
 1

Next Steps in Near-Duplicate Detection for eRulemaking

Hui Yang
Language Technology Institute
School of Computer Science
Carnegie Mellon University

+1-412-268-4083
huiyang@cs.cmu.edu

Jamie Callan
Language Technology Institute
School of Computer Science
Carnegie Mellon University

+1-412-268-4525
callan@cs.cmu.edu

Stuart Shulman
Library and Information Science
School of Information Sciences

University of Pittsburgh
+1-412-624-3776

shulman@pitt.edu

ABSTRACT
Large volume public comment campaigns and web portals that
encourage the public to customize form letters produce many
near-duplicate documents, which increases processing and storage
costs, but is rarely a serious problem. A more serious concern is
that form letter customizations can include substantive issues that
agencies are likely to overlook. The identification of exact- and
near-duplicate texts, and recognition of unique text within near-
duplicate documents, is an important component of data cleaning
and integration processes for eRulemaking.

This paper presents DURIAN (DUplicate Removal In lArge
collectioN), a refinement of a prior near-duplicate detection
algorithm DURIAN uses a traditional bag-of-words document
representation, document attributes ("metadata"), and document
content structure to identify form letters and their edited copies in
public comment collections. Experimental results demonstrate
that DURIAN is about as effective as human assessors. The paper
concludes by discussing challenges to moving near-duplicate
detection into operational rulemaking environments.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval] Clustering, Query
formulation, Retrieval models, Search process

General Terms
Algorithms, Performance, Experimentation.

Keywords
Duplicate detection, clustering, eRulemaking, public comments,
information retrieval, text analysis

1. INTRODUCTION
U.S. law and standard regulatory practice requires U.S. regulatory
agencies to give notice of a proposed rule and then respond to
substantive comments from lobbyists, companies, trade
organizations, special interest groups, and the general public
before issuing a final regulation or rule [5][12][18]. When the
comment volume is low, as is usually the case, this task is a minor
burden. However, a small number of high profile regulations can
attract hundreds of thousands of comments, most of which are
exact or near duplicate form letters [7][21]. Near duplicates are
generated in large volume when an organization posts a form
letter on a Web page that allows or encourages customization
before submission. For example, letters and email generated by

MoveOn.org for a recent rule were characterized by two form
letter sentences followed by text ranging in length from one
sentence to, on a few rare occasions, many paragraphs.

Currently, simple heuristics are used to manually identify the
many copies of form letters. Often this work is conducted by
consulting firms, rather than agency personnel. Most form letter
customizations express largely the same opinion in slightly
different language [20], but occasionally customizations include
substantive issues, which the agencies or their contractors are
likely to overlook [19]. The automatic sorting of documents into
exact and near duplicate categories, as well as the automatic
identification of modified passages, could significantly lower the
costs and risks involved in processing large volumes of public
comments.

One novel characteristic of near-duplicate detection for notice and
comment rulemaking is that two comments may be considered
near-duplicates even if they share a relatively small amount of
text. A public interest group may encourage people to personalize
a form letter by appending their own text to text written by the
interest group. A regulatory agency would likely want these
comments grouped together even though the amount of modified
text varied greatly.

Early research on duplicate detection was done mostly in the
areas of databases, digital libraries, and electronic publishing.
Recently, duplicate detection has been studied for web search
tasks, for example, to give more effective and efficient web-
crawling, document ranking, and document archiving. Duplicate
detection techniques have been proposed that range from
manually coded rules to applications of the latest machine
learning techniques [1][2][6][10][14][15][17][22]. Their focus
varies from providing high detection rates to minimizing the
computational and storage resources. Accuracy varies as well.
For large collections, some techniques are too expensive
computationally to be deployed in their full capacity. Some
algorithms are very efficient yet very brittle and sensitive to even
small changes of the text.

This paper proposes a similarity measure for duplicate detection
that is based on Kullback-Leibler (KL) distance. It also
investigates the use of clustering techniques to find near-duplicate
documents. Data clustering is a popular approach for
automatically grouping similar objects. In practice this discovery
process should avoid redundancies with existing knowledge about
groupings, and reveal novel, previously unknown aspects of the
data. The technique proposed below uses instance-level clustering

 2

constraints based on document attributes and the editing styles of
near-duplicates: Block Edit (add or delete several paragraphs),
Key Block (contains one or more well-known paragraphs), Minor
Change (small editing changes), Minor Change & Block Edit
Combination, and Block Reordering (reorder known paragraphs).
We show that an existing clustering algorithm can be modified to
enforce these constraints.

Our goal in this work is to greatly improve near-duplicate
detection accuracy for notice and comment rulemaking as well as
to maintain efficiency. Our methods are evaluated in experiments
with subsets of a public comment database collected for a recent
U.S. Environmental Protection Agency (EPA) rulemaking. The
experimental results show that system-human intercoder
agreement is comparable to human-human intercoder agreement.

The rest of the paper is organized as follows. Section 2 details our
algorithm. Section 3 describes our evaluation methodology.
Section 4 presents experimental results. Section 5 discusses the
next steps along this research path, and concludes.

2. ALGORITHM OVERVIEW
Our goal is a software system that assists rule writers and other
interested parties in understanding comments that U.S. regulatory
agencies receive as part of notice and comment rulemaking. The
system should identify reference copies of form letters, modified
copies of form letters (near-duplicates) and how they were
modified, and unique comments. The system should make
decisions that are consistent with human assessments in this
domain, which means that documents might be considered near-
duplicates even if they have only relatively small passages in
common. Duplicate and near-duplicate detection for notice and
comment rulemaking in the era of pervasive email and the Web
has several characteristics that help define or constrain the
problem. The sections below describe an algorithm that meets
these requirements.

2.1 Previous Algorithm
An earlier version of our research [22] uses a two stage duplicate
detection algorithm. The first stage involves feature-based
retrieval. The second stage uses a single-pass clustering
algorithm to group the near duplicates.

The system starts with lexical preprocessing intended to
normalize the representation of documents. Document mark-up
such as HTML tags and email headers are automatically removed.
Metadata (email senders, relayers, and recipients; timestamps),
address blocks, and signature blocks are recognized and tagged
automatically, using simple, rule-based heuristics.

Any comment that has more than 5 exact duplicates (after lexical
preprocessing) is considered an instance of a form letter. The
copy with the earliest timestamp is the reference copy of the form
letter. Each reference copy becomes a seed document for the
clustering algorithm. Some documents that are not reference
copies may be also become seeds later in the clustering process.

The body text of each seed document is broken into chunks.
Chunks are constrained to not cross paragraph boundaries. The
number of chunks created from a document is determined by a
heuristic step function. The number of words in each chunk is:

n
m

/lengthdocument :otherwise
:Nlengthdocument if > (1)

If a document contains more than N words, the size of each chunk
is set to m words; if it contains fewer words, there will be at most
n chunks within it. Thus the compression ratio is higher for longer
documents and lower for short ones. In our system, we set N=200,
m=40, n=8 empirically.

The text chunks for a document are combined with metadata to
form a Boolean query. A text search engine (the Lemur Toolkit1)
is used to find candidate near-duplicate efficiently. We call this
process feature-based document retrieval, because it combines
substrings and features extracted during preprocessing (e.g., email
senders, receivers, signatures, docket IDs, delivered dates, and
email relayers). A query to Lemur looks like: “#AND (
docket.oar20020056 router.moveon #OR(“standards proposed
by” “will harm thousands” “unborn children for” “coal plants
should” “other cleaner alternative” “by 90 by” “with national
standards” “available pollution control”))”

After a set of candidate near-duplicates is retrieved, the similarity
of each candidate to the seed document is measured, using KL-
divergence. Similar documents are placed into the seed
document’s cluster. A preliminary evaluation suggested that the
algorithm was generally very effective [22].

2.2 Algorithm Refinement
This section describes refinements to the algorithm described
above. The refinements include efficient detection of exact
duplicates, a modified similarity measure, and a new clustering
algorithm.

2.2.1 Exact Duplicate Removal
Exact duplicates are either unmodified copies of form letters or
comments that someone accidentally submitted multiple times (a
fairly common event). They are usually a large proportion of
most large public comment datasets. The first refinement is to
identify exact duplicates very efficiently.

To identity exact duplicates, all white space is removed from the
document, and all words in the document are converted into a
long string of characters (a document string). A hash function is
applied to the document string to create a (nearly) unique
identifier for this particular document. This process is applied to
all documents in the collection. All documents resulting in the
same hash value are considered exact duplicates.

The hash function is the security hash function, SHA1 [16],
suggested by NIST. It makes sure that the chance of hash value
collision is very low and the whole process is secure. It is also
designed to be very fast and is good for messages of any length. It
is designed for text processing and is known for its even
distribution of hash values. SHA1 produces a 20-byte (160-bit)
hash value. By using a secure digest algorithm, it reduces the
probability of two different token streams creating the same hash
value to p(1602).

After hashing, there is a <hash-value, doccument id> tuple for
each document. Tuples are sorted by their hash values, then a

1 http://www-2.cs.cmu.edu/~lemur/

 3

simple linear scan of the list is sufficient to identify documents
that have identical hash values.

Given a set of exact duplicates, an arbitrary choice determines
which one to consider the reference copy – the seed document.
Our system selects the document with the earliest timestamp to be
the reference copy, annotates it with the number of exact
duplicates, and retains it as a candidate for further study. The rest
are marked as exact duplicates and are eliminated from further
consideration, although they remain available for reference
purposes.

2.2.2 Document Similarity Measure
After a set of candidate near-duplicates is retrieved (Section 2.1),
the similarity of each candidate to the cluster seed is measured.
Our earlier work [22] used a modified version of KL divergence
(relative entropy) to measure the similarity of near-duplicate
documents. It first selects a seed document, and then measures
the similarity between it and every document in its candidate set.
For any two documents da and db with word probability
distributions pa and pb respectively, the KL divergence measure of
the difference between the two probability distributions is:

)(
)(

log)()||(
jb

ja
j

dw
aba wp

wp
wpppKL

aj

∑
∈

= (2)

Since KL-divergence is non-negative and non-symmetric, [22]
defines and uses the minimum value of two KL-divergences as
the distance measure between two documents da and db:

))||(),||(min(),(abbaba ppKLppKLdddist = (3)

One flaw in the prior algorithm is that words that appear in pa but
not in pb are ignored in the calculation. Block Edits or Key Blocks,
in which a large block of text is added to or deleted from a form
letter, are common in this domain, so it is not unusual for a near-
duplicate and its reference copy to have unaligned vocabularies.
A modification to the similarity measure solves this problem.
Instead of assigning zero weights to an unseen word, it is more
effective to give the word a probability proportional to its overall
probability in a background language model. The KL distance in
Equation (2) becomes:

)(log)()(log)(

)(
)(

log)()||(

wpwpwpwp

wp
wp

wpppKL

b
w

aa
w

a

b

a

w
aba

∑∑
∑

−=

=
(4)

The first term in Equation 4 depends on document distribution pa
and hence is irrelevant to ranking other documents. It can be
dropped and the KL divergence becomes:

)(log)()||(wpwpppKL b
w

aba ∑−∝ (5)

where
⎩
⎨
⎧

=
 otherwise)|(

seen is wif)|(
)(

Cwp
dwp

wp
d

bs
b α

 (6)

dα is a coefficient for each unseen word’s probability (and also
insures that all of the probabilities sum to one). Hence the KL
divergence becomes:

 d
d

bs

dw
a Cwp

dwpwp
a

α
α

log
)|(
)|(log)(+− ∑

∈

 (7)

By Dirichlet prior smoothing [1], we have:

||
)|(),(

)|(
b

b
bs d

Cwpdwtf
dwp

+
+

=
μ

μ , (8)

|| b
d d+
=
μ

μα , (9)

)(wpa and)|(Cwp are estimated by maximum likelihood and

given by

∑ ∈

==

ai dw ai

aj
aja

dwtf

dwtf
dwpwp

),(

),(
)|()((10)

∑∑
∑

∈∈

∈=

jij

k

dw jiCd

Cd k

dwtf

dwtf
Cwp

),(

),(
)|((11)

μ is a parameter in Dirichlet smoothing and is set to 1 in this
work.

2.2.3 Incorporating Instance-level Constraints
Near-duplicate detection proceeds more smoothly and efficiently
when there are clues about which documents are duplicates. In
some duplicate-detection scenarios, files that have identical
metadata, such as size, date, and base filename are likely to be
copies kept on different directories or on different servers.

Clustering algorithms seek to automatically discover underlying
patterns in a dataset. Usually, a search is conducted through the
space of possible organizations of the data, preferring those that
group similar instances and keep dissimilar instances apart. If
additional knowledge about the clustering is known beforehand,
the clustering algorithm could be more effective and efficient
since we can have pruning at the earlier stage. For example, a
user may indicate that a certain pair of documents in the dataset is
judged to be similar and a certain other pair of documents is
judged to arise from separate clusters. Techniques for introducing
additional knowledge to perform constrained clustering have
primarily focused on formulating and expressing the knowledge
by instance-level constraints [23]. As described in [23] these
constraints typically take the form of relations such as must-link
and cannot-link that are enforced between pairs of instances.

In a clustering approach to the problem of near duplicate
detection, knowledge about the collection characteristics and
document attributes can be used to compute instance-level
constraints indicating that certain pairs of documents either must
be, or cannot be in the same duplicate cluster.

The must-link conditions include the complete containment of the
seed document (key block), and minor change < 5% word
coverage (minor change). The cannot-link condition is only
includes for documents that have different email relayers or

 4

docket ids. Note that instance-level constrained clustering is very
flexible; as more background knowledge about the dataset is
acquired, it can be added as new constraints.

3. EVALUATION METHEDOLOGY
Clustering and near-duplicate detection algorithms are difficult to
evaluate because “ground truth” information is rarely available.
This section describes the datasets used in our experiments, our
evaluation metrics, and in particular our methodology for
acquiring “ground truth” assessments.

3.1 Data Sets
Our research was conducted with a public comment dataset for
the U.S. Environmental Protection Agency’s (EPA) proposed
National Emission Standards For Hazardous Air Pollutants For
Utility Air Toxics rule (USEPA-OAR-2002-0056, “Mercury
rule”). The dataset contains 536,975 email messages. The
algorithm successfully ran on the entire dataset.

However, it is impractical to have human assessment on the entire
dataset. To make the human assessment doable, two random
samples of size 1.000 were generated as evaluation set. The exact
duplicates were also removed and left 275 and 270 documents in
what became known as the NTF (Name That Form) and NTF2
subsets. Table 1 provides statistics about these samples. Section
3.3 provides additional description of these datasets.

3.2 Evaluation Metrics
The accuracy of near-duplicate detection was measured using
well-known evaluation metrics such as Precision, Recall and F1-

measure [22], and intercoder agreement metrics such as Cohen’s
Kappa and AC1. The experiments were designed to determine
whether the system’s agreement with human assessors was
comparable to agreement between two or more human assessors.

Cohen’s Kappa: Cohen’s kappa statistic [4] is often used to
evaluate clustering effectiveness. It assesses agreement between
two sets of results or in another word, two coders. Therefore in
our experiments, the intercoder agreements are always measured
between two coders. The kappa coefficient is defined is:

 κ =
)(1

)()(
Ep

EpAp
−
− (12)

where p(A) is the observed agreement between the two
assessments, a is the number of pairs in the same group in the
ground truth and in the clustering (agreement), b is the number of
pairs in the same group in the ground truth but different in the in
the clustering (false negative), c is the number of pairs in the
different groups in the ground truth but the same in the clustering
(false positive), d is the number of pairs in the different groups in
the ground truth and in the clustering (agreement). p(A) can be
calculated as (a+d)/m and m=a+b+c+d. p(E) is the agreement
expected by chance, and is calculated as:

 p(E) = 22 /))((/))((mdccbmcaba +++++ (13)

AC1: Cohen’s kappa suffers from problems of bias and
prevalence. If the agreement between assessors is high but skewed
to a few categories, as is common in public comment datasets, the
resulting kappa value cannot truly represent the degree of
agreement [9]. AC1 corrects this problem and calculates the
chance agreement in another way:

p(E) = 2P1(1-P1) where P1 = ((a+b)+(a+c))/2m. (14)

Although kappa is not appropriate for our task, it is used often in
prior research, so we report both kappa and AC1 values. We

A) Initialize the Duplicate Cluster Collection N: N←∅ and
document collection B.
B) Get the initial seed documents and pick one seed di Note that

the non-seed document will be examined in this process and if
there is no cluster for it in the first pass, it will be used as seed
in the next pass.

C) Retrieve candidate set Si for seed document di, For each
document sij ∈ Si,

 a) if (sij,di) ∈Must,
 add sij into duplicate cluster ndk: ndk ndk ∪ {sij }
 b)∀ cluster centroid dk in N, if (sij,dk) ∈Must
 add sij into duplicate cluster ndk: ndk ndk ∪ {sij }
 c) if dist(sij,di) <

iθ

 ∀ cluster centroid dk in N,
 if dist(sij,di) > dist(sij,dk),
 add sij into duplicate cluster ndk: ndk ndk ∪ {sij }
 unless(sij,dk) ∈Cannot
 else if dist(sij,di) <=

kmin (dist(sij,dk)) and di ∉ N ,

 create a new cluster ndi, add it into N:N N∪{ndi },
 add sij into ndi:ndi ndi∪{sij} unless ∃dl∈ndk, (sij,dl)
 ∈Must

eliminate sij from ndk: ndk ndk - {sij }, unless ∃dl∈ndk,
 (sij,dl) ∈Cannot

E) If B =∅ , output N as the final set of duplicate clusters.
Figure 1: Algorithm to form duplicate clusters

Table 1: Sample Dataset Statistics

Sample Set Name NTF NTF2

Source
USEPA-OAR-

2002-0056,
“Mercury rule”

USEPA-OAR-
2002-0056,

“Mercury rule”

of documents originally 1000 1000

of documents after exact
duplicates removal 275 270

of reference copies
(document with > 5 exact

duplicates)
28 26

average document length
before removing

header/signature lines
220 213

average document length
after removing

header/signature lines
156 152

unique terms 3330 3437

 5

believe that AC1 is a reliable measure for this task, thus we
mainly rely on it to draw conclusions.

3.3 Human Annotation Methodology
The authors developed a manual annotation (coding)
methodology to guide student annotators in identifying near-
duplicate public comments and unique texts. The coding system
was developed and deployed through an iterative process using
coders at the University of Pittsburgh’s Qualitative Data Analysis
Program (QDAP). The QDAP coders used ATLAS.ti, a
commercial off-the-shelf qualitative data analysis application, to
capture and report their annotations.

3.3.1 Evolution of the Coding Scheme
In its earliest iteration, during the spring of 2005, the current
coding scheme was designed primarily to serve social science
goals related to the project. It contained 28 distinct sub-topic and
discourse style codes, such as “Legal,” “Economic,“ “Public
Health & Safety,” “Personal Experience,” and “Strength-High,”
as well as a code for “Unique Text in a Form Letter.” Five coders
were trained to identify sub-paragraph and paragraph level
instances of these codes in a random sample of 1,000 e-mails
from a different dataset. The sample was divided to ensure a
unique 2-coder overlap on 320 documents. In addition, at the
document level, the coders were expected to identify whether the
document was an exact duplicate or a near duplicate. An example
of this earliest coding scheme is shown in Figure 2.
Analysis of the first round of coding revealed that many of the
sub-topic and document-level codes were applied inconsistently.
The overall measure of inter-rater reliability was extremely low.
This necessitated further training sessions and a more thorough
clarification of the coding heuristics. After the retraining of the
coders and returning them to review and correct their annotations,
the F-measure of inter-rater reliability for all codes combined
(including overlapping spans of text) remained low (0.53). While
the coders were still struggling to consistently apply some of the
amorphous and insufficiently defined subtopic codes, they
showed promise identifying stakeholders (0.77) and unique text
added to a form letter (0.89). The 28 subtopic codes required
multiple passes by the coders on codes and clusters to correct the
many errors of the first unwieldy round of coding. Altogether
they looked at the initial set of texts 3 times and still produced
generally unreliable coding.

For the purpose of preparing this paper, a new coding approach
was developed in mid-August 2005. Using lessons from the first

round, a second coding was specifically tailored to the needs of
researchers developing and evaluating near-duplicate detection
tools and federal agencies trying to manage large public comment
campaigns. In the modified coding scheme, a new sample of
1,000 e-mails was selected and the exact duplicates were removed
using the exact-duplicate detection algorithm described above
(Section 2.2.1), leaving 275 documents in the NTF pool.

In the first NTF round, coders were provided with a set of 28
“known form letters", defined as comments that had 5 or more
exact duplicates in the dataset. Two coders were trained to apply
a single code (Unique Text). The NTF experiment also required
the coders to associate each comment with one of the 28 known
form letters, or to identify it as unique. Three further document-
level labels were also used (“Block Edit,” “Minor Change,” and
“Singleton”2). The initial NTF round, with its narrow focus on
coding for near-duplicate detection, predictably produced a high
measure of inter-rater reliability (0.82) for the unique text code on
the first pass, with no need to retrain the coders or redo the
coding. It also highlighted the need to better specify a precise
rule set that more effectively defined the proper spans of text to
be annotated. In the NTF round, one coder annotated almost 50%
more text spans than the other. Note that the NTF rounds were
completed with a single pass on clusters and a single pass on
codes. Different from the previous 28 sub-topic coding scheme,
which requires multiple annotation passes to reach a reasonable
intercoder agreement, NTF round coding resulted in higher
intercoder agreement at the first time.

A review of the NTF coding raised the possibility that introducing
a second code (“Signature”) might reduce the variance between
the coders and produce a more accurate annotation for the code
“Unique Text.” The NTF2 round did result in high measures of
reliability for both “Signature” (0.95) and “Unique Text” (0.87).

By early November, a decision was made to repeat the coding of
the NTF and NTF2 samples using a new set of six coders who had
no prior NTF experience. Three of the six were new to coding in
QDAP, having just completed their ATLAS.ti training, while the
remaining three were relatively experienced and acted as mentors
for the new coders. A more precisely specified rule set was
generated and relayed to the experienced coders. For both the
new NTF and NTF2 rounds, two and four coders were used
respectively. Each of these experiments required coders to use a
total of four codes, with the addition of “Header” and
“Stakeholder” to “Unique Text” and “Signature.” Both rounds
offered unique insights into the techniques for training coders to
produce reliable annotations. Moreover, as mentioned in the
previous sections, to group duplicates into subcategories by the
editing styles is a common strategy. In the two datasets NTF and
NTF2, human assessors identified the block added, block deleted,
minor change, block rearrange and singleton document and
“repeated copies”. Note that “repeated copies” refers to a special
situation where the form letters are repeated several times in the
submitted public comments and the public comments contain only
the repeated paragraphs.

2 We call it singleton since it forms a cluster by itself alone in the

clustering algorithm.

P59: 029932.txt ‐ 59:1 [The missuse of power here is
incredible!!!! Doesnʹ..] (5:5) (Pitt2)

Codes: [Disappointment] [Economic] [Public Health & Safety] [Social
Values] [Strength=High] [Unique Text in a Form Letter]

No memos

The missuse of power here is incredible!!!! Doesnʹt the
welfare of our children come first? Enact more
regulations for big business and keep our children
safe!!!!! There is no excuse for such blatant mishandling
of this situation.. Act Now!!!!!

Figure 2: Human Annotation Example

 6

Figure 3 illustrates the impact of the coding scheme evolution and
the improvement gained in the intercoder agreement, in particular,
for the code of “unique text” only. The more precise coding
scheme produces much higher and more intercoder agreements
between human annotators.
The latest NTF round produced the most reliable coding to date of
any pair of QDAP coders working on any project. As reported in
Table 2 the F-measure for exact matches (0.91) and matches
including overlapping text spans (0.98), suggest this is a gold
standard for what two coders with a consistent, narrow and very
precise rule set can accomplish. The NTF2 round (Table 3) also
resulted in solid inter-rater-reliability coefficients, with an
average F-measure of 0.90 across all four codes and coders.

3.3.2 Training Effects
Repeated rounds of coding for near-duplicates taught us
something important about training effects in manual annotation.
In new NTF2, experienced coders UCSUR 8 & 9 received

instructions directly from the QDAP Director and then
independently relayed them to UCSUR 15 & 17. This to say,
UCSUR 8 trained 17 and 9 trained 15.

As Table 3 shows, there is a pattern perhaps reflecting differences
in how 8 trained 17 and 9 trained 15 to code “Unique Text” since
the number of “unique text” found by coder 8 is close to 17’s
while 9’s is closer to 15’s. It is interesting to study more the
training effects among the coders. We conducted 4 intercoder
agreements for each pair of the coders. They are: kappa (w/o
overlap), which is the cohen’s kappa agreement of two coders for
the texts that exact match; kappa, which is cohen’s kappa for the
texts including partial match (a more Lenin evaluation), F-
measure (w/o overlap), which is the F-measure of two coders for
the texts that exact match by using one coder as the ground truth
and calculate the other one using traditional F-measure in
information retrieval; F-measure, which is F-measure for the texts
including partial.

Coding Scheme Impact on Intercoder Agreement

0

0.2

0.4

0.6

0.8

1

1.2

May-05 mid Aug 2005 Oct-05 early Nov 2005 Nov-05

Intercoder Agreement for Unique Text

Improvement %

Figure 3: The Impact of Coding Scheme Evolution and Improvement on Intercoder Agreement for Unique Text

sub-topic and discourse
style codes, such as
“Legal,” “Economic,“ and
a code for “Unique Text”,

w/ seed document known.
“Block Edit”, “Minor
Change”, “singleton”,
“unique text”.

w/ seed document known.
“Block Edit”, “Minor
Change”, “singleton”, “unique
text”, “signature”.

w/ seed document known.
“Block Edit”, “Minor
Change”, “singleton”, “unique
text”, “signature”, “header”,
“stakeholder”.

w/ seed document known.
“Block Added”, “Minor
Change”, “Block deleted”,
“Block rearrange”,
“Repeated”, “singleton”,
“unique text”, “signature”,
“header”, “stakeholder”.

Table 2: NTF Coding Results

Code

found
by 13

found
by 16

Kappa

(w/o
overlap)

Kappa

(w/
overlap)

F-measure

(w/o
overlap)

F-measure
(w/overlap)

Header 266 266 0.93 0.99 0.94 0.99

Signatur
e 281 283 0.94 0.98 0.95 0.98

Unique
Text 218 220 0.86 0.96 0.86 0.96

Total 798 799 0.92 0.98 0.91 0.98

Table 3: NTF2 Coding Results with Training Effects

Code # found
by 8

found
by 9

found
by 15

found by
17

Avg F-
measure

(w/o overlap)

Avg F-
measure

(w/overlap)

Header 264 262 264 265 0.93 0.99

Signature 276 281 275 277 0.91 0.96

Unique
Text 213 146 171 214 0.61 0.72

Total 781 715 723 778 0.83 0.90

 7

Figure 4 illustrates the possible presence of training effects on the
coding of “header”, “signature” and “unique text”. We can see the
most obvious effects on the “unique text”, where the pairings of
coder 8 vs. 17 and coder 9 vs. 15 give the top two intercoder
agreements among all four kinds of agreements. Interesting
enough to notice that the intercoder agreements of coder 8 and 15
are also higher than that of the two senior coders (8 and 9) who
are directly trained by the QDAP Director. We are not sure
whether it means that coder 15 actually understands the coding
scheme best. However, we do use the annotation from coder 15 as
a gold standard for the later duplicate detection tests.

3.3.3 Duplicate Editing Styles
In the latest runs, the subcategories of near-duplicates, or in other
words, the editing styles of near-duplicates are considered as part
of the coding scheme. It is interesting to see what makes up the
near-duplicates. It is also very important for us to study the
effectiveness of the automatic near-duplicate detection algorithm
on each subcategory. Figure 5 and Figure 6 show the duplicate
editing style distribution for the NTF and NTF2 datasets. The

annotations from coders UCSUR13 and UCSUR16 are used for
NTF and annotations from coders UCSUR8, UCSUR9,
UCSUR15 and UCSUR17 are used for NTF2. Based on the two
figures, we have the following observations.

• Block Added is the dominant editing style for people
submitting public comments. Block Edit and Key Block both
belong to this category.

• Minor Change is the next major editing style for near-
duplicates in the public comment domain.

• Singleton documents are unique comments not based on a
form letter. They could contain unique insights and
opinions, derivative opinions, spam or viruses. The amount
of singleton documents in both datasets is reasonably large.
These are of potentially of interest for social science
research. Another important source of possibly-unique
opinions added to form letters (Block Added).

• Note that for NTF2, two coders, UCSUR9 and UCSUR17
considered that no documents belong to the “exact copy”
category while the other two coders considered that there are
at least 30+ documents in this category. This is an interesting
disagreement that we cannot yet explain.

Figure 4: Training Effects on Intercoder Agreements

Duplicate Editing Style Distribution in NTF

0

20

40

60

80

100

120

140

160

Block
Added

(inc. BlkEdit
& KeyBlk)

Minor
Changes

Repeated Singleton Block
Deleted

(inc.
BlkEdit)

Rearrange

nu
m

be
r o

f d
oc

um
en

ts

Coder UCSUR13

Coder UCSUR16

Figure 5: Duplicate Editing Style Distribution in NTF

Duplicate Editing Style Distribution in NTF2

0

20

40

60

80

100

120

140

160

180

Block
Added (inc.
BlkEdit &
KeyBlk)

Minor
Changes

Repeated Block
Deleted

(inc.
BlkEdit)

Singleton Rearrange

nu
m

be
r

of
 d

oc
um

en
ts

coder UCSUR8
coder UCSUR9
coder UCSUR15
coder UCSUR17

Figure 6: Duplicate Editing Style Distribution in NTF2

 8

4. EXPERIMENTAL RESULTS

4.1 System-to-Human Intercoder Agreement
The first set of experiments explored the agreement between
DURIAN and human assessors at identifying near-duplicate
comments, unique passages in near-duplicate comments, and
unique comments. In these experiments DURIAN was considered
another coder, and accuracy is measured using the intercoder
agreement metrics discussed previously. Experiments were
conducted on the NTF and NTF2 datasets. NTF has 28 form
letters while NTF2 has 26.

Usually intercoder agreement is calculated across all pairs of
documents (micro-averaging). However, it is also useful to
measure intercoder agreement for each cluster and then to average
over the number of clusters (macro-averaging). Macro-averaging
focuses on agreement on the large letter-writing campaigns,
whereas micro-averaging gives a better measurement over the set
of letter-writing campaigns.

In the following tables, we use Coder A to represent UCSUR 13
for NTF and UCSUR8 for NTF2; and Coder B to represent
UCSUR 16 for NTF and UCSUR9 for NTF2. We pair them this
way because these are the best combinations of assessors in terms
of intercoder agreement between humans. They are the gold
standard.

Table 4: Duplicate Detection Intercoder Agreement
 Averaged across all clusters Averaged across all pairs

 Kappa(Cohen)

NTF NTF2

AC1

NTF NTF2

Kappa (Cohen)

NTF NTF2

AC1

NTF NTF2

Coder A/
Coder B

0.53 0.19 0.93 0.90 0.99 0.97 0.99 0.95

Coder
A/Program

0.52 0.15 0.92 0.80 0.90 0.89 0.93 0.90

Coder
B/Program

0.53 0.17 0.90 0.82 0.92 0.90 0.91 0.91

Table 4 summarizes the first set of experimental results. The
macro-averaged Cohen’s kappa values are surprisingly low for
both the human-to-human and program-to-human intercoder
agreements. This is surprising because the agreement between
coder A and B about whether a document belongs to a certain
cluster is actually high in raw numbers, and there is prevalence in
the agreement categories. The agreement about the number of
documents in the same cluster is much higher than the agreement
about the number of document not in the same cluster (i.e., a>>d
in the kappa value calculation). This unbalanced distribution
causes Cohen’s kappa to fail to represent the true agreement.
The macro-averaged AC1 values are high. Given that AC1 is a
stable agreement measure even when prevalence and bias
problems are present, we believe that this metric accurately
reflects the degree of agreement between humans and DURIAN.
In the pairwise comparison, Cohen’s kappa and AC1 both show
high intercoder agreements. This is very desirable, however the
result might be misleading. There are some very large letter
writing campaigns in these datasets, which creates huge duplicate
clusters. Huge clusters tend to dominate the final result of
pairwise comparison since they have more pairs. Thus macro-
averaged AC1 is probably the best measure to use for evaluating

the near-duplicate clustering. DURIAN’s agreement with human
coders as about good as the agreement between pairs of humans.
In addition to identifying near-duplicates and forming duplicate
clusters, DURIAN is able to recognize header blocks, signature
lines, and unique text in a public comments. We again use both
Cohen’s kappa and AC1 as the evaluation metrics. Tables 5-7
summarize the results.

Table 5: Unique Text Intercoder Agreement
 Kappa (Cohen)

NTF NTF2

AC1

NTF NTF2

Coder A/ Coder B 0.96 0.83 0.98 0.82

Coder A/Program 0.80 0.76 0.86 0.74

Coder B/Program 0.78 0.75 0.84 0.74

Table 6: Header Detection Intercoder Agreement

 Kappa (Cohen)

NTF NTF2

AC1

NTF NTF2

Coder A/ Coder B 0.99 0.99 0.99 0.99

Coder A/Program 0.93 0.92 0.93 0.91

Coder B/Program 0.93 0.92 0.93 0.91

Table 7: Signature Line Detection Intercoder Agreement

 Kappa (Cohen)

NTF NTF2

AC1

NTF NTF2

Coder A/ Coder B 0.98 0.97 0.99 0.97

Coder A/Program 0.90 0.92 0.90 0.91

Coder B/Program 0.90 0.90 0.90 0.89

Unique text is the text a person added to a form letter; it might
raise a substantive issue, so it requires agency review. The human
assessors have a high agreement in NTF and a lower but still very
good agreement on NTF2. However, the agreements of the
program with both human assessors are lower, perhaps just above
what we would consider acceptable. The human assessors only
consider a major addition of text to the original form letter to be
“unique text”. The program, however, is sensitive to changes
varying from the large block changes to even small punctuation
changes. Table 5 suggests that DURIAN might benefit from some
tuning to be less sensitive to small changes that human coders
consider trivial.
As a preprocessing step, DURIAN’s header and signature
detection algorithms were very effective. Although pleasing, this
result may simply indicate that that public comments based on
form letters mainly follow a formal letter-writing style that makes
it easy to detect the header and signatures lines.
Cohen’s Kappa and AC1 tend to agree about unique text, header
and signature line detection accuracy. Pairwise comparisons were
used for Table 5-7 because cluster-based comparisons are less
meaningful when evaluating header, signature, and unique text
capabilities. The skewed distribution problem does not happen in
this case, thus Cohen’s kappa is reliable.

 9

4.2 Duplicate Detection Algorithms
This paper presents DURIAN, a new near-duplicate detection
algorithm designed for public comment datasets and notice and
comment rulemaking tasks. However, other algorithms also
detect duplicate documents and might be applied to this task. A
set of experiments was conducted to evaluate several well-known
duplicate-detection algorithms on the NTF and NTF2 datasets.
The contenders are described below.

Full fingerprinting (full): Every substring of size s in the
documents are selected and hashed. s is set to 3 in our
experiments. Every hash value (a fingerprint) is stored for the
document in a form of <fingerprint, document id> tuple. Every
substring will contributes one such tuple since every substring
resulting one fingerprint. Therefore we have a huge list. The
duplicate detection is performed by 1) sorting the tuples
<fingerprint, document id>; 2) generating overlapping fingerprint
records, if a document with id =567 contains a fingerprint in the
form letter, a tuple <567, 1> is generated; 3) counting the overlap
fingerprint records for all documents, we get <document id,
count>. If the count of the overlap fingerprints in a document to
the form letter is above 80%, it is considered as a duplicate.

Shingling (DSC) [2]: Every 5 overlapping substring of size s in
the documents is selected and hashed. s is set to 3 again in our
experiments. The hash values are stored for each document.
Duplicate detection is performed in the same way as described in
full fingerprinting. If the count of the overlap fingerprints in a
document to form letter is above 80%, it is considered as a
duplicate to form letter.

I-Match [3]: The N words with the highest idf values in a
document are selected, N is set to 30 in our experiments. Note that
the top 5 idf words are ignored here since they might be some
random mistakes such as misspellings. A single fingerprint is
generated for each document. Duplicate detection is performed by
sorting all <fingerprint, document id> tuples. Those documents
agree with the fingerprint of the form letter, are selected as the
(near) duplicates.

Durian: The algorithm proposed in this paper.

The parameters used in all the experiments for competing
methods were tuned using parameter sweeps and/or the best
values reported in other researcher’s work [10][6].

In this experiment we assume that the form letters are known, and
that the task is to identify the near-duplicates identified by the
human coders UCSUR16 (NTF) and UCSUR15’s (NTF2). In
order to study the effectiveness of duplicate detection techniques
on different duplicate categories, the detection results are further
distributed into different duplicate categories. The average
precision, average recall, and average F1-measure for each
category averaged for each form letter are reported here.

Full fingerprinting was the most simple substring selection
technique. It gave the largest possible set of fingerprints for a
document. Not surprisingly, it either gives the best or the second
best F1 value in every category. Full finger printing is very
effective, however it is also the most computationally expensive
method. Since every substring is stored as a hash number, the
effort of sorting a huge list of tuples is unavoidable. Both the
storage and execution time is very costly.

Durian consistently performs well on all the categories,
occasionally beating the full fingerprint approach. However, the
retrieval and detection time is much lower than for full
fingerprinting.
Two other techniques DSC and I-Match were not as effective as
full fingerprinting and DURIAN. In general, DSC outperforms I-
Match. I-Match is very sensitive to both Block Added and Block
Deleted. It is also very sensitive to Text Minor Change. When the
changed words are critical, i.e., appear in the fingerprint that I-
Match selected, the algorithm fails to detect the near-duplicates.
In general, I-Match produced fairly low Precision and the Recall.

Table 8: Comparison of duplicate detection technologies
Duplicate
category

Algorithm Avg Precision

NTF NTF2

Avg Recall

NTF NTF2

Avg F1

NTF NTF2

Full 1 1 1 1 1 1

DSC 0.97 0.98 0.98 0.98 0.97 0.98

I-Match 0.91 0.9 0.8 0.75 0.85 0.82

Exact

DURIAN 1 1 1 1 1 1

Full 0.95 0.95 0.95 0.95 0.95 0.95

DSC 0.9 0.9 0.9 0.9 0.9 0.9

I-Match 0.79 0.8 0.76 0.78 0.77 0.79

Minor
change

DURIAN 0.95 0.95 1 1 0.98 0.97

Full 0.97 0.98 0.98 0.98 0.98 0.98

DSC 0.73 0.7 0.74 0.78 0.73 0.74

I-Match 0.32 0.35 0.4 0.42 0.36 0.38

Block
Added

DURIAN 0.98 0.98 0.98 0.98 0.98 0.98

Full 0.9 0.9 0.9 1 0.98 0.95

DSC 0.72 0.75 0.74 0.78 0.73 0.76

I-Match 0.3 0.33 0.4 0.4 0.36 0.36

Block
Deleted

DURIAN 0.98 0.98 0.98 0.98 0.98 0.98

Full 0.9 0.9 0.9 0.9 0.93 0.9

DSC 0.72 0.74 0.8 0.8 0.76 0.77

I-Match 0.84 0.88 0.78 0.8 0.81 0.84

Singleton

DURIAN 0.94 0.94 0.94 0.94 0.94 0.94

Full 1 1 1 1 1 1

DSC 0.67 0.83 0.67 0.83 0.67 0.83

I-Match 1 1 1 1 1 1

Rearrange

DURIAN 1 1 1 1 1 1

5. CONCLUSION AND NEXT STEPS
U.S. regulatory agencies are required to solicit, consider, and
respond to public comments before issuing regulations. Recently,
the shift from paper to electronic public comments makes it much
easier for individuals to customize form letters while harder for
agencies to identify substantive information since there are many
near-duplicate comments that express the same viewpoint in
slightly different language.

This research focused on the process of identifying near-
duplicates of form letters, and unique passages added to form
letters. An extensive study of human intercoder agreement on
public comments provided by the Environmental Protection
Agency set a baseline against which to evaluate automated
techniques. This paper demonstrates that statistical similarity
measures and instance-level constrained clustering can be quite

 10

effective for efficiently identifying near-duplicates. In some tasks
the algorithm is comparable to our best human assessors; in other
tasks it is slightly less effective than our best assessors, but
perhaps sufficiently effective for production use. When the
algorithm “fails”, it tends to do so by classifying a modified form
letter as a unique comment, thus referring it for human review.

The current study reports results against two samples of one
corpus of public comments to the EPA. We are currently at work
on evaluation using another corpus provided by another agency.
Additional experiments will provide greater insight into the
strengths, weaknesses, and generality of the algorithm.

Whether, how or when this type of technology will emerge as a
factor in regulatory rulemaking is beyond the scope of this paper.
Optimists may read this report as a bellwether signaling the
imminent end of a temporarily vexing problem. Mass comment
campaigns will be more manageable when tools such as ours
make a successful technology transfer into the hands of agencies
receiving the comments. Furthermore, if agency personnel are so
inclined, the addition of unique stakeholder views to mass
comment campaigns will come into much greater focus with
much less effort and expense.

ACKNOWLEDGMENTS
We are grateful to the USDA, US DOT, and US EPA for
providing the public comment data that made this research
possible. This research was supported by NSF grants EIA-
0327979 and IIS-0429102. Any opinions, findings, conclusions,
or recommendations expressed in this paper are the authors’, and
do not necessarily reflect those of the sponsor. We are also
grateful to invaluable comments from the anonymous reviewers.

6. REFERENCES
[1] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection

mechanisms for digital documents. In Proceedings of the
Special Interest Group on Management of Data (SIGMOD
1995), pages 398–409. ACM Press, May 1995.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In Proceedings of WWW6
’97, pages 391–404. Elsevier Science, April 1997.

[3] A. Chowdhury. O. Frieder, D. Grossman, and M. McCabe.
Collection statistics for fast Duplicate document detection. In
ACM Transactions on Information Systems (TOIS), Volume
20, Issue 2, 2002.

[4] J. Cohen. A coefficient of agreement for nominal scales.
Educational and Psychological Measurement, 20, 37-46,
1960.

[5] C. Coglianese, E-Rulemaking: Information Technology and
the Regulatory Process. Administrative Law Review 56(2):
353-402. 2004.

[6] J. Conrad and C. P. Schriber. Online duplicate document
detection: signature reliability in a dynamic retrieval
environment. Proceedings of the twelfth international
conference on Information and knowledge management,
Pages: 443 - 452 New Orleans, LA, USA, 2003.

[7] F. Emery and A. Emery, A Modest Proposal: Improve E-
Rulemaking by Improving Comments. Administrative and
Regulatory Law News, 31(1): 8-9. 2005.

[8] Government Accountability Office. Electronic Rulemaking:
Progress Made in Developing a Centralized E-Rulemaking
System. GAO-05-777, 2005.

[9] K. Gwet. Kappa Statistic is not Satisfactory for Assessing the
Extent of Agreement between Raters. Statistical Methods for
Inter-rater Reliability Assessment, No.1, April 2002.

[10] T. Hoad and J. Zobel. Methods for identifying versioned and
plagiarized documents. In Journal of the American Society
or Information Science and Technology, Volume 54, Issue 3,
2003.

[11] C.M. Kerwin, Rulemaking: How Government Agencies
Write Law and Make Policy 3rd Ed. CQ Press, Washington,
DC, 2003.

[12] G.T. Lau, K.H. Law, and G. Wiederhold,. A Relatedness
Analysis Tool for Comparing Drafted Regulations and
Associated Public Comments. I/S 1(1): 95-110. 2005.

[13] J.S. Lubbers, A Guide to Federal Agency Rulemaking. Third
Edition. Chicago, ABA, 1998.

[14] U. Manber. Finding similar files in a large file system. In
1994 Winter USENIX Technical Conference, pages 1-10,
San Francisco, CA, January 1994.

[15] D. Metzler, Y. Bernstein and W. Bruce Croft. Similarity
Measures for Tracking Information Flow, Proceedings of the
fourteenth international conference on Information and
knowledge management, CIKM’05, October 31.November 5,
2005, Bremen, Germany.

[16] NIST, “Secure Hash Standard”, Federal Information
Processing Standards Publication 180-1, 1995.

[17] N. Shivakumar and H. Garcia-Molina. SCAM: a copy
detection mechanism for digital documents. In Proc.
International Conference on Theory and Practice of Digital
Libraries, Austin, Texas, June 1995.

[18] S. Shulman, L. Thrane, and M.C. Shelley. eRulemaking, in
G. David Garson (Ed.) The Handbook of Public Information
Systems 2nd Ed. CRC Press, Boca Raton, FL, 2005, 237-
254.

[19] S.W. Shulman, E-Rulemaking: Issues in Current Research
and Practice. International Journal of Public Administration
28: 621-641. 2005.

[20] S.W. Shulman, The Internet Still Might (But Probably
Won’t) Change Everything. I/S 1(1): 111-145. 2005.

[21] S.W. Shulman, An Experiment in Digital Government at the
U.S. National Organic Program. Agriculture and Human
Values 20(3): 253-265, 2003.

[22] H. Yang and J. Callan. Near-Duplicate Detection for
eRulemaking. In Proceedings of the 5th National Conference
on Digital Government Research (DG.O2005), Atlanta, GA,
USA, 15-18 May 2005.

[23] K, Wagstaff and C, Cardie, 2000. Clustering with instance-
level constraints. In Proceedings of ICML-2000. pp. 1103–
1110. Palo Alto, CA.

[24] C. Zhai and Lafferty, J. (2001b). A study of smoothing
methods for language models applied to ad hoc information
retrieval. In Proceedings of SIGIR 2001, pages 334-342.

