
~r1~ ~ ~ L ~ i ~

http://crossmark.crossref.org/dialog/?doi=10.1145%2F114669.114679&domain=pdf&date_stamp=1991-09-01

J A M E S R . A L L A R D
L O W E L L B . H A W K I H S O N

2 is a real-time expert system development and delivery operations) can have very complex
environment for applications in manufacturing, pro- behaviors. By utilizing declarations
cess control, financial trading, telecommunications, about types, C o m m o n Lisp corn-
telemetry, environmental monitoring, and wherever pilers can emit machine-instruction
the monitoring of real-time data is required. It inte- arithmetic operations. Optimizing
grates a significant number of software technologies, operations based on declarations
such as object-oriented programming, rule-based applies to other operations within
reasoning, procedure execution, pseudo-parallel task Common Lisp as well.
execution, window systems, animated graphics, struc- Thelast topic concerns techniques
tured natural language, network services, and real-time for reducing the size of applications
data collection and management facilities, in Common Lisp. By default, all

G2 is written in a subset of Common Lisp, ti~cilities of Common Lisp are carried
and runs in Ilve different Common Lisp implementations on into final program images, unless
14 different hardware platforms. Though C o m m o n Lisp would not be an s o m e t h i n g special is done to
obvious choice to most engineers as a real-time programming environment, eliminate them. All major commer-
we feel we have benefitted greatly from its use. Common Lisp is generally cial implementations of C o m m o n
accepted as a powerful language for implementing artificial intelligence (AI) Lisp now provide some means of
and symbolic processing programs. Other advantages for us were its powerful omitting unused facilities of the
extensions, the strong development and debugging environments available language from final program images.
in Common Lisp implementations, the ease with which compilers and inter-
preters can be written, and the quality of the Common Lisp standard itself. Memory Management
We have found that the different implementations of Common Lisp have very The issues of memory management
few variations, making it relatively easy for us to port our products to a broad for object-oriented programs like G2
range of platforms, are similar to those of any program

Within the AI software marketplace, several criticisms have been made that creates and recycles large
in recent years against Common Lisp as a practical language for delivering numbers of data structures of vary-
commercial software products. Programs written in Common Lisp have been ing sizes. In typical C o m m o n Lisp
criticized as slow, unpredictable in response due to "garbage collection," programs, memory management is
overly large (due to the many built-in facilities), and difficult to integrate with handled automatically by a memory
other software. Common Lisp does have a large number of facilities, many reclamation facility known as the
of which are not available in other widely used languages. This presents users garbage collector (see [1]). We have
of Common Lisp with a large design space and many choices to make re- found the performance character-
garding which approach is best for a particular problem. We believe that istics of garbage collection to be
undesirable program characteristics such as those mentioned are the conse- unsuitable for real-time applications,
quences of particular programming styles made possible by the large design due to the interruptions of normal
space, rather than inherent failings of C o m m o n Lisp itself. In fact, by re- processing and/or the space/time
stricting oneself to a subset of Common Lisp, it is possible to write code that overhead involved. Therefore, in us-
is isomorphic to code written in more standard languages, such as C. Then, ing Common Lisp for such applica-
by using the power of C o m m o n Lisp to go beyond what can be expressed at tions, we have chosen to manage
the level of C, one can achieve higher quality, easier maintenance, and even memory explicit ly--much as one
more efficient software for demanding real-time applications, would in conventional languages.

This article discusses four techniques for programming real-time applica- In p r o g r a m s which m a n a g e
tions in Common Lisp. The first is memory management in real-time memory explicitly, ab lockofmemory
environments. We have found that garbage collection imposed an unaccep- called the heap is set aside for dynami-
table level of overhead for real-time applications. Therefore, we have writ- cally created data structures. When
ten our software to avoid doing garbage collection at run time. Instead, we it is necessary to allocate a new
explictly manage all data structures, as would be done in more standard instance of a data structure, memory
languages, is set aside from the heap and a

The second topic is macros in Common Lisp. Rather than a source text pointer to this block of memory is
replacement facility, Common Lisp macros are true programs that execute returned to the program. When the
at macro expansion time. This powerful capability is used throughout our instance of the data structure is no
code to implement abstractions of complex control structures, object-oriented longer needed, the program returns
programming facilities, and type-specific arithmetic. Achieving comparable the allocated memory back to the
power in most other languages requires preprocessors that perform transfor- memory management facility for
mations before source files are compiled by the standard compiler for that reuse. This is called freeing the
language, memory. Blocks of freed memory of

The third topic is type declarations to support compile-time optimizations, similar sizes are kept in separate
Many of the primitive operations of Common Lisp (even the basic arithmetic resource pools. When an allocation

COMMUNICATIONI OF THE ACM/Z-'ptember 1991/Vol.34, No.9 6S

of a new data structure is made
which requires a block of memory of
the same size as a block which had
previously been freed, then a pointer
is returned to this block of memory
instead of allocating a new block
from the heap.

Explicit memory management is
a burden to programmers. Garbage
collection in Common Lisp frees
programmers from this burden.
Programmers can confidently build
data structures that arbitrarily
share subparts, contain circular ref-
erences, and are generally interwo-
ven into arbitrarily complex graph
structures. When such data struc-
tures are no longer needed, a pro-
grammer need not decompose and
individually reclaim each piece.
Pointers to entire collections of data
structures may be simply dropped,
with confidence that garbage col-
lection will eventually reclaim all
memory associated with those
structures.

However, this feature carries a
cost. Garbage collection takes time,
typically added as an overhead to
the Common Lisp functions that
create new heap-allocated data
structures. When an allocation
function is called that requires
more memory than is available in
the heap, garbage collection is trig-
gered to attempt to reclaim mem-
ory that is no longer being used.

Garbage collection techniques
have been developed that are real-
time with respect to the total size of
the heap. They achieve this by per-
forming small, incremental
amounts of the garbage collection
work while allocating structures
(see [2, 3, 4]). All of these tech-
niques., however, even the so-called
"ephemeral" ones, still have execu-
tion time dependencies on the size
of scanned data structures.

All ,Common Lisp garbage collec-
tors determine which heap-allo-
cated data structures are still in use
by scanning used data structures

for pointers to other data struc-
tures, starting from a root set of
pointers including global variables
and stack frames. The referenced
data structures are scanned in turn.
In this way, every data structure
still in use will be scanned. (Ephem-
eral techniques optimize this pro-
cess by limiting scanning to the
most recently created data struc-
tures, but the process of scanning
for these structures does not
change.)

The smallest amount of incre-
mental work that these techniques
perform is scanning one Common
Lisp object. The largest possible
objects in Common Lisp environ-
ments are vectors. Common Lisp
requires that implementations be
able to allocate vectors at least 1,024
elements long, though typically
implementations allow vectors that
are much longer. Therefore, even
though the defined techniques are
real-time with respect to the size of
the heap, they still have execution
time dependencies on the sizes of
the heap-allocated data structures,
and these data structures can be
quite large.

In any case, garbage collectors on
non-Lisp machine hardware still do
not, as far as we are aware, use in-
cremental algorithms. Interrup-
tions of normal program execution
for garbage collection in the best
implementations can still last for
hundreds of milliseconds in typical
situations, and tens of seconds in
worst cases.

This is unacceptable for our real-
time needs, so we have written G2
to avoid invoking the garbage col-
lector. We accomplish this by always
retaining pointers to allocated ob-
jects, by allocating recycled data
structures instead of allocating new
ones, by avoiding or reimplement-
ing Common Lisp facilities that
implicitly create garbage, and by
using objects created with dynamic
extent (defined later) where we

could not avoid new object instan-
tiations. By managing memory in
this way, we never exhaust the
heap, and therefore do not trigger
execution of the garbage collector.

There were some facilities in
Common Lisp whose services we
required, but whose use implied the
creation of data structures which
could only be reclaimed through
garbage collection. The file input
and output routines were examples
of such facilities. We have
reimplemented all such facilities--
sometimes by writing the underly-
ing primitives for the facility in C
and then linking that code back into
our Common Lisp programs. Lisp
interfaces are then written to these
primitives that mimic the interfaces
to the Common Lisp facilities, thus
allowing us to use familiar tools
while achieving garbage-free exe-
cution.

When programmers first become
acquainted with Common Lisp,
they are often surprised to learn
that it may represent floating-point
numbers and large integers as
heap-allocated structures. In Com-
mon Lisp the type of any datum can
be determined at run time from the
datum itself. With the exception of
the immediate representation of
some integers (typically those that
fit within a 30-bit two's-complement
representation) and characters, and
optimizations based on type decla-
rations, all objects in Common Lisp
are represented as heap-allocated
data structures which contain a
field for a type descriptor as well as
fields for the data contained within
that object.

The only Common Lisp objects
for which we could not always con-
trol or avoid allocation were
floating-point numbers and large
integers ("bignums"). For these we
have used a tool similar to the dy-
namic extent declaration defined
within the draft ANSI standard for
Common Lisp described in [6].

We have chosen to manage
66 September 1991/Vo1.34, No,9/COMMUNICATIONS OF THE ACM

Objects in Common Lisp usually
have indefinite extent, which
means they persist until the gar-
bage collector can prove they are
inaccessible. Dynamic extent is a
declaration that the lifetime of the
object that is the initial value of a
variable is limited to the lifetime of
that variable. Common Lisp imple-
mentations typically optimize the
dynamic extent declaration by allo-
cating the initial value object on the
stack. When the function contain-
ing the declaration returns, the
memory for the object is reclaimed.

Our code actually uses an alloca-
tion technique whereby objects are
created within temporary areas of
memory. We have defined a special
form that establishes a region of
code within which objects can be
allocated from the heap. On exit
from that region of code, any ob-
jects that were created are immedi-
ately reclaimed. Within this region
of code, we say objects are created
within the temporary area, and the
region itself is loosely refer red to as
a " temporary region." This style of
reclamation allows us to use func-
tions that create and re turn heap-
allocated data s t ruc tures- -such as
floating-point n u m b e r s - - a s their
results. Many Common Lisp func-
tions that re turn numeric results
operate in this fashion. Structures
that have been created within a
temporary area can be examined
anywhere within the temporary
region, as well as anywhere within
any functions called from the tem-
porary region. I f we want to retain
anything created within the tempo-
rary region, we must copy it into a
non temporary data structure.

Tempora ry areas are typically
implemented as a memory alloca-
tion heap whose allocation pointer
is saved on entrance to the region
and restored on exit. This is not a
def ined feature of Common Lisp,
but we have obtained it as an exten-
sion to the implementat ions we use.

I t is often assumed that software
written in Common Lisp entails use
of a garbage collector. It is our view
that a garbage-creat ing program-
ming style is what entails use of a
garbage collector.

Macros
The macro facility of Common Lisp
is uniquely powerful, for two rea-
sons. First, Common Lisp programs
are represented, before compila-
tion, as list structures that can be
readily decomposed and trans-
formed. Second, macros are de-
fined as functions that can per form
arbi t rary computat ions to produce
their expansions.

While macros in most languages
are tools for per forming textual
replacements in source code, Com-
mon Lisp macros are allowed to
pe r fo rm more than mere textual
substitutions. They are true pro-
grams. The i r arguments are the
parsed source code from the call
sites. These arguments may be in-
spected, tested, decomposed, and
in general manipula ted in arbi trary
ways by the macro-expanding func-
tion. The result of a macro execu-
tion is parsed code that replaces the
macro call, and macro expansion is
a t tempted again on this form. This
can be repeated an arbi trary num-
ber of times, as long as the expan-
sion eventually terminates. Since all
of this execution occurs at compile
time, use of macros imposes no
run-t ime penalty.

Articles about Common Lisp
often praise the representat ion o f
code as data, stating that the ability
to create new functions at run time
is its major benefit. However, we
feel that a more impor tant benefit
comes from generat ing code at
compile t i m e - - w h e n the generated
p rogram code can still be compiled
into efficient machine code.

Highly efficient implementat ions
of data-abstracted operat ions can
be achieved using Common Lisp

memory explicitly

macros. In fact, Common Lisp mac-
ros make it practical to choose very
complicated "multiple-case" imple-
mentations of data abstractions to
handle special cases more effi-
ciently.

A characteristic of some program
facilities is that they per form differ-
ent actions based on a control argu-
ment. In some cases, the actions
called for by a control a rgument
can be accomplished very quickly.
Also, the acttzal parameters for
these facilities are sometimes con-
stants in the call sites. In our sys-
tem, we have written many macros
of this sort. Such macros examine
their control argument , and if the
a rgument is a constant, specific
code for the selected operat ion is
re turned as the expansion of the
macro. Often, jus t the data type of
the control a rgument is needed to
de termine what the actual selected
operat ion will b e - - a g a i n allowing
compile time determinat ion of the
appropr ia te dispatching code. I f a
constant value or data type is not
available for the control argument ,
then, as its expansion, the macro
re turns code that will dispatch on
the control a rgument at run time.

I f the dispatch can be optimized
and the selected code is small, the
re turned macro expansion can con-
tain operat ions that happen com-
pletely in line within the calling
function. In languages that are not
able to conditionalize macro expan-
sions based on their arguments , dis-
patching is typically carried out at
run time. For often-used facilities
within inner- loop code, compile-
time dispatching provides an im-
por tant type of optimization.

Another impor tant use o f mac-
ros within our code is an implemen-
tation device for large-scale facili-
ties. Macros are used as code
generators that define elements of
these large-scale facilities in terms
of smaller components.

For example, the protocol hand-

COMMUNICATIONS OF THE ACM/Septernber 1991/Vol.34, No.9 6 7

lers for our networking tools are
def ined in this manner . Each kind
of message handled within our pro-
tocol is def ined in a separate call to
a protocol definit ion macro. This
macro expands into definitions of
several fiJnctions and macros which
implement the message handlers. I t
also expands into operat ions that
register the names of these gener-
ated functions and macros in a data
structure which is fur ther used in
our message handler dispatch func-
tion.

By organizing our implementa-
tion of message handlers into this
abstraction, we have been able to
implement them separately, but
have provided an efficient, central-
ized dispatcher and automated reg-
istration of the handlers as a side
effect of their definition. Most of
the large facilities within our system
have been built using similar con-
structs, all made possible by the
strong macros of Common Lisp.

To achieve p rogrammer-de f ined
utilities of the same power in other
languages usually requires the
building of preprocessors that must
parse source code files, pe r fo rm
their t ransformations, and then
emit fur ther text source files for
compilation. Implementa t ion of
these preprocessors can in itself be
a significant p rogramming effort.
In our view, the presence of a
ready-made facility of this sort in
Common Lisp is a dist inguishing
feature of the language.

Type Declarations for
Compile-Time Optimizations
Many Common Lisp operat ions are
written to accept many different
data types, dispatching to the spe-
cific code upon run-t ime determi-
nation of the actual type.

Numeric operat ions in Common
Lisp are def ined so that, for exam-
ple, the "+" function takes an arbi-
t rary number of arguments , where
each a rgument can be of any type.
The "+" function combines the
arguments , using type contagion at
run time to de te rmine the type of
the re,;ult. Common Lisp has often
been criticized for this generality

because addi t ion pe r fo rmed in this
way is slow, compared to the type-
specific machine instructions that
implement addition.

The inefficiency of general oper-
ations has been addressed in Com-
mon Lisp by the inclusion of type
declarations. Type-declared arith-
metic can be compiled into direct
machine instructions whose perfor-
mance is equivalent to that achieved
within other languages. Common
Lisp provides two means of provid-
ing type informat ion to the com-
piler. The first is th rough declara-
tions associated with variables. The
second technique is th rough the
special form 'THE' . By wrapping
this form a round another form, the
type of the result of the wrapped
form can be declared. T h rough the
use of macros, we have built tools
for using type-declared ari thmetic
th roughout G2, using the 'THE '
special form.

This approach to type declara-
tions has given Common Lisp pro-
g rammers an option that would not
otherwise be available. In most lan-
guages, type declarations are re-
qui red for the p rogram to be com-
piled at all. I f Common Lisp
p rogrammers want numeric opera-
tions to be executed as machine in-
structions, then they must provide
type declarations, in one form or
another . I f numeric processing
speed is not a pr imary concern
within a piece of code, then the dec-
larations may be left out, and the
p rog ra mme r is relieved of the bur-
den of type declaration.

The technique of optimization
th rough compile-t ime use of type
declarations can be broadly appl ied
in Common Lisp, though in our
code we have used it mostly for
numeric operat ions, array refer-
ences, and dispatching to functions
stored in arrays.

Program-Size Reduction
for Application Delivery
Common Lisp is a large language.
It would be a remarkable p rogram
indeed which could justifiably use
all of Common Lisp's facilities.
Most programs, even complex

ones, use only a fraction of what is
available. In many other languages,
commonly needed facilities are
provided as libraries that may op-
tionally be loaded into programs.
In Common Lisp, all facilities are
def ined in the envi ronment by de-
fault. Typical implementat ions re-
quire several megabytes of memory
to hold the code associated with
these facilities.

Early versions of Common Lisp
systems required that all facilities
remain available in final p rogram
images, even if they were not used
by the application. This meant that
even the simplest "Hello, world"
programs would consume signifi-
cant amounts o f memory.

Utilities now exist within most
Common Lisp implementat ions
that can eliminate unused facilities
from the environment . However,
Common Lisp still differs from
other languages, in that typically
something special must be done to
remove facilities f rom the final
image, ra ther than to include them.
These are often called tree shakers.

The implication is that a p rogram is
the root of a tree and all utilities not
used with (or somehow associated
with) that tree are "shaken out" of
the p rogram before the final image
is generated.

Another technique is to use C as
an under ly ing implementat ion
layer. Common Lisp source files are
translated into C source files. The
kernel facilities of Common Lisp
are implemented as C libraries.
When the translated C files are
l inked against the libraries of ker-
nel functionality, only those utilities
that are used are l inked into the
final p rogram image.

Conclusions
Historically, Lisp has been the lan-
guage of choice for bui lding sophis-
ticated exper t systems, and with
good reason. Its broad set of built-
in tools, its powerful macros, and its
flexibility when writing numeric
operat ions greatly improve pro-
g ramming productivity.

By using the memory manage-
ment and other techniques de-

~ September 1991/Vol.34, No.9/COMMUNICATIONS OF THE ACM

scribed, we have been able to take
advantage of C o m m o n Lisp's pow-
erful p r o g r a m m i n g e n v i r o n m e n t to
realize efficient, real- t ime applica-
tions. (See [5] for a discussion of
"soft real-t ime" applicat ions for
which G2 is part icularly well suited
and of a Space Shuttle mon i to r ing
application. Also see Rocky
Stewart 's s idehar in this issue de-
scribing an applicat ion at Biosphere
II.)

Use of these techniques on stan-
da rd hardware pla t forms has only
become practical in recent years, as
sophisticated implementa t ions of
C o m m o n Lisp have become com-
mercially available on those plat-
forms. By strictly cont ro l l ing the
styles of p r o g r a m m i n g used within
the language, we have been able to
use C o m m o n Lisp as a practical lan-
guage for large real- t ime applica-
tion deve lopmen t a n d del ivery.[~1

References
1. Abelson, H., and Sussman, G.J., with

Sussman, J. Structure and Interpreta-
tion of Computer Programs. The MIT
Press, Cambridge, Mass., 1985, 491-
503.

2. Baker, H.G. List processing in real
time on a serial computer. Commun.
ACM 21, 4 (Apr. 1978), 280-294.

3. Lieberman, H., and Hewitt, C. A
real-time garbage collector based on
the lifetimes of objects. Commun.
ACM 26, 6 (June, 1983), 419-429.

4. Moon, D.A. Garbage collection in a
large lisp system. In Conference Record
of the 1984 ACM Symposium on Lisp
and Functional Programming (Austin,
Tex., Aug. 6-8). ACM, N.Y., pp.
235-246.

5. Muratore, J.F., Heindel, T.A., Mur-
phy, T.B., Rasmussen, A.N., and
McFarland, R.Z. Acquisition as mis-
sion control. Commun. ACM 33, 4
(Dec. 1990), 19-31.

6. Steele, G.L. Jr. Common Lisp: The Lan-
guage, Second Edition, Digital Press,
Bedford, Mass., 1990, 232-236.

Categories and Subject Descriptors:
D3.3 [Programming Languages]: Lan-
guage Constructs and Features--
Dynamic storage management; 1.2.5 [Arti-
ficial Intelligence]: Programming Lan-
guages and Software--Expert system tools
and techniques

General Terms: Design, Languages,
Performance

Additional Key Words and Phrases:
Garbage collection, Lisp, macros, real-
time programming, type declaration

About the Authors:
JAMES R. ALLARD is manager of lan-
guages, interpreters, and compilers of
Gensym Corporation. His research in-
terests include the design and imple-
mentation of languages for the repre-
sentation, simulation, and monitoring
of dynamic systems.

LOWELL B. HAWKINSON is chair
and CEO of Gensym Corporation. His
research interests include expert sys-
tems, distributed on-line system archi-

tecture, and natural languages.
Authors' Present Address: Gensym

Corporation, 125 CambridgePark Dr.,
Cambridge, MA 02140. Email: jra@
gensym.com, lh@gensym.com.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/91/0900-064 $1.50

B i o s p h e r e 2
N e r v e S y s t e m

iosphere 2 (Earth being
Biosphere 1)is an experi-

m • ment in closed system i i
ecology. It is a steel and

glass structure about the size of three
football fields and has a volume of
more than three million cubic feet. The
purpose of the project is to demon-
strate the viability of materially closed
ecosystems--a sort of bioregenerative
life support system--where water, air,
and food are recycled. Later this year,
eight people, called Biospherians, will
be sealed inside Biosphere 2 for two
years with only power and information
being exchanged with the outside. A
major part of this project is an expert
system-based environmental control
and monitoring system called the
"Nerve System.'"

The ecosystems of Biosphere 2 are
varied and complex. There are seven
distinct biomes including a 30-foot-
deep ocean, complete with waves,
tides, and a coral reef including a rain
forest with a 50-ft. mountain, water-
falls, and clouds. There is also a desert,
marshland, savannah, an intensive agri-
cultural biome where most of the food
will be grown, and a habitat where the
Biospherians will live during the experi-
ment. Several thousand species of
plants, animals, and insects will live in
these biomes.

Due to the complexity of these eco-

systems, a sophisticated and reliable
control and monitoring system is re-
quired to ensure the success and
safetY of both the ecosystems and the
Biospherians. To fulfill this require-
ment, a Nerve System consisting of a
broad-band network, several bIP9000
work stations, and a control and moni-
toring hierarchy of expert systems was
developed using G2, a Lisp-based, real-
time, object-oriented expert system
development environment from Gen-
sym Corporation.

After several available traditional
control systems were reviewed, G2 was
chosen for the project because of its
ease of use and its high degree of inte-
gration between rules, objects, and
graphical displays. Also, G2 rules are in-
terruptible, thus allowing the devel-
oper to control data acquisition and
response times. Controlling the heat-
ing, ventilation and air-conditioning
(HVAC) systems of Biosphere 2 is a tYpi-
cal real-time control problem. In the
past, Lisp would not have been consid-
ered a candidate to solve this problem
due to response time limitations im-
posed by garbage collection. G2, how-
ever, is carefully designed to eliminate
the garbage collection of Lisp, thus
reducing the chance of a delayed reac-
tion at a critical moment,

The architecture of the nerve system
consists of five major levels:

C O M M U N I C A T I O N S O F T H E ACM/Scptember 1991/VoL34, No.9 6 9

