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J A M E S  R .  A L L A R D  
L O W E L L  B .  H A W K I H S O N  

2 is a real-time expert system development and delivery operations) can have very complex 
environment for applications in manufacturing, pro- behaviors. By utilizing declarations 
cess control, financial trading, telecommunications, about types, C o m m o n  Lisp corn- 
telemetry, environmental monitoring, and wherever pilers can emit machine-instruction 
the monitoring of real-time data is required. It inte- arithmetic operations. Optimizing 
grates a significant number  of software technologies, operations based on declarations 
such as object-oriented programming, rule-based applies to other operations within 
reasoning, procedure execution, pseudo-parallel task Common  Lisp as well. 
execution, window systems, animated graphics, struc- Thelast topic concerns techniques 
tured natural language, network services, and real-time for reducing the size of applications 
data collection and management  facilities, in Common  Lisp. By default, all 

G2 is written in a subset of Common  Lisp, ti~cilities of Common Lisp are carried 
and runs in Ilve different Common  Lisp implementations on into final program images, unless 
14 different hardware platforms. Though C o m m o n  Lisp would not be an s o m e t h i n g  special  is done  to 
obvious choice to most engineers as a real-time programming environment, eliminate them. All major commer- 
we feel we have benefitted greatly from its use. Common  Lisp is generally cial implementations of C o m m o n  
accepted as a powerful language for implementing artificial intelligence (AI) Lisp now provide some means of 
and symbolic processing programs. Other advantages for us were its powerful omitting unused facilities of the 
extensions, the strong development and debugging environments available language from final program images. 
in Common Lisp implementations, the ease with which compilers and inter- 
preters can be written, and the quality of the Common  Lisp standard itself. Memory Management 
We have found that the different implementations of Common Lisp have very The issues of memory management  
few variations, making it relatively easy for us to port our products to a broad for object-oriented programs like G2 
range of platforms, are similar to those of any program 

Within the AI software marketplace, several criticisms have been made that creates and recycles large 
in recent years against Common  Lisp as a practical language for delivering numbers of data structures of vary- 
commercial software products. Programs written in Common Lisp have been ing sizes. In typical C o m m o n  Lisp 
criticized as slow, unpredictable in response due to "garbage collection," programs, memory management  is 
overly large (due to the many built-in facilities), and difficult to integrate with handled automatically by a memory 
other software. Common  Lisp does have a large number  of facilities, many reclamation facility known as the 
of which are not available in other widely used languages. This presents users garbage collector (see [1]). We have 
of Common  Lisp with a large design space and many choices to make re- found the performance character- 
garding which approach is best for a particular problem. We believe that istics of garbage collection to be 
undesirable program characteristics such as those mentioned are the conse- unsuitable for real-time applications, 
quences of particular programming styles made possible by the large design due to the interruptions of normal 
space, rather than inherent failings of C o m m o n  Lisp itself. In fact, by re- processing and/or the space/time 
stricting oneself to a subset of Common  Lisp, it is possible to write code that overhead involved. Therefore, in us- 
is isomorphic to code written in more standard languages, such as C. Then, ing Common  Lisp for such applica- 
by using the power of C o m m o n  Lisp to go beyond what can be expressed at tions, we have chosen to manage 
the level of C, one can achieve higher quality, easier maintenance, and even memory explicit ly--much as one 
more efficient software for demanding real-time applications, would in conventional languages. 

This article discusses four techniques for programming real-time applica- In  p r o g r a m s  which  m a n a g e  
tions in Common  Lisp. The first is memory management  in real-time memory explicitly, ab lockofmemory 
environments. We have found that garbage collection imposed an unaccep- called the heap is set aside for dynami- 
table level of overhead for real-time applications. Therefore, we have writ- cally created data structures. When 
ten our software to avoid doing garbage collection at run time. Instead, we it is necessary to allocate a new 
explictly manage all data structures, as would be done in more standard instance of a data structure, memory 
languages, is set aside from the heap and a 

The second topic is macros in Common  Lisp. Rather than a source text pointer to this block of memory is 
replacement facility, Common  Lisp macros are true programs that execute returned to the program. When the 
at macro expansion time. This powerful capability is used throughout our instance of the data structure is no 
code to implement abstractions of complex control structures, object-oriented longer needed, the program returns 
programming facilities, and type-specific arithmetic. Achieving comparable the allocated memory back to the 
power in most other languages requires preprocessors that perform transfor- memory management  facility for 
mations before source files are compiled by the standard compiler for that reuse. This is called freeing the 
language, memory. Blocks of freed memory of 

The third topic is type declarations to support compile-time optimizations, similar sizes are kept in separate 
Many of the primitive operations of Common Lisp (even the basic arithmetic resource pools. When an allocation 
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of a new data structure is made 
which requires a block of memory of 
the same size as a block which had 
previously been freed, then a pointer 
is returned to this block of memory 
instead of allocating a new block 
from the heap. 

Explicit memory management  is 
a burden to programmers.  Garbage 
collection in Common Lisp frees 
programmers  from this burden. 
Programmers can confidently build 
data structures that arbitrarily 
share subparts, contain circular ref- 
erences, and are generally interwo- 
ven into arbitrarily complex graph 
structures. When such data struc- 
tures are no longer needed, a pro- 
grammer need not decompose and 
individually reclaim each piece. 
Pointers to entire collections of  data 
structures may be simply dropped,  
with confidence that garbage col- 
lection will eventually reclaim all 
memory associated with those 
structures. 

However, this feature carries a 
cost. Garbage collection takes time, 
typically added as an overhead to 
the Common Lisp functions that 
create new heap-allocated data 
structures. When an allocation 
function is called that requires 
more memory than is available in 
the heap, garbage collection is trig- 
gered to attempt to reclaim mem- 
ory that is no longer being used. 

Garbage collection techniques 
have been developed that are real- 
time with respect to the total size of  
the heap. They achieve this by per- 
forming small, incremental 
amounts of  the garbage collection 
work while allocating structures 
(see [2, 3, 4]). All of  these tech- 
niques., however, even the so-called 
"ephemeral" ones, still have execu- 
tion time dependencies on the size 
of  scanned data structures. 

All ,Common Lisp garbage collec- 
tors determine which heap-allo- 
cated data structures are still in use 
by scanning used data structures 

for pointers to other data struc- 
tures, starting from a root set of  
pointers including global variables 
and stack frames. The referenced 
data structures are scanned in turn. 
In this way, every data structure 
still in use will be scanned. (Ephem- 
eral techniques optimize this pro- 
cess by limiting scanning to the 
most recently created data struc- 
tures, but the process of  scanning 
for these structures does not 
change.) 

The  smallest amount  of  incre- 
mental work that these techniques 
perform is scanning one Common 
Lisp object. The largest possible 
objects in Common Lisp environ- 
ments are vectors. Common Lisp 
requires that implementations be 
able to allocate vectors at least 1,024 
elements long, though typically 
implementations allow vectors that 
are much longer. Therefore,  even 
though the defined techniques are 
real-time with respect to the size of  
the heap, they still have execution 
time dependencies on the sizes of  
the heap-allocated data structures, 
and these data structures can be 
quite large. 

In any case, garbage collectors on 
non-Lisp machine hardware still do 
not, as far as we are aware, use in- 
cremental algorithms. Interrup- 
tions of  normal program execution 
for garbage collection in the best 
implementations can still last for 
hundreds of  milliseconds in typical 
situations, and tens of  seconds in 
worst cases. 

This is unacceptable for our  real- 
time needs, so we have written G2 
to avoid invoking the garbage col- 
lector. We accomplish this by always 
retaining pointers to allocated ob- 
jects, by allocating recycled data 
structures instead of  allocating new 
ones, by avoiding or reimplement- 
ing Common Lisp facilities that 
implicitly create garbage, and by 
using objects created with dynamic 
extent (defined later) where we 

could not avoid new object instan- 
tiations. By managing memory in 
this way, we never exhaust the 
heap, and therefore do not trigger 
execution of  the garbage collector. 

There  were some facilities in 
Common Lisp whose services we 
required, but whose use implied the 
creation of  data structures which 
could only be reclaimed through 
garbage collection. The  file input 
and output  routines were examples 
of  such facilities. We have 
reimplemented all such facilities-- 
sometimes by writing the underly- 
ing primitives for the facility in C 
and then linking that code back into 
our  Common Lisp programs. Lisp 
interfaces are then written to these 
primitives that mimic the interfaces 
to the Common Lisp facilities, thus 
allowing us to use familiar tools 
while achieving garbage-free exe- 
cution. 

When programmers  first become 
acquainted with Common Lisp, 
they are often surprised to learn 
that it may represent floating-point 
numbers and large integers as 
heap-allocated structures. In Com- 
mon Lisp the type of  any datum can 
be determined at run time from the 
datum itself. With the exception of  
the immediate representation of  
some integers (typically those that 
fit within a 30-bit two's-complement 
representation) and characters, and 
optimizations based on type decla- 
rations, all objects in Common Lisp 
are represented as heap-allocated 
data structures which contain a 
field for a type descriptor as well as 
fields for the data contained within 
that object. 

The  only Common Lisp objects 
for which we could not always con- 
trol or avoid allocation were 
floating-point numbers and large 
integers ("bignums"). For these we 
have used a tool similar to the dy- 
namic extent declaration defined 
within the draft  ANSI standard for 
Common Lisp described in [6]. 

We have chosen to manage 
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Objects in Common Lisp usually 
have indefinite extent, which 
means they persist until the gar- 
bage collector can prove they are 
inaccessible. Dynamic extent  is a 
declaration that the lifetime of  the 
object that is the initial value of  a 
variable is limited to the lifetime of  
that variable. Common Lisp imple- 
mentations typically optimize the 
dynamic extent  declaration by allo- 
cating the initial value object on the 
stack. When the function contain- 
ing the declaration returns, the 
memory for the object is reclaimed. 

Our  code actually uses an alloca- 
tion technique whereby objects are 
created within temporary  areas of  
memory.  We have defined a special 
form that establishes a region of  
code within which objects can be 
allocated from the heap. On exit 
from that region of  code, any ob- 
jects that were created are immedi-  
ately reclaimed. Within this region 
of  code, we say objects are created 
within the temporary  area, and the 
region itself is loosely refer red  to as 
a " temporary  region." This style of  
reclamation allows us to use func- 
tions that create and re turn  heap- 
allocated data s t ruc tures- -such  as 
floating-point n u m b e r s - - a s  their  
results. Many Common Lisp func- 
tions that re turn  numeric  results 
operate  in this fashion. Structures 
that have been created within a 
temporary  area can be examined 
anywhere within the temporary  
region, as well as anywhere within 
any functions called from the tem- 
porary  region. I f  we want to retain 
anything created within the tempo- 
rary region, we must copy it into a 
non temporary  data structure. 

Tempora ry  areas are typically 
implemented as a memory  alloca- 
tion heap whose allocation pointer  
is saved on entrance to the region 
and restored on exit. This is not a 
def ined feature of  Common Lisp, 
but we have obtained it as an exten- 
sion to the implementat ions we use. 

I t  is often assumed that software 
written in Common Lisp entails use 
of  a garbage collector. It is our  view 
that a garbage-creat ing program-  
ming style is what entails use of  a 
garbage collector. 

Macros 
The  macro facility of  Common Lisp 
is uniquely powerful,  for two rea- 
sons. First, Common Lisp programs 
are represented,  before compila- 
tion, as list structures that can be 
readily decomposed and trans- 
formed. Second, macros are de- 
fined as functions that can per form 
arbi t rary computat ions to produce  
their  expansions. 

While macros in most languages 
are tools for per forming  textual 
replacements in source code, Com- 
mon Lisp macros are allowed to 
pe r fo rm more  than mere  textual 
substitutions. They are true pro- 
grams. The i r  arguments  are the 
parsed source code from the call 
sites. These arguments  may be in- 
spected, tested, decomposed,  and 
in general  manipula ted in arbi trary 
ways by the macro-expanding func- 
tion. The  result of  a macro execu- 
tion is parsed code that replaces the 
macro call, and macro expansion is 
a t tempted again on this form. This 
can be repeated an arbi trary num- 
ber  of  times, as long as the expan- 
sion eventually terminates. Since all 
of  this execution occurs at compile 
time, use of  macros imposes no 
run-t ime penalty. 

Articles about Common Lisp 
often praise the representat ion o f  
code as data, stating that the ability 
to create new functions at run time 
is its major  benefit. However,  we 
feel that a more  impor tant  benefit  
comes from generat ing code at 
compile t i m e - - w h e n  the generated 
p rogram code can still be compiled 
into efficient machine code. 

Highly efficient implementat ions 
of  data-abstracted operat ions can 
be achieved using Common Lisp 

memory explicitly 

macros. In  fact, Common Lisp mac- 
ros make it practical to choose very 
complicated "multiple-case" imple- 
mentations of  data abstractions to 
handle  special cases more effi- 
ciently. 

A characteristic of  some program 
facilities is that they per form differ- 
ent actions based on a control argu- 
ment. In  some cases, the actions 
called for by a control a rgument  
can be accomplished very quickly. 
Also, the acttzal parameters  for 
these facilities are sometimes con- 
stants in the call sites. In  our  sys- 
tem, we have written many macros 
of  this sort. Such macros examine 
their  control  argument ,  and if the 
a rgument  is a constant, specific 
code for the selected operat ion is 
re turned  as the expansion of  the 
macro. Often, jus t  the data type of  
the control  a rgument  is needed to 
de termine  what the actual selected 
operat ion will b e - - a g a i n  allowing 
compile time determinat ion of  the 
appropr ia te  dispatching code. I f  a 
constant value or data type is not 
available for the control  argument ,  
then, as its expansion,  the macro 
re turns  code that will dispatch on 
the control a rgument  at run time. 

I f  the dispatch can be optimized 
and the selected code is small, the 
re turned  macro expansion can con- 
tain operat ions that happen  com- 
pletely in line within the calling 
function. In  languages that are not 
able to conditionalize macro expan- 
sions based on their arguments ,  dis- 
patching is typically carried out at 
run time. For  often-used facilities 
within inner- loop code, compile- 
time dispatching provides an im- 
por tant  type of  optimization. 

Another  impor tant  use o f  mac- 
ros within our  code is an implemen- 
tation device for large-scale facili- 
ties. Macros are used as code 
generators  that define elements of  
these large-scale facilities in terms 
of  smaller components.  

For example,  the protocol hand-  
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lers for our networking tools are 
def ined in this manner .  Each kind 
of  message handled  within our  pro- 
tocol is def ined in a separate call to 
a protocol  definit ion macro. This 
macro expands  into definitions of  
several fiJnctions and macros which 
implement  the message handlers.  I t  
also expands  into operat ions that 
register the names of  these gener-  
ated functions and macros in a data 
structure which is fur ther  used in 
our  message handler  dispatch func- 
tion. 

By organizing our  implementa-  
tion of  message handlers  into this 
abstraction, we have been able to 
implement  them separately, but  
have provided an efficient, central- 
ized dispatcher  and automated reg- 
istration of  the handlers  as a side 
effect of  their  definition. Most of  
the large facilities within our  system 
have been built  using similar con- 
structs, all made  possible by the 
strong macros of  Common Lisp. 

To achieve p rogrammer-de f ined  
utilities of  the same power in other  
languages usually requires the 
building of  preprocessors  that must 
parse source code files, pe r fo rm 
their  t ransformations,  and then 
emit fur ther  text source files for 
compilation. Implementa t ion  of  
these preprocessors  can in itself be 
a significant p rogramming  effort.  
In  our  view, the presence of  a 
ready-made  facility of  this sort in 
Common Lisp is a dist inguishing 
feature of  the language. 

Type Declarations for 
Compile-Time Optimizations 
Many Common Lisp operat ions are 
written to accept many different  
data types, dispatching to the spe- 
cific code upon  run-t ime determi-  
nation of  the actual type. 

Numeric  operat ions in Common 
Lisp are def ined so that, for exam- 
ple, the "+"  function takes an arbi- 
t rary number  of  arguments ,  where 
each a rgument  can be of  any type. 
The  "+"  function combines the 
arguments ,  using type contagion at 
run time to de te rmine  the type of  
the re,;ult. Common Lisp has often 
been criticized for this generality 

because addi t ion pe r fo rmed  in this 
way is slow, compared  to the type- 
specific machine instructions that 
implement  addition. 

The  inefficiency of  general  oper-  
ations has been addressed in Com- 
mon Lisp by the inclusion of  type 
declarations. Type-declared  arith- 
metic can be compiled into direct 
machine instructions whose perfor-  
mance is equivalent to that achieved 
within other  languages. Common 
Lisp provides two means of  provid- 
ing type informat ion to the com- 
piler. The  first is th rough  declara- 
tions associated with variables. The  
second technique is th rough  the 
special form 'THE' .  By wrapping  
this form a round  another  form, the 
type of  the result  of  the wrapped  
form can be declared.  T h rough  the 
use of  macros, we have built tools 
for using type-declared ari thmetic 
th roughout  G2, using the 'THE '  
special form. 

This approach  to type declara- 
tions has given Common Lisp pro-  
g rammers  an option that would not 
otherwise be available. In most lan- 
guages, type declarations are re- 
qui red for the p rogram to be com- 
piled at all. I f  Common Lisp 
p rogrammers  want numeric  opera-  
tions to be executed as machine in- 
structions, then they must provide 
type declarations, in one form or  
another .  I f  numeric  processing 
speed is not a pr imary  concern 
within a piece of  code, then the dec- 
larations may be left out, and the 
p rog ra mme r  is relieved of  the bur-  
den of  type declaration. 

The  technique of  optimization 
th rough  compile-t ime use of  type 
declarations can be broadly appl ied 
in Common Lisp, though in our  
code we have used it mostly for 
numeric  operat ions,  array refer-  
ences, and dispatching to functions 
stored in arrays. 

Program-Size Reduction 
for Application Delivery 
Common Lisp is a large language. 
It would be a remarkable  p rogram 
indeed which could justifiably use 
all of  Common Lisp's facilities. 
Most programs,  even complex 

ones, use only a fraction of  what is 
available. In many other  languages, 
commonly needed  facilities are 
provided as libraries that may op- 
tionally be loaded into programs.  
In Common Lisp, all facilities are 
def ined in the envi ronment  by de- 
fault. Typical implementat ions re- 
quire several megabytes of  memory  
to hold the code associated with 
these facilities. 

Early versions of  Common Lisp 
systems required that all facilities 
remain  available in final p rogram 
images, even if they were not  used 
by the application. This meant  that 
even the simplest "Hello, world" 
programs would consume signifi- 
cant amounts  o f  memory.  

Utilities now exist within most 
Common Lisp implementat ions 
that can eliminate unused facilities 
from the environment .  However,  
Common Lisp still differs from 
other  languages, in that typically 
something special must  be done to 
remove facilities f rom the final 
image, ra ther  than to include them. 
These  are often called tree shakers. 

The  implication is that  a p rogram is 
the root  of  a tree and all utilities not  
used with (or somehow associated 
with) that  tree are "shaken out" of  
the p rogram before the final image 
is generated.  

Another  technique is to use C as 
an under ly ing implementat ion 
layer. Common Lisp source files are 
translated into C source files. The  
kernel  facilities of  Common Lisp 
are implemented  as C libraries. 
When the translated C files are 
l inked against the libraries of  ker- 
nel functionality, only those utilities 
that are used are l inked into the 
final p rogram image. 

Conclusions 
Historically, Lisp has been the lan- 
guage of  choice for bui lding sophis- 
ticated exper t  systems, and with 
good reason. Its broad  set of  built- 
in tools, its powerful  macros, and its 
flexibility when writing numeric  
operat ions greatly improve pro-  
g ramming  productivity. 

By using the memory  manage- 
ment  and other  techniques de- 
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scribed, we have been  able to take 
advantage  of  C o m m o n  Lisp's pow- 
erful  p r o g r a m m i n g  e n v i r o n m e n t  to 
realize efficient,  real- t ime applica- 
tions. (See [5] for a discussion of  
"soft real-t ime" applicat ions for 
which G2 is part icularly well suited 
and  of  a Space Shuttle mon i to r ing  
application.  Also see Rocky 
Stewart 's s idehar in this issue de- 
scribing an applicat ion at Biosphere  
II.) 

Use of  these techniques on  stan- 
da rd  hardware  pla t forms has only 
become practical in recent  years, as 
sophisticated implementa t ions  of  
C o m m o n  Lisp have become com- 
mercially available on  those plat- 
forms. By strictly cont ro l l ing  the 
styles of  p r o g r a m m i n g  used within 
the language,  we have been able to 
use C o m m o n  Lisp as a practical lan- 
guage for large real- t ime applica- 
tion deve lopmen t  a n d  del ivery.[  ~1 
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B i o s p h e r e  2 
N e r v e  S y s t e m  

iosphere 2 (Earth being 
Biosphere 1)is an experi- 

m • ment in closed system i i  
ecology. It is a steel and 

glass structure about the size of three 
football fields and has a volume of 
more than three million cubic feet. The 
purpose of the project is to demon- 
strate the viability of materially closed 
ecosystems--a sort of bioregenerative 
life support system--where water, air, 
and food are recycled. Later this year, 
eight people, called Biospherians, will 
be sealed inside Biosphere 2 for two 
years with only power and information 
being exchanged with the outside. A 
major part of this project is an expert 
system-based environmental control 
and monitoring system called the 
"Nerve System.'" 

The ecosystems of Biosphere 2 are 
varied and complex. There are seven 
distinct biomes including a 30-foot- 
deep ocean, complete with waves, 
tides, and a coral reef including a rain 
forest with a 50-ft. mountain, water- 
falls, and clouds. There is also a desert, 
marshland, savannah, an intensive agri- 
cultural biome where most of the food 
will be grown, and a habitat where the 
Biospherians will live during the experi- 
ment. Several thousand species of 
plants, animals, and insects will live in 
these biomes. 

Due to the complexity of these eco- 

systems, a sophisticated and reliable 
control and monitoring system is re- 
quired to ensure the success and 
safetY of both the ecosystems and the 
Biospherians. To fulfill this require- 
ment, a Nerve System consisting of a 
broad-band network, several bIP9000 
work stations, and a control and moni- 
toring hierarchy of expert systems was 
developed using G2, a Lisp-based, real- 
time, object-oriented expert system 
development environment from Gen- 
sym Corporation. 

After several available traditional 
control systems were reviewed, G2 was 
chosen for the project because of its 
ease of use and its high degree of inte- 
gration between rules, objects, and 
graphical displays. Also, G2 rules are in- 
terruptible, thus allowing the devel- 
oper to control data acquisition and 
response times. Controlling the heat- 
ing, ventilation and air-conditioning 
(HVAC) systems of Biosphere 2 is a tYpi- 
cal real-time control problem. In the 
past, Lisp would not have been consid- 
ered a candidate to solve this problem 
due to response time limitations im- 
posed by garbage collection. G2, how- 
ever, is carefully designed to eliminate 
the garbage collection of Lisp, thus 
reducing the chance of a delayed reac- 
tion at a critical moment, 

The architecture of the nerve system 
consists of five major levels: 
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