from run3 and hence, wr1 completes in run4 at t1. Note also that, rd1 is invoked after
wr1 completes, so safety implies that rd1 must return v1. However, note that in run3 and run4

the reader receives in rd1 the identical messages and, since the processes do not have access
to global clock, r1 (as well as the correct objects B2, T1 and T2) cannot distinguish run4 from
run3. Therefore, in run3 and run4 rd1 returns the same value, i.e., vR, that, by safety, must
equal v1.

– Finally, consider the partial run run5 in which wr1 is never invoked, but B2 is malicious and
forges its state to σ2 at the beginning of the run. READ rd1 is invoked in run5 as in run4. Since,
upon receiving readack messages from B1, B2 and T1, the reader receives identical information
as in run4, the reader cannot distinguish run4 from run5 (neither can correct objects B1, T1

and T2), and rd1 completes in run5 and returns a vR = v1. However, by safety, in run5, rd1

must return ⊥. Since v1 6= ⊥, safety is violated in run5. ut

4 Safe Implementation

Our algorithm uses S = 2t + b + 1 objects (optimal resilience) to implement a SWMR safe storage.
Besides its optimal resilience, our implementation features optimal (worst-case) time complexity
for both READ and WRITE operations, i.e., two communication round-trips. In fact, the existence
of our algorithm proves the following proposition:

Proposition 2. There is an optimally resilient implementation I of a SWMR safe storage such
that, in every partial run of I, every (READ/WRITE) operation completes in at most two com-
munication round-trips.

In the following, we first give a detailed description of our algorithm, and then proceed by
proving its correctness.

4.1 Overview

Both the READ and the WRITE operations take at most two rounds. In each round, the client
(reader or writer) sends a message to all objects. A round terminates at the latest when the client
receives the responses from S−t correct objects. In the first round, the writer, in addition to writing
data, reads control data from the objects. Readers write control data and read data written by the
writer in both rounds.

The base objects maintain the following variables (we call fields) pw, w and the array tsr[1, ..., R]
(where R is the number of readers). In the pw field, objects store a timestamp-value pair tsval of

7

the form 〈ts, v〉. In the w field, objects store the following pair: 〈tsval, tsrarray[1..S]〉. Fields pw
and w are written by the writer, and each field tsr[j] by the reader rj .

In both rounds of the READ, the reader rj : (1) increases its local timestamp tsr′j and stores it
in the objects’ tsr[j] field and (2) reads the objects’ fields pw and w.

In the first round of the WRITE (called PW), the writer, writing the value v: (1) increases its
timestamp ts, (2) assigns the timestamp-value pair 〈ts, v〉 to its variable pw′, (3) writes pw′ to the
objects’ pw fields and the last copy of w′ to the objects’ w fields, (4) reads the values of objects’
fields tsr[∗] that are written by readers and (5) adds the values tsr[∗] to the array (of arrays)
currenttsrarray. Upon receiving S − t responses from different objects in round PW , the writer
proceeds to the second round, W .

In the second round of the WRITE, the writer: (1) assigns w′ := 〈pw′, currenttsrarray〉 and (2)
writes pw′ to the objects’ pw fields and w′ to the objects’ w fields. Upon receiving S − t responses
from different objects in round W , the WRITE completes. The objects change the values of tsr[∗],
pw, and w only if these are newer than the copies already stored (Figure 3).

The WRITE implementation is given in Figure 2. In the following, we detail the READ imple-
mentation, since it is slightly more involved and the main focus of this paper.

Initialization:
1: inittsrarray[i][j] := nil, 1 ≤ i ≤ S, 1 ≤ j ≤ R
2: pw := 〈0,⊥〉; ts := 0; w := 〈pw, inittsrarray〉

WRITE(v) is {
3: inc(ts); currenttsrarray := inittsrarray
4: pw := 〈ts, v〉
5: send PW 〈ts, pw, w〉 to all objects
6: wait for PW ACKi〈ts, tsr〉 from S − t different objects
7: w := 〈pw, currenttsrarray〉
8: send W 〈ts, pw, w〉 message to all objects
9: wait for WRITE ACKi〈ts〉 from S − t different objects
10: return(OK)

upon reception of PW ACKi〈ts, tsr〉 from si

11: currenttsrarray[i] := tsr
}

Fig. 2. SWMR safe storage: WRITE implementation - code of the writer

4.2 READ implementation

The full READ implementation is given in Figure 4. In the following, unless explicitly stated
otherwise, we refer to Figure 4.

As we previously mentioned, in both rounds of the READ, the reader: (1) increases its local
timestamp tsr′j (lines 9 and 12), and stores it in the objects’ tsr[j] fields using READ1 (in the first
round), or READ2 (in the second round) messages (lines 10 and 13) and (2) reads the objects’
fields pw and w by receiving READ1 ACK∗, or READ2 ACK∗ messages (lines 11, 14 and 21-26).

When the reader receives a timestamp-value pair pw′ from the pw field of object si (we say si

reports pw′), the reader adds i, the index of object si, to the set RPW (pw′) that is initially empty.
Similarly, if si reports a tuple w′ in its w field, the reader adds i to the set RW (w′). If this occurs
in the first round of the READ, the reader also adds i to FirstRW (w′). (lines 22, 23 and 26)

Every tuple c reported by some object in its w field in the first round of the READ, is added by
the reader to the set of candidate values, the set C (line 24). A candidate value c is automatically

8

Initialization:
1: ts := 0; inittsrarray[i][j] := nil, 1 ≤ i ≤ S, 1 ≤ j ≤ R
2: pw := 〈0,⊥〉; w := 〈pw, inittsrarray〉; tsr[j] := 0, 1 ≤ j ≤ R

3: upon reception of PW 〈ts′, pw′, w′〉 message from the writer do
4: if ts′ > ts then
5: ts := ts′; pw := pw′; w := w′

6: send PW ACKi〈ts, tsr〉 to the writer
7: endif

8: upon reception of W 〈ts′, pw′, w′〉 message from the writer do
9: if ts′ ≥ ts then
10: ts := ts′; pw := pw′; w := w′

11: send WRITE ACKi〈ts〉 to the writer
12: endif

13: upon reception of READk〈tsr′〉 mess. from rj (k ∈ {1, 2}) do
14: if tsr′ > tsr[j] then
15: tsr[j] := tsr′

16: send READk ACKi〈tsr[j], pw, w〉 to the reader rj

17: endif

Fig. 3. SWMR safe storage: code of object si

removed from C if at least t+ b+1 objects respond (in any round of the READ) without c in their
w field (lines 2 and 27-28).

In the first round, the reader rj awaits responses from a set that contains at least S−t = t+b+1
objects such that there is no conflict between any 2 objects si and sk that belong to this set (set
Resp1OK, line 11). A conflict between two objects arises when one object, say sk, reports in its w
field a candidate value c, such that c.tsrarray[i][j] > tsrFR (line 4), where tsrFR is the timestamp
of the reader rj in the first round of READ (line 9). In other words, object sk claims that the object
si reported to the writer a timestamp of the reader rj higher than any timestamp that rj has issued
so far. Intuitively, in this case, at least one of the objects sk or si is malicious. Hence, in a set that
contains only correct objects there is no conflict between any two objects. As there are at least
S − t correct objects, hence the intuition on why the first round of READ eventually completes
(i.e., why the condition in line 11 eventually holds).

At the beginning of the second round of the READ, the reader rj increments its local timestamp
tsr′j once more (line 12) and sends a READ2〈tsr′j〉 to all objects (line 13). Then the reader waits
for the responses from objects until there is a candidate value c with the highest timestamp in C
(i.e., highCand(c) holds, line 4), such that safe(c) holds or until C is empty (this can occur only if
the READ is concurrent with some WRITE). The predicate safe(c) holds if at least b+1 different
objects have responded either in their w (or pw) fields with c (or c.tsval for pw), or with a value
with a higher timestamp (line 3).

Our implementation guarantees that the condition in line 14 is eventually satisfied in every
READ. In the following, we give a rough intuition on why this is true. This is followed by the
detailed proof of algorithm correctness (Section 4.3).

Assume, by contradiction, that there is a READ rd by some reader rj (in run r) such that rd
never completes, i.e., there is a candidate value c in rd, such that c is never eliminated from C and
c is never safe. Consider the following three cases.

– Candidate value c was reported by at least one correct object in the first round of the READ
rd. In this case, at least b + 1 correct objects have already set their pw fields to c.tsval before
the second round of rd is invoked and these objects reply in the second round with c.tsval or a
later value in their pw fields and, hence, safe(c) eventually holds.

9

Definitions:
1: conflict(i, k) ::= ∃c ∈ C :

((k ∈ FirstRW (c)) ∧ (c.tsrarray[i][j] > tsrFR))
2: RespondedWO(c) := {i : ∃c′ 6= c, i ∈ RW (c′)}
3: safe(c) ::= |RW (c) ∪RPW (c.tsval)

SS
c′.tsval.ts>c.tsval.ts(RW (c′) ∪RPW (c′.tsval))| ≥ b + 1

4: highCand(c) ::= (c ∈ C) ∧ (¬∃c′ ∈ C : c′.tsval.ts > c.tsval.ts)
5: Resp1 := {i : RespF irst[i] = true}

Initialization:
6: tsr′

j := 0

READ() is {
7: C := FirstRW := RW := RPW := ∅
8: RespF irst[i] := false, 1 ≤ i ≤ S
9: tsrFR := tsr′

j := tsr′
j + 1

10: send READ1〈tsr′
j〉 to all objects

11: wait for READ1 ACKi messages until
∃Resp1OK ⊆ Resp1 :

(|Resp1OK| ≥ S − t) ∧ (∀i, k ∈ Resp1OK : ¬conflict(i, k))
12: inc(tsr′

j)

13: send READ2〈tsr′
j〉 to all objects

14: wait for READ2 ACKi messages until
∃cret ∈ C : ((safe(cret) ∧ highCand(cret)) ∨ (C = ∅))

15: if C = ∅ then
16: return(v0)
17: else
18: cret := c : ((c ∈ C) ∧ (safe(c)) ∧ (highCand(c)))
19: return(cret.tsval.v)
20: endif

21: upon reception of READ1 ACKi〈tsr′
j , pw′, w′〉 from si do

22: FirstRW (w′) := FirstRW (w′) ∪ {i}
23: RW (w′) := RW (w′) ∪ {i}; RPW (pw′) := RPW (pw′) ∪ {i}
24: C := C ∪ {w′}; RespF irst[i] := true

25: upon reception of READ2 ACKi〈tsr′
j , pw′, w′〉 from si do

26: RW (w′) := RW (w′) ∪ {i}; RPW (pw′) := RPW (pw′) ∪ {i};

27: upon (c ∈ C) and (|RespondedWO(c)| ≥ t + b + 1)
28: C := C\{c}
}

Fig. 4. SWMR safe storage: READ implementation - code of the reader rj

10

– Consider now the second case, in which no correct object ever reports c in its w field to rj .
Eventually all correct objects, at least S−t = t+b+1 of them respond with some value different
from c in their w fields and c is excluded from C (lines 27-28).

– Finally, consider the third case, in which (1) no correct object reports c in its w field in the
first round of the READ rd and (2) at least one correct object reports c in its w field in the
second round of rd. In this case, some malicious objects have forged c, but c was indeed later
written concurrently with the READ rd. Note that the value of the array of arrays of reader
timestamps reported to the writer, c.tsrarray, is crucial in this case. It contains values of tsr[j]
fields of at least S− t− t = b+1 correct objects that those objects reported to the writer during
the WRITE wr (concurrent with rd) that actually wrote c. Denote by tsrFR the timestamp of
the reader rj in the first round of rd. Note that a correct object si sets tsr[j] to a value higher
than tsrFR (i.e., tsrFR + 1, since by our assumption, rd never completes and, therefore, rj

never sets its timestamp to a value higher than tsrFR+1) only upon si receives a second round
message of rd.
For every such a correct object si, if c.tsrarray[i][j] ≤ tsrFR, the object si will respond to the
second round of rd with c.tsval in its pw field or with a later value (otherwise c.tsrarray[i][j] >
tsrFR in the PW round of wr). On the other hand, if c.tsrarray[i][j] > tsrFR at the end of
the first round of rd, every (malicious) object that reported c in its w field in the first round
of the READ will be in conflict with si. Therefore, (1) at the end of the first round of READ,
si is not in Resp1OK and (2) si responds without c (and c.tsval) in the second round of the
READ. Roughly, in our algorithm, below a certain threshold of correct objects si for which
c.tsrarray[i][j] > tsrFR, safe(c) will eventually hold. If the number of correct objects si such
that c.tsrarray[i][j] > tsrFR crosses this threshold, eventually the number of objects that
responded without c in their w fields becomes larger than t + b, i.e., c is removed from C.

In other words, in any run r of our algorithm, for any c ∈ C, safe(c) eventually holds in r, or
c is eventually removed from C (in r).

4.3 Correctness

We first prove safety.

Theorem 1. (Safety) The algorithm in figures 2, 3 and 4 is safe.

Proof. We consider the case in which a READ rd by a reader rj is not concurrent with any WRITE.
Let ck = 〈〈k, valk〉, tsrarrayk〉 = 〈tsvalk, tsrarrayk〉 be the tuple written by the latest WRITE wrk

that precedes rd (or w0 = 〈〈0,⊥〉, inittsrarray〉 if there is no such a WRITE). We show that rd
does not return a value other than valk.

By WRITE implementation, a timestamp value pair ck.tsval = tsvalk (resp., a tuple c) has been
written in the pw (resp., w) fields of at least S − t = t + b + 1 objects before WRITE completes,
including at least t + 1 non-malicious objects (or, to all of the 2t + 1 non-malicious objects, in case
wk = w0). Therefore, throughout the duration of rd: (1) at least t + 1 non-malicious objects have
tsvalk in their pw, and ck in their w fields and (2) at most t + b objects have in their w field a
tuple different than ck. By the READ code, responses from at least t + b + 1 objects are awaited
in the first round of rd (line 11, Fig. 4), at least one of non-malicious objects will respond with ck

in its w field in the first round of rd. Hence, by the end of the first round of rd, ck ∈ C. Moreover,
since at most t+ b objects have in their w fields a tuple different than ck throughout rd, ck is never
excluded from C in lines 27-28, Fig. 4. Hence, C does not return a default value v0 (lines 15 and
16, Fig. 4). Moreover, note that no tuple c with a c.tsval.ts > k can be returned, as no such a tuple
(candidate value) c can be safe(c). Indeed, note that throughout rd no non-malicious object, out

11

of at least S − b = 2t + 1 of them, will reply in its pw or w field with a value with ts′ > k, or
ts′ = k ∧ v′ 6= valk, i.e., at most b objects may respond with such a value. Hence, no value other
than valk is returned in line 19, Fig. 4. ut

We now proceed to proving wait-freedom. First we prove a couple of important lemmas.

Lemma 1. (No conflict between correct objects) At any point in time during the first round of any
READ operation, for every pair of correct objects si, sk, conflict(i, k) = false.

Proof. Assume, by contradiction, that there is a READ operation rd by rj in which conflict(i, k) =
true during the first round of rd (i.e., before rj executes the code in line 12 in Figure 4) and
objects si and sk are correct. Let the timestamp of rj in the first round of rd be tsrFR = tsr′j .
Since conflict(i, k) = true, a correct object sk reported, in the first round of rd, in its w field, a
candidate value c = 〈〈ts, v〉, tsrarray〉, such that tsrarray[i][j] > tsrFR. Since, by our assumption,
sk is correct, it only changes its w field upon sk receives a PW or W message from the writer. Since
the writer is not malicious, a timestamp value pair 〈ts, v〉 was indeed written, say by write wrts, and
PW round of wrts has completed before sk changed its w field to c (this occurs upon sk receives a W
message in the WRITE wrts or a PW message in the WRITE wrts+1, the WRITE that immediately
succeeds wrts). Hence, the writer received tsr[j] > tsrFR from si and set tsrarray[i][j] = tsr[j],
before sending a W message in wrts (or a PW message in wrts+1), i.e., before sk replied to the
reader in the first round of rd and before the reader received this reply during the first round of
rd. Hence, object si has set its tsr[j] field to tsr[j] > tsrFR before the reader has changed its
timestamp to a value higher than tsrFR. According to the object code, no correct object can have
a reader rj ’s timestamp (tsr[j]) higher than the rj itself (tsr′j) at any point in time. Therefore, si

is not correct, a contradiction. ut

Lemma 2. (First round of READ terminates) The READ operation implementation never re-
mains indefinitely blocked at line 11, Fig. 4.

Proof. In our model, there are at least t + b + 1 correct objects that will all eventually respond to
the first round of every READ (if the condition in line 11 is not satisfied earlier). Denote this set as
X, X ⊆ Resp1. By Lemma 1, for no two i, k ∈ X conflict(i, k) = true. Finally, as |X| ≥ t + b + 1,
the until condition in line 11 is satisfied in every READ. ut

Lemma 3. (Second round of READ terminates) The READ operation implementation never re-
mains indefinitely blocked at line 14, Fig. 4.

Proof. Suppose, by contradiction, that there is a read rd by rj that remains indefinitely blocked
at line 14. It is not difficult to see that, in this case, there exists a candidate value/tuple c =
〈tsval, tsrarray〉 such that c ∈ C (C 6= ∅) forever, but safe(c) never holds. We consider two cases:
(1) c has been reported in the w field of some correct object si in the first round of rd and (2) no
correct object si reported c in its w field in the first round of rd.

Consider first case (1) in which some correct object si has reported in its w field a tuple
c = 〈tsval, tsrarray〉 (where tsval = 〈ts, val〉) in the first round of rd. Since correct objects set
their w fields upon reception of the W message from the writer in wrts, or upon reception of the
PW message from the writer in wrts+1 and since the writer sends those messages only when at
least b + 1 correct objects respond to its PW message in wrts, we conclude that, by the time si

sends its response in the first round of rd, at least b + 1 correct objects have set their pw fields
to tsval before the second round of rd is invoked. These correct objects eventually respond in the
second round of rd with tsval or with a higher timestamp in their pw fields, and, hence, eventually
safe(c) holds. A contradiction.

12

Consider now the case (2) in which no correct object si has reported in its w field a tuple
c = 〈tsval, tsrarray〉 in the first round of rd. We distinguish two cases: (a) no correct object
reports c in its w field in the second round of rd and (b) there is a correct object sk that reports c
in its w field in the second round of rd.

Case (2.a). It is not difficult to see that as soon as all correct objects respond to the second round
of rd, c is excluded from C (lines 27-28, Fig. 4), a contradiction.

Case (2.b). Let tsrFR be the timestamp of rj during the first round of rd. Since c = 〈tsval, tsrarray〉
is reported by a correct object sk in its w field in the second round of rd, c is indeed written by the
writer at some point, concurrently with rd. Therefore, exactly t+b+1 coordinates of tsrarray[∗][j]
have non-nil values, out of which at least b + 1 correspond to correct objects. Denote this set
of correct objects as Xcorrect (actually, the set of indexes of objects). Denote by Xfake the set
Xcorrect ∩ {i : tsrarray[i][j] > tsrFR}.

Denote by Resp1OKc the set which satisfies the condition in line 11, at the end of the first
round of rd. Note that such a set exists, and it contains (an index) of at least 1 malicious object
sm that reported c in its w field in the first round of rd (i.e., m ∈ FirstRW (c)); indeed if all
objects in Resp1OKc would be correct (or none of them reported c in its w field), c would be
removed from the set C, since no correct object responds in the first round of rd with c in its w
field. Note also that Xfake ∩Resp1OKc = ∅, since for every i ∈ Xfake and every m ∈ FirstRW (c),
conflict(i,m) = true.

Furthermore, let |FirstRW (c)| = f ≥ 1 (recall that FirstRW (c) contains only malicious
objects) and |Xfake| = f ′ ≥ 0. At the end of the first round of rd, |Resp1OKc\FirstRW (c)| ≥
t + b + 1 − f (counting all those objects from Resp1OKc that did not respond with c in their w
fields), i.e., by the end of the first round of rd at least t + b + 1− f objects responded without c in
their w field, and this does not include any of the objects from Xfake.

Since c is indeed written (say by WRITE wr) concurrently with rd, correct objects from Xfake

must have responded to PW message of wr with the timestamp of the reader rj tsr[j] = tsrFR+1,
after they respond to the second round of rd, when they set their tsr[j] fields to tsrFR + 1. It
is not difficult to see that for any si ∈ Xfake tsr[j] is not higher than tsrFR + 1, since by our
assumption on rd, the second round of rd does not complete and rj never sets its timestamp tsr′j
to a value higher than tsrFR + 1. Therefore, by the time rd receives the second round responses
from all correct objects, all objects from Xfake respond without c in their w fields and the number
of objects that have responded during rd without c in their w fields, |RespondedWO(c)|, is at least
t + b + 1− f + f ′.

On the other hand, all of at least b + 1− f ′ correct objects from Xcorrect\Xfake respond to the
PW round of wr before they reply to the second round of rd. Therefore, these at least b + 1 − f ′

objects reply to the second round of rd with c.tsval or the value with a higher timestamp in their
pw field. Hence, by the time rd receives the second round responses from all correct objects, the
number of objects that have responded with c in their w field, or c.tsval in their pw fields, or with
a later value, is at least f + b + 1− f ′.

By our assumption: (i) safe(c) never holds during rd and (ii) c is never excluded from C during
rd. These conditions can be written as:

(i) f + b + 1− f ′ < b + 1
(ii) t + b + 1− f + f ′ < t + b + 1

However, it is not difficult to see that, for any values of f and f ′, at least one of these inequalities
is false. Indeed, rewriting (i) and (ii):

13

(i) f < f ′

(ii) f ′ < f

apparently, at least one of the last two inequalities must be false. Therefore, we conclude that,
eventually (at latest upon rd receives second round responses from all correct objects), either
safe(c) holds, or c is eliminated from C. A contradiction. ut

Theorem 2. (Wait-Freedom) The algorithm in figures 2, 3 and 4 is wait-free.

Proof. It is not difficult to see that the WRITE implementation is wait-free. The wait-freedom of
the READ implementation follows from Lemmas 2 and 3. ut

5 Regular Implementation

Our tight lower bound on the time-complexity of READ operations extends to stronger storage
semantics: optimally resilient regular storage. In this section, we show how to transform our safe
implementation (Section 4) to provide regular semantics while retaining optimal resilience and
optimal time-complexity of READ and WRITE operations (i.e., rounds). The proof of correctness
of our regular implementation is given in Section 5.2.)

The main difference between our regular implementation and our safe implementation, is that
objects keep track of all values they receive from the writer throughout the entire run (for simplicity
we say that objects store the entire history). For presentation simplicity, we will assume in the
following that in every READ round, objects send all the values received from the writer (i.e., the
entire history) to the reader. However, later, in Section 5.1, we show how to simply optimize our
implementation in order to drastically decrease the size of messages exchanged between objects
and readers in our algorithm (as well as memory requirements and computational complexity at
readers).

The communication pattern of our regular implementation is the same as that of our safe
implementation of Section 4. Moreover, the principle of choosing the value to return in the reader
code is essentially the same, only the set of candidate values to choose from becomes larger than
in our safe implementation.

The WRITE implementation remains unchanged, i.e., we can reuse the implementation given
in Figure 2, Section 4.

However, object si, on reception of PW 〈ts′, pw′, w′〉 from the writer, with ts′ > ts, where
ts is the timestamp of the latest PW or W message received by si from the writer, updates ts
and assigns historyi[ts′] := 〈pw′, nil〉 and historyi[ts′ − 1] := 〈w′.tsval, w′〉 (lines 5-7, Figure 5).
Similarly, on reception of W 〈ts′, pw′, w′〉 from the writer, with ts′ ≥ ts, si updates ts and assigns
historyi[ts′] := 〈pw′, w′〉 (lines 11-12, Figure 5).

Moreover, on reception of the READk message from the reader with a timestamp tsr′, the
object si replies with the message READk ACKi〈tsr′, historyi〉, where k denotes the round (k ∈
{1, 2}). (We later show, in Section 5.1, how the size of READk ACK∗ messages can be drastically
decreased). The entire modified object code is given in Figure 5.

We give the modified reader code in Figure 6. The reader rj , on receiving the READk ACKi〈tsr′, historyi〉
message from object si in round k of READ rd, assigns history[k][i] := historyi (line 19 and
24, Fig. 6). If, for some ts′ the entry historyi[ts′] does not exist, rj considers history[k][i][ts′] =
historyi[ts′] = 〈nil, nil〉. The reader adds (non-nil) values of tuples history[1][i][∗].w, i.e., the values
objects report in their historyi[∗].w fields, into the set of candidate values C throughout the first
round of rd (line 20, Fig. 6)

Similarly to our safe implementation, in the first round of rd, the reader rj awaits responses
from a set that contains at least S − t objects such that there is no conflict between any 2 objects

14

Initialization:
1: ts := 0; pw0 := 〈0,⊥〉; historyi[0] := 〈pw0, 〈pw0, inittsrarray〉〉
2: inittsrarray[i][j] := nil, 1 ≤ i ≤ S, 1 ≤ j ≤ R
3: tsr[j] := 0, 1 ≤ j ≤ R

4: upon reception of PW 〈ts′, pw′, w′〉 message from the writer do
5: if ts′ > ts then
6: historyi[ts] := 〈pw′, nil〉; historyi[ts− 1] := 〈w′.tsval, w′〉
7: ts := ts′

8: send PW ACKi〈ts, tsr〉 to the writer
9: endif

10: upon reception of W 〈ts′, pw′, w′〉 message from the writer do
11: if ts′ ≥ ts then
12: ts := ts′; historyi[ts] := 〈pw′, w′〉
13: send WRITE ACKi〈ts〉 to the writer
14: endif

15: upon reception of READk〈tsr′〉 mess. from rj (k ∈ {1, 2}) do
16: if tsr′ > tsr[j] then
17: tsr[j] := tsr′

18: send READk ACKi〈tsr[j], historyi〉 to the reader rj

19: endif

Fig. 5. SWMR regular storage: code of object si

si and sk that belong to this set (line 11, Fig. 6). A conflict between two objects arises when one
object, say sk reports (in the first round of read) in one of its historyk[∗].w fields a candidate value
c, such that c.tsrarray[i][j] > tsrFR, where tsrFR is the timestamp of the reader rj in the first
round of the READ. As in our safe implementations, there can be no conflict between two correct
objects si and sk.

We define two key predicates for candidate values c ∈ C, safe(c) and invalid(c) as follows:

– safe(c). A candidate value c is safe if at least b+1 objects si have responded with either c.tsval
or c in the pw or w field (respectively) of historyi[c.tsval.ts] in either the first, or the second
round of the READ. (line 3, Fig.6). In other words, c if safe if at least b+1 objects confirm that
the timestamp-value pair c.tsval has been written by the writer in a write with a timestamp
c.tsval.ts.

– invalid(c). A candidate value c is deemed invalid if at least t + b + 1 objects si are missing the
entry historyi[c.tsval.ts].w (i.e., if historyi[c.tsval.ts].w = nil), or reply with a value different
than c.tsval (resp., c) in the pw (resp., w) field of their historyi[c.tsval.ts], in either the first,
or the second round of READ. (line 2, Fig.6). In other words, c if invalid if at least t + b + 1
objects did not receive c with a timestamp c.tsval.ts from the writer.

As soon as the predicate invalid(c) holds, c is removed from the set C (lines 26 and 27, Fig. 6).
The reader receives READ2 ACKi messages (in the second round of READ) until there is

a candidate value c such that safe(c) holds and there is no other candidate value with a higher
timestamp. This is guaranteed to occur at latest after the reader receives the responses from all
correct objects in the second round of READ. Roughly, the principle behind this fact, is the same
as in our safe implementation.

5.1 Performance optimization

It is relatively easy to see how we can simply modify our regular implementation such that objects
do not send their entire histories to readers within the READk ACKi messages. Consider READ
rd by rj . It is sufficient that the reader rj stores (caches) the value cachej .val it returned in its last

15

Definitions:
1: conflict(i, k) ::= ∃c ∈ C, ∃ts′ :

(history[1][k][ts′].w = c) ∧ (c.tsrarray[i][j] > tsrFR))
2: invalid(c) ::= |{i : ∃rnd ∈ {1, 2} :

(history[rnd][i][c.tsval.ts].w = nil)∨
∨(history[rnd][i][c.tsval.ts].pw 6= c.tsval)∨
∨(history[rnd][i][c.tsval.ts].w 6= c)}| ≥ t + b + 1

3: safe(c) ::= |{i : ∃rnd ∈ {1, 2} :
(history[rnd][i][c.tsval.ts].pw = c.tsval)∨
∨(history[rnd][i][c.tsval.ts].w = c)}| ≥ b + 1

4: highCand(c) ::= (c ∈ C) ∧ (¬∃c′ ∈ C : c′.tsval.ts > c.tsval.ts)
5: Resp1 ::= {i : RespF irst[i] = true}

Initialization:
6: tsr′

j := 0

READ() is {
7: history[1..2][1..S] := init
8: tsr[i] := 0; RespF irst[i] := false, 1 ≤ i ≤ S
9: tsrFR := tsr′

j := tsr′
j + 1

10: send READ1〈tsr′
j〉 to all objects

11: wait for READ1 ACKi messages until
∃Resp1OK ⊆ Resp1 :

(|Resp1OK| ≥ S − t) ∧ (∀i, k ∈ Resp1OK : ¬conflict(i, k)))
12: inc(tsr′

j)

13: send READ2〈tsr′
j〉 to all objects

14: wait for READ2 ACKi messages until
∃cret ∈ C : ((safe(cret) ∧ (highCand(cret))))

15: cret := c : (c ∈ C) ∧ safe(c) ∧ (highCand(c))
16: return(cret.tsval.v)

17: upon reception of READ1 ACKi〈tsr′
j , historyi〉 from si do

18: if (tsr′
j > tsr[i]) then

19: tsr[i] := tsr′
j ; history[1][i] := historyi

20: C := C ∪ {historyi[∗].w′}; RespF irst[i] := true
21: endif

22: upon reception of READ2 ACKi〈tsr′
j , pw′, w′〉 from si do

23: if (tsr′
j > tsr[i]) then

24: tsr[i] := tsr′
j ; history[2][i] := historyi

25: endif

26: upon (c ∈ C) and (invalid(c))
27: C := C\{c}
}

Fig. 6. SWMR regular storage: READ implementation - code of the reader rj

16

READ that preceded rd along with the timestamp associated with cachej .val, cachej .ts. Then,
in the first round of rd, rj includes cachej .ts in its READ1 message, and the object si send in
READk ACKi messages in rd only the portion of the historyi from historyi[cachej .ts] onwards. It
may occur in this case that, after two rounds of READ, the set C is empty. In this case, rj simply
returns cachej .val. The rest of the algorithm can be reused as such.

5.2 Correctness

First we prove regularity.

Theorem 3. (Regularity) The algorithm in figures 2, 5 and 6 is regular.

Proof. Consider a READ rd by a reader rj , such that the last value written by some complete
WRITE (wrk) that precedes rd is valk (with a timestamp k), or val0 if there is no such WRITE.

We show that no value older than valk is returned by rd. Moreover, we show that if vall is
returned by rd then there is a wrl that writes vall.

Let ck = 〈〈k, valk〉, tsrarrayk〉 = 〈tsvalk, tsrarrayk〉 be the tuple written by the latest complete
WRITE wrk that precedes rd (or ck = c0 = 〈〈0,⊥〉, inittsrarray〉 if there is no such a WRITE).
We show that rd does not return a value older than valk.

By WRITE implementation, a timestamp value pair valk (resp, a tuple ck has been written in
the history∗[k].pw (resp., history∗[k].w) fields of at least S − t − b = t + 1 non-malicious objects
before WRITE completes (or, to all non-malicious objects, in case tsval0 = 〈0,⊥〉). Therefore,
throughout the duration of rd the following conditions hold:

– Condition (1). At least t + 1 non-malicious objects have tsvalk in their history∗[k].pw, and ck

in their history∗[k].w fields.
– Condition (2). At most t+b objects have in their history∗[k].w (or history∗[k].pw) fields a tuple

different than ck (resp., tsvalk), or they do not have an entry for history∗[k].

By the READ code, responses from at least S−t = t+b+1 objects are awaited in the first round
of READ (line 11, Fig. 6). Therefore, by condition (1), wk ∈ C. Moreover, due to the condition (2)
wk is never excluded from C in lines 26-27, Fig. 6). Therefore, rd never returns a value older than
ck.tsval.val = valk.

Moreover, note that no tuple c such that c.tsval.val has never been written by the writer can
be returned, since no such a tuple (candidate value) c can be safe(c). Indeed, since c.tsval.val has
never been written by writer, no non-malicious object, out of at least S − b = 2t + 1 of them, will
ever store history∗[c.tsval.ts].pw = c.tsval, or history∗[c.tsval.ts].w = c, i.e., at most b objects
may respond with such values in their history∗[c.tsval.ts] fields. ut

Performance optimization. Now we prove that our performance optimization described in Sec-
tion 5.1 preserves regularity.

Again, consider a READ rd by a reader rj , such that the last value written by some complete
WRITE (wrk) that precedes rd is valk (with a timestamp k), or val0 if there is no such WRITE.
Denote by cachej .val a value returned by the last READ invoked by rj that immediately precedes
rd (or ⊥ if there is no such a value) and by cachej .ts the timestamp associated by the writer to
that value in wrts, (or cachej .ts = 0 if there was no such a WRITE). We distinguish two cases:

– (ts < k). In this case the entries history∗[k] will be sent by all (non-malicious) objects in both
rounds of rd, so the argument we used above for the non-optimized version can be reused.

– (ts ≥ k). In this case rd returns a valts or a newer value. Regularity is preserved. ut

17

We now proceed to proving wait-freedom. We revisit the lemmas used in Appendix ?? in the
proof of correctness of our safe storage implementation.

Lemma 4. (No conflict between correct objects) At any point in time during the first round of any
READ operation, for every pair of correct objects si, sk, conflict(i, k) = false.

Proof. Suppose, by contradiction, that there is a READ operation rd by rj in which conflict(i, k) =
true during the first round of rd (i.e., before rj executes the code in line 12) and objects si and
sk are correct. Suppose that the timestamp of rj in the first round of rd is tsrFR = tsr′j . Since
conflict(i, k) = true, a correct object sk reported, in the first round of rd, in its historyk[ts].w field
(for some ts), a candidate value c = 〈〈ts, v〉, tsrarray〉, such that tsrarray[i][j] > tsrFR. Since, by
our assumption, sk is correct, it only changes its w field to c upon sk receives a W message in wrts

from the writer. Since, the writer is not malicious, the writer has received tsr[j] > tsrFR from si

and set tsrarray[i][j] = tsr[j] in the first round of wrts, before sending a W message in wr, i.e.,
before sk replied to the reader in the first round of rd and before the reader received this reply
during the first round of rd. Hence, the object si has sent to the writer a timestamp of a reader
rj tsr[j] > tsrFR before the reader rj has changed its timestamp to a value higher than tsrFR.
According to the object code, no correct object can have a reader rj ’s timestamp higher than the
rj itself at any point of time. Therefore, si is not correct, a contradiction. ut

Lemma 5. (First round of READ terminates) The READ operation implementation never re-
mains indefinitely blocked at line 11, Fig. 6.

Proof. The proof is an analogue of that of Lemma 2, Section 4.3. ut

Lemma 6. (Second round of READ terminates) The READ operation implementation never re-
mains indefinitely blocked at line 14, Fig. 6.

Proof. Suppose, by contradiction, that there is a read rd by rj that remains indefinitely blocked at
line 14.

It is not difficult to see that, in case of our original non-optimized implementation, the set C
is never empty, since the initial tuple w0 = 〈pw0 = 〈0,⊥〉, inittsrarray〉 appears in C and is never
excluded since all 2t + 1 non-malicious objects have history∗[0] = 〈pw0, w0〉. On the other hand,
in our optimized version, if C is empty then rd returns a cachej .val value and, hence, the second
round of rd terminates and rd completes.

Therefore, there exists a candidate value/tuple c = 〈tsval, tsrarray〉 6= w0 such that c ∈ C
(C 6= ∅) forever, but safe(c) never holds. We consider two cases: (1) c has been reported in the
historyi[tsval.ts].w field in the first round of rd by some correct object si, and (2) no correct object
si reported c in its historyi[tsval.ts].w field in the first round of rd.

Consider first case (1) in which some correct object si has reported in its historyi[tsval.ts].w
field a tuple c = 〈tsval, tsrarray〉 (where tsval = 〈ts, val〉) in the first round of rd. Since correct
objects can set their historyi[tsval.ts].w fields to c only upon reception of the W message from
the writer in wrts and since the writer sends this messages only after at least b + 1 correct objects
respond to its PW message in wrts, we conclude that, by the time si sends its response in the first
round of rd, at least b+1 correct objects have set their historyi[c.tsval.ts].pw fields to tsval before
the second round of rd is invoked. These correct objects eventually respond in the second round of
rd with historyi[c.tsval.ts].pw = tsval, and, hence, eventually safe(c) holds. A contradiction.

Consider now case (2) in which no correct object si has reported in its historyi[c.tsval.ts].w
field a tuple c = 〈tsval, tsrarray〉 in the first round of rd. We distinguish two cases: (a) no correct
object reports c in its historyi[c.tsval.ts].w fields in the second round of rd and (b) there is a correct
object sk that reports c in its historyi[c.tsval.ts].w fields in the second round of rd.

18

Case (2.a). It is not difficult to see that as soon as all correct objects (at least t + b + 1 of them)
respond to the second round of rd, c is deemed invalid and c is excluded from C, a contradiction.

Case (2.b). Let tsrFR be the timestamp of rj during the first round of rd. Since c is reported by
a correct object sk in its historyi[c.tsval.ts].w field in the second round of rd, c is indeed written
by the writer at some point, during rd. Therefore, exactly t + b + 1 coordinates of tsrarray[∗][j]
have a non-nil values, out of which at least b + 1 correspond to correct objects. Denote this set
of correct objects as Xcorrect (actually the set of indexes of objects). Denote by Xfake the set
Xcorrect ∩ {i : tsrarray[i][j] > tsrFR}.

Denote by Resp1OKc the set which satisfies the condition in line 11, at the end of the first
round of rd. Note that such a set exists, and it contains (an index) of at least 1 malicious object
sm that reported c in its historyi[c.tsval.ts].w field in the first round of rd; indeed if all objects in
Resp1OKc would be correct (or none of them reported c in its historyi[c.tsval.ts].w field), c would
be removed from the set C (i.e., invalid(c) would hold), since no correct object responds in the
first round of rd with c in its historyi[c.tsval.ts].w fields. Note also that Xfake ∩ Resp1OKc = ∅,
since for every i ∈ Xfake and every m ∈ FirstRW (c), conflict(i, m) = true.

Furthermore, denote by f the cardinality of the set M of (malicious) objects that have reported
c in the first round of rd (f ≥ 1) in their historyi[c.tsval.ts].w fields and |Xfake| = f ′ ≥ 0. At
the end of the first round of rd, |Resp1OKc\M | ≥ t + b + 1 − f (counting all those objects from
Resp1OKc that did not respond with c in their historyi[c.tsval.ts].w fields), i.e., by the end of the
first round of rd at least t + b + 1 − f objects responded without c in their historyi[c.tsval.ts].w
fields, and this does not include any of the objects from Xfake.

Since c is indeed written (by wrts) concurrently with rd, correct objects from Xfake must have
responded to PW message of wr with the timestamp of the reader rj tsr[j] = tsrFR + 1, after
they respond to the second round of rd. Therefore, eventually all objects from Xfake respond to the
second round of rd with no entry for historyi[c.tsval.ts]. Hence, by the time rd receives the second
round responses from all correct objects, the object count for invalid(c) (line 2, Fig. 6) predicate
is at least t + b + 1− f + f ′.

On the other hand, all of at least b + 1− f ′ correct objects from Xcorrect\Xfake respond to the
PW round of wrts before they reply to the second round of rd. Therefore, these at least b + 1− f ′

objects reply to the second round of rd with historyi[c.tsval.ts].pw = c.tsval . Hence, by the time
rd receives the second round responses from all correct objects, the number of objects that have
responded with c in their historyi[c.tsval.ts].w field, or c.tsval in their historyi[c.tsval.ts].pw fields,
is at least f + b + 1− f ′.

By our assumption: (i) safe(c) never holds during rd and (ii) invalid(c) never holds during rd.
These conditions can be written as:

(i) f + b + 1− f ′ < b + 1 ⇐⇒ f < f ′

(ii) t + b + 1− f + f ′ < t + b + 1 ⇐⇒ f ′ < f

apparently, at least one of the last two inequalities must be false. Therefore, we conclude that,
eventually (at latest upon rd receives second round responses from all correct objects), either
safe(c) holds, or c is eliminated from C. A contradiction. ut

Finally, Lemma 2 and 3 prove the following theorem, since the wait-freedom of WRITE is
straightforward.

Theorem 4. (Wait-Freedom) The algorithm in figures 2, 5 and 6 is wait-free.

19

6 Server-Centric Model

We extend our model of Section 2 to a server-centric model, by assuming point-to-point channels
among objects (servers) and removing the restriction that objects can send messages only in re-
sponse to clients. In other words, in the server-centric model, base objects are first class processes
(servers) that can exchange messages with other servers and even send unsolicited messages to
clients (i.e., push messages). As a consequence, the range of communication patterns is very broad
and not bound by the pattern of a communication round-trip. Clearly, the notion of a communica-
tion round-trip needs to be revisited as a complexity metric.

For example, clients in a server-centric model may send only one message to (a subset of) servers
and wait for the reception of pushed messages, until they receive sufficient amount of information
for returning a value. It is not difficult to see that, in an asynchronous system, clients need only to
send this first message to a subset of servers in order to return a meaningful value.

The notion of a single communication round-trip (round) and fast READ operations (that
complete in a single round) is however meaningful even in the server centric model [7]. Intuitively,
a fastest possible operation in this model is similar to that of our data-centric model; i.e., a fast
operation op in which: (a) the client c sends messages to (a subset of) servers, (b) servers, on
receiving such a message, reply to c, without waiting for the reception of any other message from
any other server or client and (c) upon c receiving a sufficient number of these replies (at latest
upon c receives replies from S − t correct servers) op completes.

It is not difficult to see, along with our lower bound proof of Section 3, that our lower bound
(Proposition 1 of Section 3) holds in the server-centric model as well (with the fast READ operations
defined as above). In other words, even in the server-centric model, if at most 2t + 2b servers are
used, then it is impossible to construct a SWSR safe regular storage in which every READ is fast.
Devising a tight bound algorithm, however, might require a different metric; this is however out of
the scope of this paper.

Acknowledgments

We are very thankful to Gregory Chockler, Idith Keidar and Ron Levy for their very helpful
comments on earlier drafts of this paper.

References

1. I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi. Byzantine disk paxos: optimal resilience with Byzantine
shared memory. In Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing,
pages 226–235. ACM Press, 2004.

2. I. Abraham, G. V. Chockler, I. Keidar, and D. Malkhi. Wait-free regular storage from Byzantine components.
Technical Report MIT-CSAIL-TR-2005-021, MIT, Cambridge, MA, USA, 2005.

3. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems. Journal of the
ACM, 42(1):124–142, 1995.

4. R. Bazzi and Y. Ding. Non-skipping timestamps for Byzantine data storage systems. In Proceedings of the 18th
International Symposium on Distributed Computing, volume 3274/2004 of Lecture Nodes in Computer Science,
pages 405–419, Oct 2004.

5. R. A. Bazzi and Y. Ding. Brief announcement: wait-free implementation of multiple-writers/multiple-readers
atomic byzantine data storage systems. In M. K. Aguilera and J. Aspnes, editors, PODC, page 353. ACM, 2005.

6. C. Cachin and S. Tessaro. Optimal resilience for erasure-coded byzantine distributed storage. Technical Report
RZ 3575, IBM Research, February 2005.

7. P. Dutta, R. Guerraoui, R. R. Levy, and M. Vukolić. How Fast can a Distributed Atomic Read be? Techni-
cal Report LPD-REPORT-2005-001, Swiss Federal Institute of Technology (EPFL), School of Computer and
Communication Sciences, Lausanne, Switzerland, 2005.

8. G. Goodson, J. Wylie, G. Ganger, and M. Reiter. Efficient Byzantine-tolerant erasure-coded storage. In Pro-
ceedings of the International Conference on Dependable Systems and Networks, pages 135–144, 2004.

20

9. R. Guerraoui, R. R. Levy, and M. Vukolić. Lucky read/write access to robust atomic storage. Technical Report
LPD-REPORT-2005-005, Swiss Federal Institute of Technology (EPFL), School of Computer and Communication
Sciences, Lausanne, Switzerland, 2005.

10. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124–
149, January 1991.

11. P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects. Journal of the ACM, 45(3):451–
500, 1998.

12. L. Lamport. On interprocess communication. Distributed computing, 1(1):77–101, May 1986.
13. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on Programming

Languages and Systems, 4(3):382–401, July 1982.
14. D. Malkhi and M. Reiter. A high-throughput secure reliable multicast protocol. Journal of Computer Security,

5(2):113–127, 1997.
15. D. Malkhi and M. Reiter. Byzantine quorum systems. Distrib. Comput., 11(4):203–213, 1998.
16. D. Malkhi and M. K. Reiter. An architecture for survivable coordination in large distributed systems. IEEE

Transactions on Knowledge and Data Engineering, 12(2):187–202, 2000.
17. J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In Proceedings of the 16th International

Conference on Distributed Computing, pages 311–325. Springer-Verlag, 2002.
18. M. K. Reiter. Secure agreement protocols: reliable and atomic group multicast in rampart. In Proceedings of the

2nd ACM Conference on Computer and communications security, pages 68–80. ACM Press, 1994.
19. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryp-

tosystems. Communications of the ACM, 21(2):120–126, 1978.

21

