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ABSTRACT 
Large volume public comment campaigns and web portals that 
encourage the public to customize form letters produce many 
near-duplicate documents, which increases processing and storage 
costs, but is rarely a serious problem. A more serious concern is 
that form letter customizations can include substantive issues that 
agencies are likely to overlook. The identification of exact- and 
near-duplicate texts, and recognition of unique text within near-
duplicate documents, is an important component of data cleaning 
and integration processes for eRulemaking.  

This paper presents DURIAN (DUplicate Removal In lArge 
collectioN), a refinement of a prior near-duplicate detection 
algorithm  DURIAN uses a traditional bag-of-words document 
representation, document attributes ("metadata"), and document 
content structure to identify form letters and their edited copies in 
public comment collections.  Experimental results demonstrate 
that DURIAN is about as effective as human assessors.  The paper 
concludes by discussing challenges to moving near-duplicate 
detection into operational rulemaking environments. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval] Clustering, Query 
formulation, Retrieval models, Search process 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Duplicate detection, clustering, eRulemaking, public comments, 
information retrieval, text analysis 

1. INTRODUCTION 
U.S. law and standard regulatory practice requires U.S. regulatory 
agencies to give notice of a proposed rule and then respond to 
substantive comments from lobbyists, companies, trade 
organizations, special interest groups, and the general public 
before issuing a final regulation or rule [5][12][18]. When the 
comment volume is low, as is usually the case, this task is a minor 
burden.  However, a small number of high profile regulations can 
attract hundreds of thousands of comments, most of which are 
exact or near duplicate form letters [7][21].  Near duplicates are 
generated in large volume when an organization posts a form 
letter on a Web page that allows or encourages customization 
before submission.  For example, letters and email generated by 

MoveOn.org for a recent rule were characterized by two form 
letter sentences followed by text ranging in length from one 
sentence to, on a few rare occasions, many paragraphs.   

Currently, simple heuristics are used to manually identify the 
many copies of form letters. Often this work is conducted by 
consulting firms, rather than agency personnel.  Most form letter 
customizations express largely the same opinion in slightly 
different language [20], but occasionally customizations include 
substantive issues, which the agencies or their contractors are 
likely to overlook [19].  The automatic sorting of documents into 
exact and near duplicate categories, as well as the automatic 
identification of modified passages, could significantly lower the 
costs and risks involved in processing large volumes of public 
comments. 

One novel characteristic of near-duplicate detection for notice and 
comment rulemaking is that two comments may be considered 
near-duplicates even if they share a relatively small amount of 
text.  A public interest group may encourage people to personalize 
a form letter by appending their own text to text written by the 
interest group.  A regulatory agency would likely want these 
comments grouped together even though the amount of modified 
text varied greatly.   

Early research on duplicate detection was done mostly in the 
areas of databases, digital libraries, and electronic publishing. 
Recently, duplicate detection has been studied for web search 
tasks, for example, to give more effective and efficient web-
crawling, document ranking, and document archiving.  Duplicate 
detection techniques have been proposed that range from 
manually coded rules to applications of the latest machine 
learning techniques [1][2][6][10][14][15][17][22]. Their focus 
varies from providing high detection rates to minimizing the 
computational and storage resources.  Accuracy varies as well.  
For large collections, some techniques are too expensive 
computationally to be deployed in their full capacity.  Some 
algorithms are very efficient yet very brittle and sensitive to even 
small changes of the text. 

This paper proposes a similarity measure for duplicate detection 
that is based on Kullback-Leibler (KL) distance. It also 
investigates the use of clustering techniques to find near-duplicate 
documents. Data clustering is a popular approach for 
automatically grouping similar objects. In practice this discovery 
process should avoid redundancies with existing knowledge about 
groupings, and reveal novel, previously unknown aspects of the 
data. The technique proposed below uses instance-level clustering 
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constraints based on document attributes and the editing styles of 
near-duplicates:  Block Edit (add or delete several paragraphs), 
Key Block (contains one or more well-known paragraphs), Minor 
Change (small editing changes), Minor Change & Block Edit 
Combination, and Block Reordering (reorder known paragraphs).  
We show that an existing clustering algorithm can be modified to 
enforce these constraints.  

Our goal in this work is to greatly improve near-duplicate 
detection accuracy for notice and comment rulemaking as well as 
to maintain efficiency. Our methods are evaluated in experiments 
with subsets of a public comment database collected for a recent 
U.S. Environmental Protection Agency (EPA) rulemaking.  The 
experimental results show that system-human intercoder 
agreement is comparable to human-human intercoder agreement.   

The rest of the paper is organized as follows. Section 2 details our 
algorithm. Section 3 describes our evaluation methodology. 
Section 4 presents experimental results. Section 5 discusses the 
next steps along this research path, and concludes. 

2. ALGORITHM OVERVIEW 
Our goal is a software system that assists rule writers and other 
interested parties in understanding comments that U.S. regulatory 
agencies receive as part of notice and comment rulemaking.  The 
system should identify reference copies of form letters, modified 
copies of form letters (near-duplicates) and how they were 
modified, and unique comments.  The system should make 
decisions that are consistent with human assessments in this 
domain, which means that documents might be considered near-
duplicates even if they have only relatively small passages in 
common. Duplicate and near-duplicate detection for notice and 
comment rulemaking in the era of pervasive email and the Web 
has several characteristics that help define or constrain the 
problem. The sections below describe an algorithm that meets 
these requirements. 

2.1 Previous Algorithm 
An earlier version of our research [22] uses a two stage duplicate 
detection algorithm.  The first stage involves feature-based 
retrieval.  The second stage uses a single-pass clustering 
algorithm to group the near duplicates.  

The system starts with lexical preprocessing intended to 
normalize the representation of documents.  Document mark-up 
such as HTML tags and email headers are automatically removed.  
Metadata (email senders, relayers, and recipients; timestamps), 
address blocks, and signature blocks are recognized and tagged 
automatically, using simple, rule-based heuristics.  

Any comment that has more than 5 exact duplicates (after lexical 
preprocessing) is considered an instance of a form letter.  The 
copy with the earliest timestamp is the reference copy of the form 
letter.  Each reference copy becomes a seed document for the 
clustering algorithm.  Some documents that are not reference 
copies may be also become seeds later in the clustering process.  

The body text of each seed document is broken into chunks. 
Chunks are constrained to not cross paragraph boundaries.  The 
number of chunks created from a document is determined by a 
heuristic step function. The number of words in each chunk is:  

n
m

/lengthdocument  :otherwise
:Nlengthdocument  if >          (1) 

If a document contains more than N words, the size of each chunk 
is set to m words; if it contains fewer words, there will be at most 
n chunks within it. Thus the compression ratio is higher for longer 
documents and lower for short ones. In our system, we set N=200, 
m=40, n=8 empirically.  

The text chunks for a document are combined with metadata to 
form a Boolean query. A text search engine (the Lemur Toolkit1) 
is used to find candidate near-duplicate efficiently. We call this 
process feature-based document retrieval, because it combines 
substrings and features extracted during preprocessing (e.g., email 
senders, receivers, signatures, docket IDs, delivered dates, and 
email relayers). A query to Lemur looks like: “#AND ( 
docket.oar20020056 router.moveon #OR(“standards proposed 
by” “will harm thousands” “unborn children for” “coal plants 
should” “other cleaner alternative” “by 90 by” “with national 
standards”  “available pollution control”) )” 

After a set of candidate near-duplicates is retrieved, the similarity 
of each candidate to the seed document is measured, using KL-
divergence. Similar documents are placed into the seed 
document’s cluster.  A preliminary evaluation suggested that the 
algorithm was generally very effective [22]. 

2.2 Algorithm Refinement 
This section describes refinements to the algorithm described 
above.  The refinements include efficient detection of exact 
duplicates, a modified similarity measure, and a new clustering 
algorithm. 

2.2.1 Exact Duplicate Removal 
Exact duplicates are either unmodified copies of form letters or 
comments that someone accidentally submitted multiple times (a 
fairly common event).  They are usually a large proportion of 
most large public comment datasets.  The first refinement is to 
identify exact duplicates very efficiently.    

To identity exact duplicates, all white space is removed from the 
document, and all words in the document are converted into a 
long string of characters (a document string). A hash function is 
applied to the document string to create a (nearly) unique 
identifier for this particular document. This process is applied to 
all documents in the collection.  All documents resulting in the 
same hash value are considered exact duplicates.  

The hash function is the security hash function, SHA1 [16], 
suggested by NIST. It makes sure that the chance of hash value 
collision is very low and the whole process is secure. It is also 
designed to be very fast and is good for messages of any length. It 
is designed for text processing and is known for its even 
distribution of hash values. SHA1 produces a 20-byte (160-bit) 
hash value. By using a secure digest algorithm, it reduces the 
probability of two different token streams creating the same hash 
value to p( 1602 ). 

After hashing, there is a <hash-value, doccument id> tuple for 
each document.  Tuples are sorted by their hash values, then a 

                                                                 
1 http://www-2.cs.cmu.edu/~lemur/ 
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simple linear scan of the list is sufficient to identify documents 
that have identical hash values.  

Given a set of exact duplicates, an arbitrary choice determines 
which one to consider the reference copy – the seed document.  
Our system selects the document with the earliest timestamp to be 
the reference copy, annotates it with the number of exact 
duplicates, and retains it as a candidate for further study.  The rest 
are marked as exact duplicates and are eliminated from further 
consideration, although they remain available for reference 
purposes. 

2.2.2 Document Similarity Measure  
After a set of candidate near-duplicates is retrieved (Section 2.1), 
the similarity of each candidate to the cluster seed is measured. 
Our earlier work [22] used a modified version of KL divergence 
(relative entropy) to measure the similarity of near-duplicate 
documents.  It first selects a seed document, and then measures 
the similarity between it and every document in its candidate set. 
For any two documents da and db with word probability 
distributions pa and pb respectively, the KL divergence measure of 
the difference between the two probability distributions is: 
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j
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wpppKL

aj

∑
∈

=      (2) 

Since KL-divergence is non-negative and non-symmetric, [22] 
defines and uses the minimum value of two KL-divergences as 
the distance measure between two documents da and db: 

))||(),||(min(),( abbaba ppKLppKLdddist =     (3) 

One flaw in the prior algorithm is that words that appear in pa but 
not in pb are ignored in the calculation. Block Edits or Key Blocks, 
in which a large block of text is added to or deleted from a form 
letter, are common in this domain, so it is not unusual for a near-
duplicate and its reference copy to have unaligned vocabularies.  
A modification to the similarity measure solves this problem.  
Instead of assigning zero weights to an unseen word, it is more 
effective to give the word a probability proportional to its overall 
probability in a background language model. The KL distance in 
Equation (2) becomes: 
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The first term in Equation 4 depends on document distribution pa 
and hence is irrelevant to ranking other documents. It can be 
dropped and the KL divergence becomes: 
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dα is a coefficient for each unseen word’s probability (and also 
insures that all of the probabilities sum to one).  Hence the KL 
divergence becomes: 
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By Dirichlet prior smoothing [1], we have: 
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μ  is a parameter in Dirichlet smoothing and is set to 1 in this 
work. 

2.2.3 Incorporating Instance-level Constraints  
Near-duplicate detection proceeds more smoothly and efficiently 
when there are clues about which documents are duplicates.  In 
some duplicate-detection scenarios, files that have identical 
metadata, such as size, date, and base filename are likely to be 
copies kept on different directories or on different servers.  

Clustering algorithms seek to automatically discover underlying 
patterns in a dataset. Usually, a search is conducted through the 
space of possible organizations of the data, preferring those that 
group similar instances and keep dissimilar instances apart. If 
additional knowledge about the clustering is known beforehand, 
the clustering algorithm could be more effective and efficient 
since we can have pruning at the earlier stage.  For example, a 
user may indicate that a certain pair of documents in the dataset is 
judged to be similar and a certain other pair of documents is 
judged to arise from separate clusters. Techniques for introducing 
additional knowledge to perform constrained clustering have 
primarily focused on formulating and expressing the knowledge 
by instance-level constraints [23]. As described in [23] these 
constraints typically take the form of relations such as must-link 
and cannot-link that are enforced between pairs of instances. 

In a clustering approach to the problem of near duplicate 
detection, knowledge about the collection characteristics and 
document attributes can be used to compute instance-level 
constraints indicating that certain pairs of documents either must 
be, or cannot be in the same duplicate cluster.  

The must-link conditions include the complete containment of the 
seed document (key block), and minor change < 5% word 
coverage (minor change). The cannot-link condition is only 
includes for documents that have different email relayers or 
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docket ids. Note that instance-level constrained clustering is very 
flexible; as more background knowledge about the dataset is 
acquired, it can be added as new constraints. 

  

3. EVALUATION METHEDOLOGY 
Clustering and near-duplicate detection algorithms are difficult to 
evaluate because “ground truth” information is rarely available.  
This section describes the datasets used in our experiments, our 
evaluation metrics, and in particular our methodology for 
acquiring “ground truth” assessments. 

3.1 Data Sets  
Our research was conducted with a public comment dataset for 
the U.S. Environmental Protection Agency’s (EPA) proposed 
National Emission Standards For Hazardous Air Pollutants For 
Utility Air Toxics rule (USEPA-OAR-2002-0056, “Mercury 
rule”).  The dataset contains 536,975 email messages.  The 
algorithm successfully ran on the entire dataset.  

However, it is impractical to have human assessment on the entire 
dataset. To make the human assessment doable, two random 
samples of size 1.000 were generated as evaluation set. The exact 
duplicates were also removed and left 275 and 270 documents in 
what became known as the NTF (Name That Form) and NTF2 
subsets.  Table 1 provides statistics about these samples.  Section 
3.3 provides additional description of these datasets. 

3.2 Evaluation Metrics  
The accuracy of near-duplicate detection was measured using 
well-known evaluation metrics such as Precision, Recall and F1-

measure [22], and intercoder agreement metrics such as Cohen’s 
Kappa and AC1.  The experiments were designed to determine 
whether the system’s agreement with human assessors was 
comparable to agreement between two or more human assessors. 

Cohen’s Kappa: Cohen’s kappa statistic [4] is often used to 
evaluate clustering effectiveness. It assesses agreement between 
two sets of results or in another word, two coders. Therefore in 
our experiments, the intercoder agreements are always measured 
between two coders. The kappa coefficient is defined is: 

             κ = 
)(1

)()(
Ep

EpAp
−
−   (12) 

where p(A) is the observed agreement between the two 
assessments, a is the number of pairs in the same group in the 
ground truth and in the clustering (agreement), b is the number of 
pairs in the same group in the ground truth but different in the in 
the clustering (false negative), c is the number of pairs in the 
different groups in the ground truth but the same in the clustering 
(false positive), d is the number of pairs in the different groups in 
the ground truth and in the clustering (agreement).  p(A) can be 
calculated as (a+d)/m and m=a+b+c+d. p(E) is the agreement 
expected by chance, and is calculated as: 

    p(E) = 22 /))((/))(( mdccbmcaba +++++                 (13) 

AC1: Cohen’s kappa suffers from problems of bias and 
prevalence. If the agreement between assessors is high but skewed 
to a few categories, as is common in public comment datasets, the 
resulting kappa value cannot truly represent the degree of 
agreement [9]. AC1 corrects this problem and calculates the 
chance agreement in another way: 

p(E) = 2P1(1-P1) where P1 = ((a+b)+(a+c))/2m.          (14) 

Although kappa is not appropriate for our task, it is used often in 
prior research, so we report both kappa and AC1 values.  We 

A) Initialize the Duplicate Cluster Collection N: N←∅ and 
document collection B. 
B) Get the initial seed documents and pick one seed di  Note that 

the non-seed document will be examined in this process and if 
there is no cluster for it in the first pass, it will be used as seed 
in the next pass. 

C) Retrieve candidate set Si for seed document di, For each 
document sij ∈ Si,  

      a) if (sij,di) ∈Must,     
          add sij into duplicate cluster ndk: ndk  ndk ∪ {sij }                
      b)∀ cluster centroid dk in N,  if (sij,dk) ∈Must 
          add sij into duplicate cluster ndk: ndk  ndk ∪ {sij }                
      c) if dist(sij,di) < 

iθ   

         ∀ cluster centroid dk in N,   
             if dist(sij,di) > dist(sij,dk),  
                add sij into duplicate cluster ndk: ndk  ndk ∪ {sij }  
                unless(sij,dk) ∈Cannot 
              else if dist(sij,di) <= 

kmin (dist(sij,dk)) and di ∉  N ,  

                create a new cluster ndi, add it into N:N  N∪{ndi }, 
                add sij into ndi:ndi ndi∪{sij} unless ∃dl∈ndk, (sij,dl)      
                                                                                       ∈Must 

eliminate sij from ndk: ndk  ndk - {sij }, unless ∃dl∈ndk,   
                                                           (sij,dl) ∈Cannot 

E) If B =∅ , output N as the final set of duplicate clusters. 
Figure 1: Algorithm to form duplicate clusters 

Table 1: Sample Dataset Statistics 

Sample Set Name NTF NTF2 

Source 
USEPA-OAR-

2002-0056, 
“Mercury rule” 

USEPA-OAR-
2002-0056, 

“Mercury rule” 

# of documents originally 1000 1000 

# of documents after exact 
duplicates removal 275 270 

# of reference copies 
(document with > 5 exact 

duplicates) 
28 26 

average document length 
before removing 

header/signature lines 
220 213 

average document length 
after removing 

header/signature lines 
156 152 

# unique terms 3330 3437 
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believe that AC1 is a reliable measure for this task, thus we 
mainly rely on it to draw conclusions. 

3.3 Human Annotation Methodology 
The authors developed a manual annotation (coding) 
methodology to guide student annotators in identifying near-
duplicate public comments and unique texts.  The coding system 
was developed and deployed through an iterative process using 
coders at the University of Pittsburgh’s Qualitative Data Analysis 
Program (QDAP). The QDAP coders used ATLAS.ti, a 
commercial off-the-shelf qualitative data analysis application, to 
capture and report their annotations. 

3.3.1 Evolution of the Coding Scheme 
In its earliest iteration, during the spring of 2005, the current 
coding scheme was designed primarily to serve social science 
goals related to the project.  It contained 28 distinct sub-topic and 
discourse style codes, such as “Legal,” “Economic,“ “Public 
Health & Safety,” “Personal Experience,” and “Strength-High,” 
as well as a code for “Unique Text in a Form Letter.”  Five coders 
were trained to identify sub-paragraph and paragraph level 
instances of these codes in a random sample of 1,000 e-mails 
from a different dataset. The sample was divided to ensure a 
unique 2-coder overlap on 320 documents.  In addition, at the 
document level, the coders were expected to identify whether the 
document was an exact duplicate or a near duplicate. An example 
of this earliest coding scheme is shown in Figure 2. 
Analysis of the first round of coding revealed that many of the 
sub-topic and document-level codes were applied inconsistently.  
The overall measure of inter-rater reliability was extremely low.  
This necessitated further training sessions and a more thorough 
clarification of the coding heuristics.  After the retraining of the 
coders and returning them to review and correct their annotations, 
the F-measure of inter-rater reliability for all codes combined 
(including overlapping spans of text) remained low (0.53). While 
the coders were still struggling to consistently apply some of the 
amorphous and insufficiently defined subtopic codes, they 
showed promise identifying stakeholders (0.77) and unique text 
added to a form letter (0.89). The 28 subtopic codes required 
multiple passes by the coders on codes and clusters to correct the 
many errors of the first unwieldy round of coding. Altogether 
they looked at the initial set of texts 3 times and still produced 
generally unreliable coding. 

For the purpose of preparing this paper, a new coding approach 
was developed in mid-August 2005.  Using lessons from the first 

round, a second coding was specifically tailored to the needs of 
researchers developing and evaluating near-duplicate detection 
tools and federal agencies trying to manage large public comment 
campaigns.  In the modified coding scheme, a new sample of 
1,000 e-mails was selected and the exact duplicates were removed 
using the exact-duplicate detection algorithm described above 
(Section 2.2.1), leaving 275 documents in the NTF pool. 

In the first NTF round, coders were provided with a set of 28 
“known form letters", defined as comments that had 5 or more 
exact duplicates in the dataset.  Two coders were trained to apply 
a single code (Unique Text).  The NTF experiment also required 
the coders to associate each comment with one of the 28 known 
form letters, or to identify it as unique.  Three further document-
level labels were also used (“Block Edit,” “Minor Change,” and 
“Singleton”2).  The initial NTF round, with its narrow focus on 
coding for near-duplicate detection, predictably produced a high 
measure of inter-rater reliability (0.82) for the unique text code on 
the first pass, with no need to retrain the coders or redo the 
coding.  It also highlighted the need to better specify a precise 
rule set that more effectively defined the proper spans of text to 
be annotated. In the NTF round, one coder annotated almost 50% 
more text spans than the other. Note that the NTF rounds were 
completed with a single pass on clusters and a single pass on 
codes. Different from the previous 28 sub-topic coding scheme, 
which requires multiple annotation passes to reach a reasonable 
intercoder agreement, NTF round coding resulted in higher 
intercoder agreement at the first time. 

A review of the NTF coding raised the possibility that introducing 
a second code (“Signature”) might reduce the variance between 
the coders and produce a more accurate annotation for the code 
“Unique Text.”  The NTF2 round did result in high measures of 
reliability for both “Signature” (0.95) and “Unique Text” (0.87). 

By early November, a decision was made to repeat the coding of 
the NTF and NTF2 samples using a new set of six coders who had 
no prior NTF experience. Three of the six were new to coding in 
QDAP, having just completed their ATLAS.ti training, while the 
remaining three were relatively experienced and acted as mentors 
for the new coders. A more precisely specified rule set was 
generated and relayed to the experienced coders.  For both the 
new NTF and NTF2 rounds, two and four coders were used 
respectively.  Each of these experiments required coders to use a 
total of four codes, with the addition of “Header” and 
“Stakeholder” to “Unique Text” and “Signature.”  Both rounds 
offered unique insights into the techniques for training coders to 
produce reliable annotations. Moreover, as mentioned in the 
previous sections, to group duplicates into subcategories by the 
editing styles is a common strategy.  In the two datasets NTF and 
NTF2, human assessors identified the block added, block deleted, 
minor change, block rearrange and singleton document and 
“repeated copies”.  Note that “repeated copies” refers to a special 
situation where the form letters are repeated several times in the 
submitted public comments and the public comments contain only 
the repeated paragraphs.  

                                                                 
2 We call it singleton since it forms a cluster by itself alone in the 

clustering algorithm. 

P59:  029932.txt  ‐  59:1  [The  missuse  of  power  here  is 
incredible!!!! Doesnʹ..]  (5:5)   (Pitt2) 

Codes:  [Disappointment] [Economic] [Public Health & Safety] [Social 
Values] [Strength=High] [Unique Text in a Form Letter]  

No memos 

The missuse of power here  is  incredible!!!!   Doesnʹt  the 
welfare  of  our  children  come  first?    Enact  more 
regulations  for  big  business  and  keep  our  children 
safe!!!!!  There is no excuse for such blatant mishandling 
of this situation.. Act Now!!!!! 

Figure 2: Human Annotation Example 
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Figure 3 illustrates the impact of the coding scheme evolution and 
the improvement gained in the intercoder agreement, in particular, 
for the code of “unique text” only. The more precise coding 
scheme produces much higher and more intercoder agreements 
between human annotators.  
The latest NTF round produced the most reliable coding to date of 
any pair of QDAP coders working on any project.  As reported in 
Table 2 the F-measure for exact matches (0.91) and matches 
including overlapping text spans (0.98), suggest this is a gold 
standard for what two coders with a consistent, narrow and very 
precise rule set can accomplish. The NTF2 round (Table 3) also 
resulted in solid inter-rater-reliability coefficients, with an 
average F-measure of 0.90 across all four codes and coders.  

3.3.2 Training Effects 
Repeated rounds of coding for near-duplicates taught us 
something important about training effects in manual annotation.  
In new NTF2, experienced coders UCSUR 8 & 9 received 

instructions directly from the QDAP Director and then 
independently relayed them to UCSUR 15 & 17. This to say, 
UCSUR 8 trained 17 and 9 trained 15.  

As Table 3 shows, there is a pattern perhaps reflecting differences 
in how 8 trained 17 and 9 trained 15 to code “Unique Text” since 
the number of “unique text” found by coder 8 is close to 17’s 
while 9’s is closer to 15’s. It is interesting to study more the 
training effects among the coders. We conducted 4 intercoder 
agreements for each pair of the coders. They are: kappa (w/o 
overlap), which is the cohen’s kappa agreement of two coders for 
the texts that exact match; kappa, which is cohen’s kappa for the 
texts including partial match (a more Lenin evaluation), F-
measure (w/o overlap), which is the F-measure of two coders for 
the texts that exact match by using one coder as the ground truth 
and calculate the other one using traditional F-measure in 
information retrieval; F-measure, which is F-measure for the texts 
including partial. 
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Figure 3:  The Impact of Coding Scheme Evolution and Improvement on Intercoder Agreement for Unique Text 

sub-topic and discourse 
style codes, such as 
“Legal,” “Economic,“ and 
a code for “Unique Text”,  

w/ seed document known. 
“Block Edit”, “Minor 
Change”, “singleton”, 
“unique text”.  

w/ seed document known. 
“Block Edit”, “Minor 
Change”, “singleton”, “unique 
text”, “signature”.  

w/ seed document known. 
“Block Edit”, “Minor 
Change”, “singleton”, “unique 
text”, “signature”, “header”, 
“stakeholder”.  

w/ seed document known. 
“Block Added”, “Minor 
Change”, “Block deleted”, 
“Block rearrange”,  
“Repeated”, “singleton”, 
“unique text”, “signature”, 
“header”, “stakeholder”.  

Table 2: NTF Coding Results 

Code 
# 

found 
by 13 

# 
found 
by 16 

Kappa 

(w/o 
overlap) 

Kappa 

(w/ 
overlap) 

F-measure 

(w/o 
overlap) 

F-measure 
(w/overlap) 

Header 266 266 0.93 0.99 0.94 0.99 

Signatur
e 281 283 0.94 0.98 0.95 0.98 

Unique 
Text 218 220 0.86 0.96 0.86 0.96 

Total 798 799 0.92 0.98 0.91 0.98 
 

Table 3: NTF2 Coding Results with Training Effects 

Code # found 
by 8 

# found 
by 9 

# found 
by 15 

# found by 
17 

Avg F-
measure 

(w/o overlap) 

Avg F-
measure 

(w/overlap) 

Header 264 262 264 265 0.93 0.99 

Signature 276 281 275 277 0.91 0.96 

Unique 
Text 213 146 171 214 0.61 0.72 

Total 781 715 723 778 0.83 0.90 
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Figure 4 illustrates the possible presence of training effects on the 
coding of “header”, “signature” and “unique text”. We can see the 
most obvious effects on the “unique text”, where the pairings of 
coder 8 vs. 17 and coder 9 vs. 15 give the top two intercoder 
agreements among all four kinds of agreements. Interesting 
enough to notice that the intercoder agreements of coder 8 and 15 
are also higher than that of the two senior coders (8 and 9) who 
are directly trained by the QDAP Director. We are not sure 
whether it means that coder 15 actually understands the coding 
scheme best. However, we do use the annotation from coder 15 as 
a gold standard for the later duplicate detection tests.  

3.3.3 Duplicate Editing Styles 
In the latest runs, the subcategories of near-duplicates, or in other 
words, the editing styles of near-duplicates are considered as part 
of the coding scheme. It is interesting to see what makes up the 
near-duplicates.  It is also very important for us to study the 
effectiveness of the automatic near-duplicate detection algorithm 
on each subcategory. Figure 5 and Figure 6 show the duplicate 
editing style distribution for the NTF and NTF2 datasets. The 

annotations from coders UCSUR13 and UCSUR16 are used for 
NTF and annotations from coders UCSUR8, UCSUR9, 
UCSUR15 and UCSUR17 are used for NTF2. Based on the two 
figures, we have the following observations. 

• Block Added is the dominant editing style for people 
submitting public comments. Block Edit and Key Block both 
belong to this category. 

• Minor Change is the next major editing style for near-
duplicates in the public comment domain.  

• Singleton documents are unique comments not based on a 
form letter.  They could contain unique insights and 
opinions, derivative opinions, spam or viruses.  The amount 
of singleton documents in both datasets is reasonably large.  
These are of potentially of interest for social science 
research.  Another important source of possibly-unique 
opinions added to form letters (Block Added).  

• Note that for NTF2, two coders, UCSUR9 and UCSUR17 
considered that no documents belong to the “exact copy” 
category while the other two coders considered that there are 
at least 30+ documents in this category. This is an interesting 
disagreement that we cannot yet explain. 

 
Figure 4: Training Effects on Intercoder Agreements 
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Figure 5: Duplicate Editing Style Distribution in NTF 
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Figure 6: Duplicate Editing Style Distribution in NTF2 
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4. EXPERIMENTAL RESULTS 

4.1 System-to-Human Intercoder Agreement  
The first set of experiments explored the agreement between 
DURIAN and human assessors at identifying near-duplicate 
comments, unique passages in near-duplicate comments, and 
unique comments.  In these experiments DURIAN was considered 
another coder, and accuracy is measured using the intercoder 
agreement metrics discussed previously.  Experiments were 
conducted on the NTF and NTF2 datasets.  NTF has 28 form 
letters while NTF2 has 26.  

Usually intercoder agreement is calculated across all pairs of 
documents (micro-averaging).  However, it is also useful to 
measure intercoder agreement for each cluster and then to average 
over the number of clusters (macro-averaging).  Macro-averaging 
focuses on agreement on the large letter-writing campaigns, 
whereas micro-averaging gives a better measurement over the set 
of letter-writing campaigns. 

In the following tables, we use Coder A to represent UCSUR 13 
for NTF and UCSUR8 for NTF2; and Coder B to represent 
UCSUR 16 for NTF and UCSUR9 for NTF2.  We pair them this 
way because these are the best combinations of assessors in terms 
of intercoder agreement between humans.  They are the gold 
standard. 

Table 4: Duplicate Detection Intercoder Agreement 
 Averaged across all clusters Averaged across all pairs 

 Kappa(Cohen) 

NTF      NTF2 

AC1 

NTF   NTF2 

Kappa (Cohen) 

NTF      NTF2 

AC1 

NTF      NTF2 

Coder A/   
Coder B  

0.53       0.19 0.93   0.90 0.99      0.97 0.99      0.95 

Coder 
A/Program 

0.52       0.15 0.92    0.80 0.90      0.89 0.93     0.90 

Coder 
B/Program 

0.53        0.17 0.90    0.82 0.92      0.90 0.91     0.91 

 
Table 4 summarizes the first set of experimental results.  The 
macro-averaged Cohen’s kappa values are surprisingly low for 
both the human-to-human and program-to-human intercoder 
agreements. This is surprising because the agreement between 
coder A and B about whether a document belongs to a certain 
cluster is actually high in raw numbers, and there is prevalence in 
the agreement categories. The agreement about the number of 
documents in the same cluster is much higher than the agreement 
about the number of document not in the same cluster (i.e., a>>d 
in the kappa value calculation). This unbalanced distribution 
causes Cohen’s kappa to fail to represent the true agreement.  
The macro-averaged AC1 values are high.  Given that AC1 is a 
stable agreement measure even when prevalence and bias 
problems are present, we believe that this metric accurately 
reflects the degree of agreement between humans and DURIAN. 
In the pairwise comparison, Cohen’s kappa and AC1 both show 
high intercoder agreements. This is very desirable, however the 
result might be misleading. There are some very large letter 
writing campaigns in these datasets, which creates huge duplicate 
clusters. Huge clusters tend to dominate the final result of 
pairwise comparison since they have more pairs. Thus macro-
averaged AC1 is probably the best measure to use for evaluating 

the near-duplicate clustering. DURIAN’s agreement with human 
coders as about good as the agreement between pairs of humans.  
In addition to identifying near-duplicates and forming duplicate 
clusters, DURIAN is able to recognize header blocks, signature 
lines, and unique text in a public comments. We again use both 
Cohen’s kappa and AC1 as the evaluation metrics. Tables 5-7 
summarize the results.  

Table 5: Unique Text Intercoder Agreement  
 Kappa (Cohen) 

NTF      NTF2 

AC1 

NTF      NTF2 

Coder A/ Coder B  0.96     0.83 0.98      0.82 

Coder A/Program 0.80     0.76 0.86      0.74 

Coder B/Program 0.78     0.75     0.84      0.74     

 
Table 6: Header Detection Intercoder Agreement 

 Kappa (Cohen) 

NTF      NTF2 

AC1 

NTF      NTF2 

Coder A/ Coder B  0.99      0.99 0.99      0.99 

Coder A/Program 0.93      0.92 0.93      0.91 

Coder B/Program 0.93      0.92 0.93      0.91 

 
Table 7: Signature Line Detection Intercoder Agreement 

 Kappa (Cohen) 

NTF      NTF2 

AC1 

NTF      NTF2 

Coder A/ Coder B  0.98      0.97 0.99      0.97 

Coder A/Program 0.90      0.92 0.90      0.91 

Coder B/Program 0.90      0.90 0.90      0.89 

 
Unique text is the text a person added to a form letter; it might 
raise a substantive issue, so it requires agency review. The human 
assessors have a high agreement in NTF and a lower but still very 
good agreement on NTF2. However, the agreements of the 
program with both human assessors are lower, perhaps just above 
what we would consider acceptable. The human assessors only 
consider a major addition of text to the original form letter to be 
“unique text”. The program, however, is sensitive to changes 
varying from the large block changes to even small punctuation 
changes. Table 5 suggests that DURIAN might benefit from some 
tuning to be less sensitive to small changes that human coders 
consider trivial. 
As a preprocessing step, DURIAN’s header and signature 
detection algorithms were very effective. Although pleasing, this 
result may simply indicate that that public comments based on 
form letters mainly follow a formal letter-writing style that makes 
it easy to detect the header and signatures lines. 
Cohen’s Kappa and AC1 tend to agree about unique text, header 
and signature line detection accuracy.  Pairwise comparisons were 
used for Table 5-7 because cluster-based comparisons are less 
meaningful when evaluating header, signature, and unique text 
capabilities. The skewed distribution problem does not happen in 
this case, thus Cohen’s kappa is reliable.  
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4.2 Duplicate Detection Algorithms 
This paper presents DURIAN, a new near-duplicate detection 
algorithm designed for public comment datasets and notice and 
comment rulemaking tasks.  However, other algorithms also 
detect duplicate documents and might be applied to this task.  A 
set of experiments was conducted to evaluate several well-known 
duplicate-detection algorithms on the NTF and NTF2 datasets.  
The contenders are described below. 

Full fingerprinting (full): Every substring of size s in the 
documents are selected and hashed. s is set to 3 in our 
experiments. Every hash value (a fingerprint) is stored for the 
document in a form of <fingerprint, document id> tuple. Every 
substring will contributes one such tuple since every substring 
resulting one fingerprint. Therefore we have a huge list. The 
duplicate detection is performed by 1) sorting the tuples 
<fingerprint, document id>; 2) generating overlapping fingerprint 
records,  if a document with id =567 contains a fingerprint in the 
form letter, a tuple <567, 1> is generated; 3) counting the overlap 
fingerprint records for all documents, we get <document id, 
count>.  If the count of the overlap fingerprints in a document to 
the form letter is above 80%, it is considered as a duplicate.  

Shingling (DSC) [2]:  Every 5 overlapping substring of size s in 
the documents is selected and hashed. s is set to 3 again in our 
experiments. The hash values are stored for each document. 
Duplicate detection is performed in the same way as described in 
full fingerprinting. If the count of the overlap fingerprints in a 
document to form letter is above 80%, it is considered as a 
duplicate to form letter.  

I-Match [3]: The N words with the highest idf values in a 
document are selected, N is set to 30 in our experiments. Note that 
the top 5 idf words are ignored here since they might be some 
random mistakes such as misspellings. A single fingerprint is 
generated for each document. Duplicate detection is performed by 
sorting all <fingerprint, document id> tuples. Those documents 
agree with the fingerprint of the form letter, are selected as the 
(near) duplicates. 

Durian: The algorithm proposed in this paper.  

The parameters used in all the experiments for competing 
methods were tuned using parameter sweeps and/or the best 
values reported in other researcher’s work [10][6].   

In this experiment we assume that the form letters are known, and 
that the task is to identify the near-duplicates identified by the 
human coders UCSUR16 (NTF) and UCSUR15’s (NTF2).   In 
order to study the effectiveness of duplicate detection techniques 
on different duplicate categories, the detection results are further 
distributed into different duplicate categories.  The average 
precision, average recall, and average F1-measure for each 
category averaged for each form letter are reported here. 

Full fingerprinting was the most simple substring selection 
technique. It gave the largest possible set of fingerprints for a 
document.  Not surprisingly, it either gives the best or the second 
best F1 value in every category. Full finger printing is very 
effective, however it is also the most computationally expensive 
method. Since every substring is stored as a hash number, the 
effort of sorting a huge list of tuples is unavoidable. Both the 
storage and execution time is very costly.  

Durian consistently performs well on all the categories, 
occasionally beating the full fingerprint approach. However, the 
retrieval and detection time is much lower than for full 
fingerprinting.  
Two other techniques DSC and I-Match were not as effective as 
full fingerprinting and DURIAN. In general, DSC outperforms I-
Match. I-Match is very sensitive to both Block Added and Block 
Deleted. It is also very sensitive to Text Minor Change. When the 
changed words are critical, i.e., appear in the fingerprint that I-
Match selected, the algorithm fails to detect the near-duplicates. 
In general, I-Match produced fairly low Precision and the Recall. 
 

Table 8: Comparison of duplicate detection technologies 
Duplicate 
category 

Algorithm Avg Precision 

NTF   NTF2    

Avg  Recall 

NTF   NTF2    

Avg  F1 

NTF   NTF2    

Full  1           1 1           1 1          1 

DSC 0.97      0.98 0.98      0.98  0.97    0.98 

I-Match 0.91      0.9 0.8        0.75 0.85    0.82 

Exact 

DURIAN 1           1 1           1 1               1 

Full  0.95     0.95 0.95      0.95 0.95          0.95   

DSC 0.9        0.9 0.9        0.9 0.9            0.9 

I-Match 0.79       0.8 0.76      0.78 0.77          0.79  

Minor 
change  

DURIAN 0.95       0.95 1            1 0.98          0.97 

Full  0.97       0.98 0.98    0.98 0.98         0.98 

DSC 0.73       0.7 0.74    0.78 0.73        0.74 

I-Match 0.32      0.35  0.4      0.42 0.36        0.38 

Block 
Added 

DURIAN 0.98      0.98 0.98    0.98 0.98         0.98 

Full  0.9        0.9  0.9       1 0.98         0.95 

DSC 0.72      0.75  0.74     0.78 0.73        0.76 

I-Match 0.3        0.33 0.4        0.4 0.36        0.36 

Block 
Deleted 

DURIAN 0.98      0.98 0.98      0.98 0.98        0.98 

Full  0.9        0.9 0.9        0.9 0.93        0.9 

DSC 0.72      0.74 0.8        0.8 0.76       0.77 

I-Match 0.84     0.88 0.78      0.8   0.81       0.84 

Singleton  

DURIAN 0.94     0.94 0.94      0.94  0.94       0.94 

Full  1            1 1           1 1              1 

DSC 0.67      0.83 0.67     0.83 0.67        0.83 

I-Match 1           1 1           1 1              1 

Rearrange 

DURIAN 1           1 1           1 1             1 

 

5.  CONCLUSION AND NEXT STEPS 
U.S. regulatory agencies are required to solicit, consider, and 
respond to public comments before issuing regulations. Recently, 
the shift from paper to electronic public comments makes it much 
easier for individuals to customize form letters while harder for 
agencies to identify substantive information since there are many 
near-duplicate comments that express the same viewpoint in 
slightly different language. 

This research focused on the process of identifying near-
duplicates of form letters, and unique passages added to form 
letters.  An extensive study of human intercoder agreement on 
public comments provided by the Environmental Protection 
Agency set a baseline against which to evaluate automated 
techniques.  This paper demonstrates that statistical similarity 
measures and instance-level constrained clustering can be quite 
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effective for efficiently identifying near-duplicates.  In some tasks 
the algorithm is comparable to our best human assessors; in other 
tasks it is slightly less effective than our best assessors, but 
perhaps sufficiently effective for production use.  When the 
algorithm “fails”, it tends to do so by classifying a modified form 
letter as a unique comment, thus referring it for human review. 

The current study reports results against two samples of one 
corpus of public comments to the EPA.  We are currently at work 
on evaluation using another corpus provided by another agency.  
Additional experiments will provide greater insight into the 
strengths, weaknesses, and generality of the algorithm. 

Whether, how or when this type of technology will emerge as a 
factor in regulatory rulemaking is beyond the scope of this paper.  
Optimists may read this report as a bellwether signaling the 
imminent end of a temporarily vexing problem. Mass comment 
campaigns will be more manageable when tools such as ours 
make a successful technology transfer into the hands of agencies 
receiving the comments.  Furthermore, if agency personnel are so 
inclined, the addition of unique stakeholder views to mass 
comment campaigns will come into much greater focus with 
much less effort and expense.   
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