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We introduce Jinja, a Java-like programming language with a formal semantics designed to exhibit

core features of the Java language architecture. Jinja is a compromise between the realism of

the language and the tractability and clarity of its formal semantics. The following aspects are

formalised: a big and a small step operational semantics for Jinja and a proof of their equivalence,

a type system and a definite initialisation analysis, a type safety proof of the small step semantics,

a virtual machine (JVM), its operational semantics and its type system, a type safety proof for

the JVM; a bytecode verifier, that is, a data flow analyser for the JVM, a correctness proof of the

bytecode verifier with respect to the type system, and a compiler and a proof that it preserves

semantics and well-typedness. The emphasis of this work is not on particular language features

but on providing a unified model of the source language, the virtual machine, and the compiler.

The whole development has been carried out in the theorem prover Isabelle/HOL.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and

Theory—Semantics; D.3.4 [Programming Languages]: Processors—Compilers; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Object-oriented constructs

General Terms: Languages, Verification

Additional Key Words and Phrases: Java, operational semantics, theorem proving

1. INTRODUCTION

There is a large body of literature on formal models of Java-like languages,
the virtual machine and bytecode verification, and compilation. However, each
of these models is designed to treat certain features of Java in depth while
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ignoring other features completely (see the following for one exception). The
main result of our work is the first unified model of a Java-like source language,
virtual machine, and compiler, with the following salient features: It is based on
operational semantics, is executable, fits into the confines of a journal article,
and all proofs are machine-checked (in Isabelle/HOL [Nipkow et al. 2002]).
This is considerably more than the sum of its parts. A tractable formal model
is the result of a careful balance of features on each level and the interaction
between the different levels (here, the source and target language). That is,
integrating different formal models is just as much of a challenge as designing
the individual models.

In addition to the unified model, there are also a number of specific advances
of the state-of-the art: a big and small step semantics together with an equiva-
lence proof (previously, only one or the other had been used), a formalisation of
the “definite assignment” analysis of local variables, and a compiler correctness
proof covering exceptions. We discuss these issues in detail in the respective
sections.

It must be emphasised that our work is complementary to the detailed anal-
ysis of particular language features. In the end, a synthesis of our unified (but
in many places, simplified) model and more detailed (but specialised) models
should emerge. And because of the unavoidable size of the resulting model,
we believe that some machine-checked analysis, ideally with a theorem prover,
is necessary to guarantee the overall consistency of the model—in particular,
when faced with changes. With each change to a model of that size, a purely
textual definition becomes less and less reliable; in the absence of mechanical
consistency checks, changes in one part of the model will sooner or later have
unexpected side effects in other parts. This is where formal verification and
the ability to rerun proofs really pays off. But even without formal proofs, mere
type checking is already tremendously beneficial. Hence, this article should also
be viewed as an attempt to combine the rigour of a formal machine-checked
metalanguage with standard (largely mathematical) notation. There will be
more coverage of this issue in Section 1.2.

The article is subdivided into four parts: the source language (Section 2), the
virtual machine (Section 3), the bytecode verifier (Section 4), and the compiler
(Section 5).

We discuss related work separately at the end of each section because most
articles deal with a specific language layer. The exception is a book by Stärk
et al. [2001] which treats almost all of Java and the virtual machine. This is
a very impressive piece of work, but quite different from ours; it is based on
abstract state machines rather than on standard operational semantics, and
the proofs are not machine-checked. It should be noted that the literature on
formal models of Java and the JVM is already so large that it gave rise to three
survey-like publications [Alves-Foss 1999; Hartel and Moreau 2001; Nipkow
2003a]. Hence, our discussion of related work is necessarily restricted to those
articles with a very direct connection to ours.

As a final word of warning, we must emphasize that the core of the article is
intentionally detailed and technical. Its very aim is to demonstrate the state-
of-the-art in machine-checked language definitions.
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1.1 Basic Notation—The Metalanguage

Our metalanguage HOL conforms largely to everyday mathematical notation.
This section introduces further nonstandard notation and, in particular, a few
basic data types with their primitive operations.

Types. The basic types of truth values, natural numbers, and integers are
called bool, nat, and int, respectively. The space of total functions is denoted by
⇒. Type variables are written ′a, ′b, etc. The notation t::τ means that the HOL
term t has HOL type τ .

Pairs. Pairs come with the two projection functions fst :: ′a × ′b ⇒ ′a and
snd :: ′a × ′b ⇒ ′b. We identify tuples with pairs nested to the right: (a, b, c) is
identical to (a, (b, c)) and ′a × ′b × ′c is identical to ′a × ( ′b × ′c).

Sets. Sets (type ′a set) follow the usual mathematical convention. Intervals
are written as follows: {m..<n} means {i | m ≤ i < n} and {m..n} means {i | m ≤
i ≤ n}. If m is 0, it can be dropped.

Lists. Lists (type ′a list) come with the empty list [], the infix constructor ·,
the infix @ that appends two lists, and the conversion function set from lists to
sets. Variable names ending in “s” usually stand for lists, |xs| is the length of xs,
and xs[n], where n::nat, is the nth-element of xs (starting with 0). The notation
[i..<j] with i::nat and j::nat stands for the list [i, . . . , j−1]. The formula distinct
xs means that the elements of xs are all distinct. The standard functions map
and filter are also available.

datatype ′a option = None | Some ′a

adjoins a new element None to a type ′a. For succinctness, we write �a� instead
of Some a. The underspecified inverse the of Some satisfies the �x� = x.

Function update is written f (x := y), where f :: ′a ⇒ ′b, x :: ′a and y :: ′b.
Partial functions are modelled as functions of type ′a ⇒ ′b option, where

None represents undefinedness and f x = �y� means x is mapped to y. We define
dom m ≡ {a | m a 	= None}. Instead of ′a ⇒ ′b option, we write ′a ⇀ ′b, call
such functions maps, and abbreviate f (x:=�y�) to f (x 
→ y). The latter notation
extends to lists: f ([x1, . . . ,xm] [
→] [y1, . . . ,yn]) means f (x1 
→y1). . .(xi 
→yi), where i
is the minimum of m and n. The notation works for arbitrary list expressions on
both sides of [
→], not just enumerations. Multiple updates like f (x
→y)(xs[
→]ys)
can be written as f (x 
→ y, xs [
→] ys). The map λx. None is written empty, and
empty(. . .), where . . . are updates, abbreviates to [. . .]. For example, empty(x
→y,
xs[
→]ys) becomes [x 
→ y, xs [
→] ys].

Overwriting map m1 with m2 is written m1 ++ m2 and means λx. case m2 x
of None ⇒ m1 x | �y� ⇒ �y�.

Function map-of turns an association list, that is, a list of pairs, into a map:

map-of [] = empty
map-of (p·ps) = map-of ps(fst p 
→ snd p)

Note that [[ A1; . . . ; An ]] =⇒ A abbreviates A1 =⇒ (. . . =⇒ (An =⇒ A). . .).
In lemmas we often write “If A1 and . . . and An then A,” instead. Displayed
implications are frequently printed as inference rules:
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A1 A2 A 3

A

1.2 Presentation Issues

How are the formulae you see related to the formal Isabelle text? Our motto is

What you see is what we proved!

In many articles this is not the case. For example, the main definition by Nipkow
[1991] and the main theorem, Theorem 1, by Flatt et al. [1999] are blatantly
wrong (the latter misses the case that e might diverge). In order to avoid this
problem, Isabelle theories can be augmented with LATEX text which may contain
references to Isabelle theorems (by name—see Chapter 4 of the book by Nipkow
et al. [2002]). When this LATEX text is processed by Isabelle, it expands these
references into the LATEX text for the proposition of the theorem. Using this
mechanism, the text for most of the definitions and theorems in this article
is automatically generated. We emphasize that the LATEX presentation is quite
close to the original Isabelle theories viewed with the help of the proof general
interface [Aspinall 2000] because the latter supports mathematical symbols.
Only a few niceties like inference rules are LATEX-specific.

It is conceivable to go one step further and even generate proof text au-
tomatically from the theories. However, although most of our proofs are in a
quasireadable form of structured stylized mathematics [Wenzel 2002; Nipkow
2003b], it appears beyond the state-of-the-art to turn these into concise journal-
style proofs automatically.

2. JINJA

Our dialect of Java is called Jinja (because Jinja is not Java). Although Jinja is a
typed language, we begin its description with the operational semantics which
is independent of the type system. First we introduce a big step or evaluation
semantics (Section 2.2), then a small step or reduction semantics (Section 2.3).
The big step semantics will be used in the compiler proof, the small step se-
mantics in the type safety proof. Both semantics are defensive: rules only apply
if everything “fits together.” For example, variable lookup requires that the
variable has been initialised. This is a prerequisite for the type safety proof,
which shows that reduction of well-typed expressions does not get stuck. In Sec-
tion 2.4 certain minimal well-formedness conditions for programs are defined.
They imply (Section 2.5) that the two semantics are equivalent for terminat-
ing executions. Then we introduce a type system (Section 2.6) and “definite
assignment” analysis (Section 2.7) for expressions and complete the set of well-
formedness conditions for Jinja programs (Section 2.8). Finally, we show type
safety (Section 2.9).

2.1 Abstract Syntax

2.1.1 Names. In the sequel we use the following (HOL) variable conven-
tions: V is a (Jinja) variable name, F a field name, M a method name, C a class
name, e an expression, v a value, T a type, and P a program.
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For readability only, we have introduced three (HOL) types for Jinja iden-
tifiers: cname (class names), vname (variable names), and mname (method
names). All three are merely synonyms for type string.

2.1.2 Values and Expressions. A Jinja value can be

—a Boolean, Bool b, where b :: bool, or

—an integer, Intg i, where i :: int, or

—a reference, Addr a, where a :: addr, or

—the null reference, Null, or

—the dummy value, Unit.

Jinja is an imperative but expression-based language where statements are
expressions that evaluate to Unit. To make things executable, type addr is
actually a synonym for type nat (as opposed to leaving it unspecified).

The following expressions (of HOL type expr) are supported by Jinja:

—creation of new object: new C
—casting: Cast C e
—literal value: Val v
—binary operation: e1 �bop e2 (where bop is one of + or =)

—variable access Var V and variable assignment V := e
—field access e.F{D} and field assignment e1.F{D} := e2

(where D is the class where F is declared)

—method call: e.M(es)

—block with locally declared variable: {V:T; e}
—sequential composition: e1; e2

—conditional: if (e) e1 else e2 (do not confuse with HOL’s if b then x else y)

—while loop: while (e) e ′

—exception throwing throw e and catching try e1 catch (C V) e2

The constructors Val and Var are needed in our metalanguage to disam-
biguate the syntax. There is no return statement because everything is an
expression and returns a value.

Note that the annotation {D} in field access and assignment is not part
of the input language but is something that a preprocessor, for example, the
type checking phase of a compiler, must add. We come back to this point in
Section 2.6.

To ease notation we introduce some abbreviations:

true ≡ Val(Bool True) false ≡ Val(Bool False)
addr a ≡ Val(Addr a) null ≡ Val Null
unit ≡ Val Unit

Jinja supports only the two binary operators = and + to keep things simple.
Their evaluation is defined via a function binop that takes an operator and two

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.



624 • G. Klein and T. Nipkow

Fig. 1. Abstract program syntax.

values and returns an optional value (to deal with type mismatches):

binop ( = , v1, v2) = �Bool (v1 = v2)�
binop ( + , Intg i1, Intg i2) = �Intg (i1 + i2)�
binop (bop, v1, v2) = None

Addition only yields a value if both arguments are integers. We could also insist
on similar compatibility checks for the equality test, but this leads to excessive
case distinctions that we want to avoid for reasons of presentation.

2.1.3 Programs. The abstract syntax of programs is given by the type def-
initions in Figure 1, where ty is the HOL type of Jinja types. A program is a
list of class declarations. A class declaration consists of the name of the class
and the class itself. A class consists of the name of its direct superclass, a list
of field declarations, and a list of method declarations. A field declaration is
a pair consisting of a field name and its type. A method declaration consists
of the method name, the parameter types, the result type, and the method
body.

The only unusual thing here is the parameterisation of these types by ′m, the
type of method body. The reason is that we want to use the program structure
not just for Jinja but also for virtual machine programs. All we need to do is slot
in the right kind of method body: a Jinja method body J-mb is a pair of formal
parameter names and the expression, and a Jinja program J-prog is a program
with Jinja method bodies. Note that parameter names cannot be part of the
generic syntax because there are no parameter names on the virtual machine
level.

This generic program syntax is an important abstraction that will also be
useful during compilation. More concrete representations, for example, concrete
source language syntax or Java’s class file format, are orthogonal to our work
and can be added separately.

2.1.4 Extracting Declaration Information. Most of the time the exact rep-
resentation of programs is irrelevant because we work in terms of a few func-
tions and predicates for analysing and accessing the declarations in a program:

—class P C is the class associated with C in P.

— is-class P C means class C is defined in P.

—P � D �∗ C means D is a subclass of C. The relation is transitive and reflexive.

—P � C sees M:Ts→T = mb in D means that in P, scanning the class hierarchy
upwards starting from C, a method M is visible in class D (taking overriding
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into account). Its argument types are Ts (a type list), its result type is T,
and its body is mb. If P is a Jinja program, mb is a pair (pns, e) of formal
parameter list pns and an expression e.

—P � C sees F:T in D means that in P from class C, a field F of type T is visible
in class D.

—P � C has F:T in D means that in P, a (not necessarily proper) superclass D
of C has a field F of type T.

Before we show the definition of these predicates, we give an example (in an
imaginary concrete syntax) that should clarify the concepts:

class B extends A {field F:TB
method M:TBs->T1 = mB}

class C extends B {field F:TC
method M:TCs->T2 = mC}

We have P � C sees F:TC in C, but not P � C sees F:TB in B because the
declaration in C hides the one in B. In contrast, we have both P � C has F:TC
in C and P � C has F:TB in B because has is independent of visibility.

Analogously, we have P � B sees M: TBs→T1 = mB in B and P � C sees M:
TCs→T2 = mC in C, but not P � C sees M: TBs→T1 = mB in B. The second
declaration of M overrides the first, no matter what type of M is in the two
declarations.

This is method overriding in its purest form, but differs from Java where
methods can also be overloaded, which means that multiple declarations of M
can be visible simultaneously, provided they are distinguished by their argu-
ment types. We have formalised overloading elsewhere [Oheimb and Nipkow
1999] but have not included it in Jinja. It complicates matters without adding
a significant new aspect; we have to annotate method calls with the static type
of the actual parameter list, just as in field access. This mixture of static type
(for the parameter list) and dynamic type (of the object at runtime) can make
programs with overloading hard to understand.

We will now show how the aforementioned functions are defined. The first
two are trivial: class ≡ map-of and is-class P C ≡ class P C 	= None.

For the remaining functions, it is important to note that we do not differ-
entiate between user-defined classes and system classes. That is, any proper
program will need to contain a class Object. Since any class has a superclass
entry, so has Object. Therefore, class Object is treated specially: Traversal of
the class hierarchy stops there and the dummy superclass entry is ignored.

The subclass relation �∗ is defined as the reflexive transitive closure of the
direct subclass relation ≺1 defined by

class P C = �(D, fs, ms)� C 	= Obj ect

P � C ≺1 D

The information about fields in a class hierarchy is collected by a predicate
P � C has-fields FDTs, where FDTs :: ((vname × cname) × ty) list. That is, each
tuple ((F, D), T) in FDTs represents a field declaration F:T in a superclass D
of C, and the list follows the class hierarchy, that is, the fields of C itself come
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Fig. 2. The types of Jinja program states.

first in the list. The predicate is defined inductively:

class P C = �(D, fs, ms)� C 	= Object P � D has-fields F DTs

P � C has-fields map (λ(F, T). ((F, C), T)) fs @ FDTs

class P Object = �(D, fs, ms)�
P � Object has-fields map (λ(F, T). ((F, Object), T)) fs

At the moment, we do not rule out class Object having fields. In our preceeding
example, assuming A is in fact Object, and assuming Object does not have fields,
we obtain P � C has-fields [((F, C), TC), ((F, B), TB)].

From the has-fields relation we can define has and sees directly:

P � C has F:T in D ≡ ∃ FDTs. P � C has-fields FDTs ∧ map-of FDTs (F, D) = �T�
P � C sees F:T in D ≡
∃ FDTs. P � C has-fields FDTs ∧

map-of (map (λ((F, D), T). (F, D, T)) FDTs) F = �(D, T)�

The relation sees for methods can be defined analogously via a relation that
traverses the class hierarchy and collects all method declaration information.
We omit the details.

2.2 Big Step Semantics

2.2.1 State. The type of states during expression evaluation is defined in
Figure 2. A state is a pair of a heap and a store (locals). A store is a map from
variable names to values. A heap is a map from addresses to objects. An object
is a pair consisting of a class name and a field table, and a field table is a map
from pairs (F, D) (where D is the class where F is declared) to values. It is
essential to include D because an object may have multiple fields of the same
name, all of them visible.

The naming convention is that h is a heap, l is a store (the local variables),
and s is a state. The projection functions hp and lcl are synonyms for fst and
snd.

When a new object is allocated on the heap, its fields are initialised with the
default value determined by their type:

init-fields :: ((vname × cname) × ty) list ⇒ fields
init-fields ≡ map-of ◦ map (λ(F, T). (F, default-val T))

The definition of the default value is irrelevant to our purposes. It suffices to
know that the default value is of the right type and that for references (types
Class and NT), it is Null.

2.2.2 Evaluation. The evaluation judgement is of the form P � 〈e,s〉 ⇒
〈e ′,s ′〉, where e and s are the initial expression and state, respectively, and e ′

and s ′ the final expression and state, respectively. We then say that e evaluates
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to e ′. The rules will be such that final expressions are always values (Val) or
exceptions (throw), that is, final expressions are completely evaluated. We will
discuss the evaluation rules in an incremental fashion; first, normal evaluation
only, and then exceptional behaviour afterwards.

2.2.3 Normal Evaluation. Normal evaluation means that we are defining
an exception-free language. In particular, all final expressions will be values.
The complete set of rules is shown in Figure 3 and we discuss them in turn.

Expression new C first allocates a new address: function new-Addr (we
omit its definition) returns a “new” address, that is, new-Addr h = �a� im-
plies h a = None. Then predicate has-fields (Section 2.1.4) computes the list of
all field declarations in and above C, and init-fields (Section 2.2.1) creates the
default field table.

There are two rules for Cast C e: If e evaluates to the address of an object of
a subclass of C or to null, the cast succeeds, in the latter case because the null
reference is in every class.

The rules for Val, Var, and assignment are self-explanatory.
Field access e.F{D} evaluates e to an address, looks up the object at the

address, indexes its field table with (F, D), and evaluates to the value found
in the field table. Note that field lookup follows a static binding discipline: The
dynamic class C is ignored and the annotation D is used instead. Later on,
well-typedness will require D to be the first class where F is declared when we
start looking from the static class of e up the class hierarchy.

Field assignment e1.F{D} := e2 evaluates e1 to an address and e2 to a value,
updates the object at the address with the value (using the index (F, D)), and
evaluates to unit (just like assignment to local variables).

Why does assignment not evaluate to the value of the rhs, like in Java?
Because then, the conditional if (e) V1 := e1 else V2 := e2 would not evaluate
to unit but to the value of e1 or e2. Thus, the type system (to be definend later)
would require e1 and e2 to have compatible types, which in many cases they
wouldn’t, thus forcing the programmer to write something like if (e) (V1 := e1;
unit) else (V2 := e2; unit).

Binary operations are evaluated from left to right (for binop see Sec-
tion 2.1.2).

The lengthiest rule is the one for method call. Its reading is easy: Evaluate
e to an address a and the parameter list ps to a list of values vs,1 look up the
class C of the object in the heap at a, look up the parameter names pns and the
body body of the method M visible from C, and evaluate the body in a store that
maps this to Addr a and the formal parameter names to the actual parameter
values (having made sure that vs and pns have the same length). The final store
is the one obtained from the evaluation of the parameters—the one obtained
from the evaluation of body is discarded. This rule reflects a well-formedness
condition imposed later on: There are no global variables in Jinja (just as in

1[⇒] is evaluation extended to lists of expressions. Saying that the result is of the form map Val vs
is a declarative way of ensuring that it is a list of values and of obtaining the actual value list vs
(as opposed to an expression list).
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Fig. 3. Normal evaluation of expressions.
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Java, but contrary to, say, C++), that is, a method body should only refer to this
and its parameters.

In Jinja, blocks with local variables, sequential composition, conditional
and while-loops, are expressions too, in contrast to Java, where they are com-
mands and do not return a value. In a block, the expression is evaluated in
the context of a store where the local variable has been removed, that is, set
to None. Afterwards, the original value of the variable in the initial store is re-
stored. Sequential composition discards the value of the first expression. Simi-
larly, while-loops discard the value of their body and, upon termination, return
unit.

The rules for [⇒], the evaluation of expression lists (needed for method call),
define that lists are evaluated from left to right. This concludes the complete
semantics of the exception-free fragment of Jinja.

2.2.4 Exceptions. The aforementioned rules assume that during evalua-
tion everything fits together. If it does not, the semantics gets stuck, that is,
there is no final value. For example, evaluation of 〈Var V, (h,l)〉 only succeeds if
V ∈ dom l. Later on (Section 2.7), a static analysis (“definite assignment”) will
identify expressions where V ∈ dom l always holds. Thus we do not need a rule
for the situation where V /∈ dom l. In contrast, many exceptional situations
arise because of null references which we deal with by raising an exception.
In other words, the expression does not evaluate to a normal value but to an
exception throw(addr a), where a is the address of some object, the exception
object.

There are both system and user exceptions. User exceptions can refer to
arbitrary objects. System exceptions refer to an object in one of the system
exception classes:

sys-xcpts ≡ {NullPointer, ClassCast, OutOfMemory}

Their names speak for themselves. Since system exception objects do not carry
any information in addition to their class name, we can simplify their treat-
ment by preallocating one object for each system exception class. Thus, a few
addresses are reserved for preallocated system exception objects. This is mod-
elled by a function addr-of-sys-xcpt :: cname ⇒ addr whose precise definition is
not important. To ease notation we introduce some abbreviations:

Throw a ≡ throw(addr a)
THROW C ≡ Throw(addr-of-sys-xcpt C)

2.2.5 Exceptional Evaluation. The basic rules for throwing and catching
exceptions are shown in Figure 4. In the following situations, system excep-
tions are thrown: if there is no more free storage, if a cast fails, or if the object
reference in a field access, field update, or method call is null. The throw con-
struct may throw any expression of class type, which is a simplification of Java’s
exceptions. Throwing null leads to a NullPointer exception.

Note that we have maintained Java’s eager evaluation scheme of evaluating
all subterms before throwing any system exception. This permits a simple com-
pilation strategy where the values of the subterms are first put on the stack
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Fig. 4. Throwing and catching exceptions.

unchecked, and the check is performed at the end by the machine instruction,
for example, field access, accessing the object reference in question.

Thrown exceptions can be caught using the construct try e1 catch (C V) e2.
If e1 evaluates to a value, the whole expression evaluates to that value. If e1

evaluates to an exception throw a such that a refers to an object of a subclass
of C, V is set to Addr a and e2 is evaluated; otherwise throw a is the result of
the evaluation.

Finally, exceptions must be propagated. That is, if the evaluation of a certain
subexpression throws an exception, the evaluation of the whole expression has
to throw that exception. The exception propagation rules are straightforward
and shown in Figure 5. This concludes the exposition of the evaluation rules.

A compact representation of the exception propagation rules can be achieved
by introducing the notion of a context Cx (essentially a grammar for positions
in expressions where exceptions propagate to the top), and by giving one rule

P � 〈e,s〉 ⇒ 〈throw e ′,s ′〉
P � 〈Cx [e],s〉 ⇒ 〈throw e ′,s ′〉 .

We prefer not to formalize these additional notions and to stay within a fixed
basic framework of ordinary expressions.

2.2.6 Final Expressions. Now that we have the complete set of rules, we
can show that evaluation always produces a final expression:

final e ≡ (∃ v. e = Val v) ∨ (∃ a. e = throw a)
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Fig. 5. Exception propagation.

LEMMA 2.1. If P � 〈e,s〉 ⇒ 〈e ′,s ′〉, then final e ′.

The proof is by induction on the evaluation relation ⇒. Since the latter is
defined simultaneously with the evaluation relation [⇒] for expression lists, we
need to prove a proposition about [⇒] simultaneously with Lemma 2.1. This
will also be the common proof pattern in all other inductive proofs about ⇒.
In most cases the statement about [⇒] is a lifted version of the one about ⇒.
In the above case, we might expect something like P � 〈es,s〉 [⇒] 〈es ′,s ′〉 =⇒
∀ e ′∈set es ′. final e ′. However, this is wrong: due to exceptions, evaluation may
stop before the end of the list. A final expression list is a list of values, possibly
followed by a throw and some further expressions:

finals es ≡ (∃ vs. es = map Val vs) ∨ (∃ vs a es ′. es = map Val vs @ (throw a·es ′)),

and Lemma 2.1 for lists is simply “If P � 〈es,s〉 [⇒] 〈es ′,s ′〉 then finals es ′.”
It is equally straightforward to prove that final expressions evaluate to them-

selves:

LEMMA 2.2. If final e then P � 〈e,s〉 ⇒ 〈e,s〉.
Of course, an analogous lemma holds for expression lists, but we have cho-

sen not to show it. We will follow this practice whenever the list version of
a theorem is obvious. In fact, we could dispose of expression lists altogether
by restricting Jinja methods to a single parameter. However, this is precisely
the kind of simplification we do not want to make because it would give
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the wrong impression that including expression lists could be a significant
burden.

2.3 Small Step Semantics

Because of its simplicity, a big step semantics has several drawbacks. For ex-
ample, it cannot accommodate parallelism, a potentially desirable extension
of Jinja. The reason is that ⇒ cannot talk about intermediate states during
evaluation. For the same reason, the type safety proof in Section 2.9 needs a
finer-grained semantics. Otherwise, we cannot prove that type-correct expres-
sions do not get stuck during evaluation because the big step semantics does
not distinguish between divergence (of nonterminating expressions) and dead-
lock (of ill-typed expressions). Thus we now move to an equivalent small step
semantics.

The judgement for the small step semantics is P � 〈e,s〉 → 〈e ′,s ′〉 and describes
a single microstep in the reduction of e towards its final value. We say that e
reduces to e ′ (in one step). In the following, we will compose sequences of such
single steps 〈e1,s1〉 → 〈e2,s2〉 . . . → 〈en,sn〉 to reduce an expression completely.

As for the big step semantics, we can define normal and exceptional re-
ductions separately. We begin with normal reductions. The rules come in two
flavours: those that reduce a subexpression of an expression and those that
reduce the whole expression. The former have no counterpart in the big step
semantics, as they are handled implicitly in the premises of the big step rules.

2.3.1 Subexpression Reduction. These rules essentially describe the order
in which subexpressions are evaluated. Therefore most of them follow a common
pattern:

P � 〈e,s〉 → 〈e ′,s ′〉
P � 〈c . . . e . . . , s〉 → 〈c . . . e ′ . . . , s ′〉 ,

where c is a constructor and e and e ′ are metavariables. The other subexpres-
sions of c may be more complex to indicate, for example, which of them must
be values already, thus expressing the order of reduction. The rules for Jinja
subexpression reduction are shown in Figure 6. The initial ones follow the pre-
vious pattern exactly. For example, the rules for field assignment express that
the lefthand side is evaluated before the righthand side.

The rules for blocks are more complicated. In a block {V:T; e} we keep re-
ducing e in a store where V is undefined (None), restoring the original binding
of V after each step. Once the store after the reduction step binds V to a value
v, this binding is remembered by adding an assignment in front of the reduced
expression, yielding {V:T; V := Val v; e ′}. The final rule reduces such blocks.
This additional rule is necessary because {V:T; V := Val v; e} must not be re-
duced as before, by reducing all of V := Val v; e to e (thus losing the binding for
V), but by reducing e directly. To this end we have introduced the predicate

assigned V e ≡ ∃ v e ′. e = V := Val v; e ′

and added its negation as a precondition to the initial two reduction rules.
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Fig. 6. Subexpression reduction.

Note that we cannot simply treat local variables by creating “new” variables
because we do not know which other variables exist in the context; dom l does
not contain all of them because variables need not be initialized upon creation.

To reduce a method call, the object expression is reduced until it has become
an address, and then the parameters are reduced. The relation [→] is the ex-
tension of → to expression lists, which are reduced from left to right, and each
element is reduced until it has become a value.

2.3.2 Expression Reduction. Once the subexpressions are sufficiently re-
duced, we can reduce the whole expression. The rules are shown in Figure 7.
Most of the rules are fairly intuitive and many resemble their big step counter-
parts. The only one that deserves some explanation is the one for method invo-
cation. In order to avoid explicit stacks we use local variables to hold the values
of the parameters. The required nested block structure is built with the help of
the auxiliary function blocks of type vname list × ty list × val list × expr ⇒ expr:

blocks (V · Vs, T · Ts, v · vs, e) = {V:T; V := Val v; blocks (Vs, Ts, vs, e)}
blocks ([], [], [], e) = e

Note that we can only get away with this simple rule for method call because
there are no global variables in Java. Otherwise, we could unfold a method body
that refers to some global variable into a context that declares a local variable of
the same name, which would essentially amount to dynamic variable binding.
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Fig. 7. Expression reductions.

2.3.3 Exceptional Reduction. The rules for exception throwing are shown
in Figure 8. System exceptions are thrown almost exactly the same way as in
the big step semantics. Expression throw e is reduced by reducing e as long as
possible and throwing NullPointer if necessary. And this is how try e catch (C V)
e2 is reduced: First we must reduce e. If it becomes a value, the whole expression
evaluates to that value. If it becomes a throw a, there are two possibilities: If a
can be caught, the term reduces to a block with V set to a and body e2, otherwise,
the exception is propagated. Exception propagation for all other constructs is
shown in Figure 9.

It should be noted that {V:T; throw e} can, in general, not be reduced to
throw e because e may refer to the local V which must not escape its scope.
Hence, e must be reduced to an address first.

2.3.4 The Reflexive Transitive Closure. If we write P � 〈e1,s1〉 →∗ 〈en,sn〉,
this means that there is a sequence of reductions P � 〈e1,s1〉 → 〈e2,s2〉, P �
〈e2,s2〉 → 〈e3,s3〉 . . . , and similarly for [→] and [→]∗.

2.4 Well-Formedness

We are now aiming to show that the big and small step semantics are closely
related. For this (and many other proofs), we need to impose various well-
formedness constraints on programs. Some of them are generic, like the con-
straint that the type in a field declaration must be a valid type. Others depend
on the type of method bodies. To factor out the latter constraints, the well-
formedness test on programs will be parameterized by a well-formedness test
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Fig. 8. Exceptional expression reduction.

Fig. 9. Exception propagation.

for methods:

types ′m wf-mdecl-test = ′m prog ⇒ cname ⇒ ′m mdecl ⇒ bool

Tests of this type are meant to check if a certain method declaration in a certain
class within a certain program is well-formed.

Declarations are lists of pairs. In order to forbid repeated declarations of
the same name, we introduce the auxiliary predicate distinct-fst, which checks
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Fig. 10. Generic well-formedness.

that in a list of pairs, all first components are distinct: distinct-fst ≡ distinct
◦ map fst.

The well-formedness predicates are shown in Figure 10. They employ the
following notions from Jinja’s type system: Condition is-type P T checks if T is
a valid Jinja type, P � T ≤ T ′ checks if T is a subtype of T ′, and P � Ts [≤] Ts ′

if, element by element, Ts is a subtype of Ts ′, all in the context of P. We will
only define these notions formally in Section 2.6 because their definition is not
relevant beforehand.

Let us now look at Figure 10. A program is ok (= well-formed) iff it contains
all system classes (Object and all system exceptions), all class declarations are
ok, and no class is declared twice. A declaration of a class C is ok iff all field
declarations and all method declarations are ok, no field or method is declared
twice, and, if C 	= Object, then its superclass D exists and D is not a subclass of
C (to rule out cycles), and method overriding is contravariant in the argument
type and covariant in the result type. In other words, if C overrides a method
declaration visible from D, then the new declaration must have more specific
argument types and a more general result type. Note that overriding involves
only the method name—there is no overloading.

2.4.1 Weak Well-Formedness. We will now instantiate wf-prog with a con-
straint needed for relating big and small step semantics: method bodies should
not refer to global variables. This requires the notion of free variables in an
expression, collected by function fv :: expr ⇒ vname set defined in Figure 11.
A Jinja method declaration is weakly well-formed iff the following conditions
hold: There are as many parameter types as parameter names, the parameter
names are all distinct, this is not among the parameter names, and the free
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Fig. 11. Free variables.

variables of the body refer only to this and the parameter names. Formally,

wwf-J-mdecl :: J-mb wf-mdecl-test
wwf-J-mdecl P C ≡
λ(M, Ts, T, pns, body).

|Ts| = |pns| ∧ distinct pns ∧ this /∈ set pns ∧ fv body ⊆ {this} ∪ set pns.

The key requirement is fv body ⊆ {this} ∪ set pns; it rules out reference to
global variables. This is necessary to make the big and small step semantics
of method call coincide. In the big step semantics, body is evaluated in a store
containing only this and the parameters. In the small step semantics, this and
the parameters are (indirectly) added to the current store, which would lead
to dynamic variable binding (see Section 2.3.2) if body contained free variables
outside {this} ∪ set pns.

The condition |Ts| = |pns| is necessary because we have separated parameter
names from their types. Normally, there is a combined parameter list of pairs
(V, T), just as in field declarations. However, since parameter names do not
make sense on the machine level but parameter types do, we have separated
these two concepts in our generic type of programs.

A Jinja program is weakly well-formed iff all its method bodies are:

wwf-J-prog ≡ wf-prog wwf-J-mdecl

2.5 Relating Big and Small Step Semantics

Our big and small step semantics are equivalent in the following sense:

THEOREM 2.3. If wwf-J-prog P, then
P � 〈e,s〉 ⇒ 〈e ′,s ′〉 iff P � 〈e,s〉 →∗ 〈e ′,s ′〉 ∧ final e ′.

One half of the only-if-direction of Theorem 2.3 is Lemma 2.1, and the other
half is

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.



638 • G. Klein and T. Nipkow

THEOREM 2.4. If wwf-J-prog P and P � 〈e,s〉 ⇒ 〈e ′,s ′〉 then P � 〈e,s〉 →∗

〈e ′,s ′〉.
PROOF. The proof is by induction on ⇒. Most cases follow the simple pattern

that we demonstrate for Cast. First, we lift the subexpression reduction rules
from → to →∗, that is, we show P � 〈e,s〉 →∗ 〈null,s ′〉 =⇒ P � 〈Cast C e,s〉 →∗

〈null,s ′〉, which follows from rule P � 〈Cast C null,s〉 → 〈null,s〉 with the help
of the lemma P � 〈e,s〉 →∗ 〈e ′,s ′〉 =⇒ P � 〈Cast C e,s〉 →∗ 〈Cast C e ′,s ′〉 which
is proved from rule P � 〈e,s〉 → 〈e ′,s ′〉 =⇒ P � 〈Cast C e,s〉 → 〈Cast C e ′,s ′〉 by
induction on →∗. Now, the proposition follows by induction hypothesis.

For blocks (and similarly, for try-catch), the lifting is more complicated:

[[P � 〈e0,(h0, l0(V := None))〉 →∗ 〈e2,(h2, l2)〉; final e2]]

=⇒ P � 〈{V:T; e0},(h0, l0)〉 →∗ 〈e2,(h2, l2(V := l0 V))〉

is proved by induction on →∗ in the premise. The induction step can be proved
via

[[P � 〈e,(h, l(V 
→ v))〉 →∗ 〈e ′,(h ′, l ′)〉; final e ′]]
=⇒ P � 〈{V:T; V := Val v; e},(h, l)〉 →∗ 〈e ′,(h ′, l ′(V := l V))〉

which follows easily from

P � 〈e,(h, l(V 
→ v))〉 →∗ 〈e ′,(h ′, l ′)〉 =⇒
P � 〈{V:T; V := Val v; e},(h, l)〉 →∗ 〈{V:T; V := Val (the (l ′ V)); e ′},(h ′, l ′(V := l V))〉,

which can be proved by induction on →∗ in the premise.
The most complex case is a method call where we have to prove the small

step simulation of the exception-free big step call rule, that is,

[[wwf-J-prog P; P � 〈e,s0〉 →∗ 〈addr a,s1〉; P � 〈es,s1〉 [→]∗ 〈map Val vs,(h2, l2)〉;
h2 a = �(C, fs)�; P � C sees M: Ts→T = (pns, body) in D; |vs| = |pns|;
l2

′ = [this 
→ Addr a, pns [
→] vs]; P � 〈body,(h2, l2
′)〉 →∗ 〈ef ,(h3, l3)〉; final ef

=⇒ P � 〈e.M(es),s0〉 →∗ 〈ef ,(h3, l2)〉]].

It is straightforward to derive P � 〈e.M(es),s0〉 →∗ 〈(addr a).M(es),s1〉 →∗

〈(addr a).M(map Val pvs),(h2,l2)〉 → 〈blks, (h2,l2)〉 (where blks abbreviates
blocks (this·pns, Class D·Ts, Addr a·pvs, body)) from the assumptions. From P
� 〈body,(h2, l2

′)〉 →∗ 〈ef ,(h3, l3)〉 (1) it follows by the easy lemma

P � 〈e,(h, l)〉 →∗ 〈e ′,(h ′, l ′)〉 =⇒ P � 〈e,(h, l0 ++ l)〉 →∗ 〈e ′,(h ′, l0 ++ l ′)〉

(provable by induction) that P � 〈body,(h2, l2(this 
→ Addr a, pns [
→] pvs))〉 →∗

〈ef ,(h3, l2 ++ l3)〉. Now, we can transfer the bindings for this and pns from the
store into blocks to obtain

P � 〈blks,(h2, l2)〉 →∗ 〈ef ,(h3, (l2 ++ l3)(l2|{this} ∪ set pns))〉,

where f (g|A) means λa. if a ∈ A then g a else f a. Finally, we prove (l2 ++
l3)(l2|{this} ∪ set pns) = l2 (2), which finishes the call case. The proof of (2) is
easy once we know dom l3 ⊆ {this} ∪ set pns, which in turn follows from (1)
using the lemma

[[wwf-J-prog P; P � 〈e,(h, l)〉 →∗ 〈e ′,(h ′, l ′)〉]] =⇒ dom l ′ ⊆ dom l ∪ fv e,

which in its turn is proved using the lemma

[[wwf-J-prog P; P � 〈e,(h, l)〉 → 〈e ′,(h ′, l ′)〉]] =⇒ fv e ′ ⊆ fv e,
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The other direction of Theorem 2.3

THEOREM 2.5. If wwf-J-prog P and P � 〈e,s〉 →∗ 〈e ′,s ′〉 and final e ′, then
P � 〈e,s〉 ⇒ 〈e ′,s ′〉.
is proved easily by induction on →∗: the base case is Lemma 2.2, the induction
step follows directly from

THEOREM 2.6. If wwf-J-prog P and P � 〈e,s〉 → 〈e ′′,s ′′〉 and P � 〈e ′′,s ′′〉 ⇒
〈e ′,s ′〉, then P � 〈e,s〉 ⇒ 〈e ′,s ′〉.
It is proved by induction on →. Most cases are straightforward, except for
method call which requires the following three lemmas:

[[|ps| = |Ts|; |ps| = |vs|; P � 〈blocks (ps, Ts, vs, e),(h, l)〉 ⇒ 〈e ′,(h ′, l ′)〉]]
=⇒ ∃ l ′ ′. P � 〈e,(h, l(ps [
→] vs))〉 ⇒ 〈e ′,(h ′, l ′ ′)〉

[[wwf-J-prog P; P � 〈e,(h, l)〉 ⇒ 〈e ′,(h ′, l ′)〉; fv e ⊆ W]] =⇒ P � 〈e,(h, l � W)〉 ⇒ 〈e ′,(h ′, l ′� W)〉,

[[p〈e,(h, l)〉 ⇒ 〈e ′,(h ′, l ′)〉; fv e = {}]] =⇒ l ′ = l.

The notation m � A means restriction of m to A, that is, λx. if x ∈ A then m x else
None. The proofs of these lemmas and the proof of the method call case derived
from them are reasonably straightforward.

Note that the fact that Theorem 2.6 holds is not just a nice coincidence; this
theorem is trivially implied whenever ⇒ and →∗ coincide.

2.6 Type System

Having concluded the dynamic semantics, we now turn to context conditions,
starting with the type system. Jinja types are either primitive (Boolean and
Integer), class types Class C, NT (the type of Null), or Void (the type of Unit).
The corresponding HOL type is called ty. A reference type is either Class C or
NT—predicate is-refT :: ty ⇒ bool tests for reference types.

Types should only refer to classes that exist in the current program:

is-type P T ≡ case T of Class C ⇒ is-class P C | - ⇒ True

Function typeof :: heap ⇒ val ⇒ ty option computes the type of a value. The
heap argument is necessary because values may contain addresses. The result
type is ty option rather than ty because unallocated addresses do not have a
type.

typeofh Unit = �Void�
typeofh Null = �NT�
typeofh (Bool b) = �Boolean�
typeofh (Intg i) = �Integer�
typeofh (Addr a) = (case h a of None ⇒ None | �(C, fs)� ⇒ �Class C�)

If we want to rule out addresses in values, we simply supply an empty heap
and define the abbreviation

typeof v ≡ typeof empty v.
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Fig. 12. Typing rules.

The subclass relation P � C �∗ C ′ induces a subtype relation P � T ≤ T ′ (often
called widening) in the obvious manner:

P � T ≤ T P � NT ≤ Class C
P � C �∗ D

P � Class C ≤ Class D
.

The pointwise extension of ≤ to lists of types is written [≤].
The core of the type system is the judgement P,E � e :: T, where E is an

environment, that is, a map from variables to their types. The complete set of
typing rules is shown in Figure 12. We only discuss the more interesting ones,
starting with field access and field assignment. Their typing rules do not just
enforce that the types fit together, but also that the annotation {D} is correct:
{D} must be the defining class of the field F visible from the static class of the
object.
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Now we examine the remaining rules for P, E � e :: T. We only allow up and
down casts: other casts are pointless because they are bound to fail at runtime.
The rules for e1 �= e2 and if (e) e1 else e2 follow Java (with its conditional
operator ? : rather than its if-else) in requiring that the type of e1 is a subtype
of that of e2 or conversely. Loops are of type Void because they evaluate to unit.
Exceptions (throw) are of type Void, as in Java. They could also be polymorphic,
but that would complicate the type system. The rule for try e1 catch (C V) e2

follows Java (where e1 and e2 must be statements) in requiring that e1 and e2

have the same type.
The extension of :: to lists is denoted by [::].
Although the rules for P,E � e :: T can be viewed as computing the annotations

{D} (via the constraint on D), an explicit computation P,E � e � e ′ may be more
clear: The input e is an unannotated expression, and the output e ′ its annotated
version. Here are two representative rules, one that just copies, and one that
adds an annotation:

P,E � e � e ′

P,E � Cast C e � Cast C e ′

P,E � e � e ′ P,E � e ′ :: Class C P � C sees F :T in D

P,E � e.F � e ′.F{D}

We also determine if some Var V really refers to a variable or to a field. In the
latter case, it is prefixed by this and annotated:

E V = �T�
P,E � Var V � Var V

E V = None E this = �Class C� P � C sees V :T in D

P,E � Var V � Var this.V{D} .

Thus � should be viewed as a translation that is part of type checking. As we
do not refer to it again, we need not show the remaining (obvious) rules.

2.7 Definite Assignment

One of Java’s notable features is the check that all variables must be assigned to
before use, called “definite assignment.” Jinja’s rules for definite assignment are
much simpler than Java’s, thus missing certain cases, but nonetheless demon-
strating the feature in its full generality. We employ two recursive functions

D :: expr ⇒ vname set option ⇒ bool A :: expr ⇒ vname set option.

For a moment, ignore the option type. Then,D e A is meant to check if evaluation
of e starting from any state where all variables in A are initialized only accesses
initialized variables. The auxiliary function A e computes the set of variables
that have been assigned after any normal evaluation of e.

The need for option arises because of throw: What should A (throw e) return?
We use None to indicate that the expression will always fail. However, we should
already think of set option as a completion of set with a top element None
representing the universal set of all variable names (called UNIV). We will
discuss this issue again in the following, but first we look at the definition of
D (Figure 13) and A (Figure 14). They use the auxiliary operations �, �, �, �,
and ∈∈ ( Figure 15) which extend ∪, ∩, −, and ⊆ from set to set option, treating
None (almost) as the universal set.
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Fig. 13. Definition of D.

Fig. 14. Definition of A.

Fig. 15. Operations on set option.
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The rules for D and A are essentially straightforward and we just discuss a
few of those defining A: Evaluating if (e) e1 else e2 guarantees all assignments
that e guarantees, and those that both e1 and e2 guarantee; evaluating while
(b) e guarantees only the assignments in b because e may never be evaluated;
evaluating {V:T; e} cannot assign to V, because its V is local. The test D e A
is even more uniform. It descends into all subexpressions of e in the order in
which they are evaluated, extends A according to A, and every time it comes
across some Var V, it checks if V ∈∈ A, that is, if V has definitely been assigned
to beforehand.

Monotonicity of D is proved by induction on e:

LEMMA 2.7. If D e A and A � A ′ then D e A ′.

Let us now return to the question of None vs. UNIV. If we worked with set as
opposed to set option, we would need to defineA (throw ) = UNIV to ensure that
A (if (e) throw else e2) =A e ∪A e2, that is, thatA (throw ) does not reduce the
overall result, which should only reflect normal evaluations. Returning UNIV
in the case of guaranteed throw is what Schirmer [2003] chooses. For a start,
this loses direct executability, as UNIV is not a finite set. What is worse, in Jinja
it would lead to undesirable imprecision of the analysis. Let e be the expression
if (Var B) {V:T; throw } else V := true. We would obtain A {V:T; throw } =
UNIV − {V}, A e = {}, and hence, ¬ D (e; V := Var V) {B}, contrary to what
we would expect. This is where None comes in: We would like UNIV − {V} =
UNIV, but since this does not hold, we introduce None as the new top element
of the lattice and define � such that None � V = None. Schirmer [2003] gets
away with UNIV because he does not allow the aforementioned e; it contains
both a local and a global V, something that Java forbids. In Jinja, however, we
do not want to ban nested declarations of the same variable, which cripples the
classic block structure.

2.8 Well-Formed Jinja Programs

Well-formedness of Jinja method declarations

wf-J-mdecl P C (M, Ts, T, pns, body) ≡
|Ts| = |pns| ∧ distinct pns ∧ this /∈ set pns ∧
(∃ T ′. P,[this 
→ Class C, pns [
→] Ts] � body :: T ′ ∧ P � T ′ ≤ T) ∧
D body �{this} ∪ set pns�

extends weak well-formedness (Section 2.4.1) by requiring that method bodies:
(a) are well-typed with a subtype of the declared return type, and (b) pass the
definite assignment test assuming only this and the parameters are initialized.
A Jinja program is well-formed iff all its method bodies are

wf-J-prog ≡ wf-prog wf-J-mdecl

2.9 Type Safety

In Section 2.9 we prove type safety in the traditional syntactic way [Wright and
Felleisen 1994]: we show progress (every well-typed expression that is not final
can reduce) and subject reduction (well-typed expressions reduce to well-typed
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expressions and their type may only become more specific). These inductive
proofs need a number of new notions (invariants) to go through.

2.9.1 Conformance. This expresses that semantic objects conform to their
syntactic description. Let vm be a map to values and Tm be a map to types:

Conformance of values to types.

P,h � v :≤ T ≡ ∃ T ′. typeofh v = �T ′� ∧ P � T ′ ≤ T

Conformance of fields to types.

P,h � vm (:≤) Tm ≡ ∀ FD T. Tm FD = �T� −→ (∃ v. vm FD = �v� ∧ P,h � v :≤ T)

Weak conformance of local variables to types.

P,h � vm (:≤)w Tm ≡ ∀ V v. vm V = �v� −→ (∃ T. Tm V = �T� ∧ P,h � v :≤ T)

Conformance of objects.

P,h � obj
√ ≡

let (C, vm) = obj in ∃ FDTs. P � C has-fields FDTs ∧ P,h � vm (:≤) map-of FDTs

Conformance of heaps.

P � h
√ ≡ (∀ a obj. h a = �obj� −→ P,h � obj

√
) ∧ preallocated h

preallocated h ≡ ∀ C∈sys-xcpts. ∃ fs. h (addr-of-sys-xcpt C) = �(C, fs)�

Conformance of states.

P,E � s
√ ≡ let (h, l) = s in P � h

√ ∧ P,h � l (:≤)w E

Note that (:≤) says that all declared fields must have values of the right
type, whereas (:≤)w says that only initialized variables must have values of
the right type. This reflects the difference in initialization of fields and local
variables.

2.9.2 Runtime Type System. The proof of subject reduction requires a mod-
ified type system. The purpose of � :: ( Figure 12) is to rule out not just unsafe
expressions, but ill-formed ones in general. For example, assignments to this
are considered bad style and are thus ruled out, although such assignments are
perfectly safe (and are in fact allowed in the JVM). But now we need a type sys-
tem that is just strong enough to characterize absence of type safety violations
and is invariant under reduction. For a start, during reduction, expressions
containing addresses may arise. To make them well-typed, the runtime type
system [Drossopoulou and Eisenbach 1999] also takes the heap into account
(to look up the class of an object) and is written P,E,h � e : T. But there are
more subtle changes exemplified by the rule for field access: P,E � e.F{D} :: T
requires P � C sees F:T in D if e is of class C. If e reduces to an object belonging
to a subclass of C, this condition may no longer be met. Thus, we relax this to
P � C has F:T in D which is preserved by reduction and is still strong enough
to imply type safety. It is interesting to note that this change was missed by
Flatt et al. [1999], which invalidates their Lemma 6 and thus subject reduction.
Please keep in mind that the runtime type system is a purely technical device
needed in the proof of type safety.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.



A Machine-Checked Model for a Java-Like Language • 645

Fig. 16. Core of runtime typing rules.

In Figure 16 we show only those rules for � : (and � [:]) that differ from their
::-counterpart beyond the addition of h. The most frequent change is the fol-
lowing. Expressions that are required to be of class type by :: may reduce to
null. In order to preserve well-typedness we have to add rules for the cases e ::
NT in e.F{D}, e.F{D} := e2, and e.M(es). Note that we lose uniqueness of typing:
null.F{D} unavoidably does not even have a unique least type anymore. A sim-
ilar situation arises with throw e and Cast C e, where we avoid an additional
rule by requiring e to be of reference type (which includes NT). For try e1 catch
(C V) e2, we no longer require e1 and e2 to have the same type because reduction
of e1 may also have reduced its type. Then there is the change from sees to has
for field access and update. And finally, we drop two preconditions in the rules
for V := e and {V:T; e} just to show that they are orthogonal to type safety.

2.9.3 The Type Safety Proof. Under suitable conditions we can now show
progress:

LEMMA 2.8. (Progress) If wwf-J-prog P and P � h
√

and P,E,h � e : T and
D e �dom l� and ¬ final e, then ∃ e ′ s ′. P � 〈e,(h, l)〉 → 〈e ′,s ′〉.
The proof is by induction on P,E,h � e : T. Because of the special treatment
of {V:T; V := Val v; }, we need a slightly modified induction scheme with a
separate rule for this case. Alternatively, we can do an induction on the size of
e.

Let us examine the necessity for the individual premises. Weak well-
formedness of P is needed to ensure that each method declaration has as many
parameter types as parameter names, a precondition of the method call rule.
In addition, well-formedness is necessary for the following subtle reason: Even
if P defines a class C, relations has-fields (needed for the reduction of new)
and sees (needed for the reduction of method calls) are only defined if P is
well-formed because acyclicity is needed in the traversal of the class hierarchy.
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Well-typedness of e is needed, for example, to ensure that in every method call,
the number of formal and actual parameters agrees. Heap conformance (P �
h

√
) is needed because otherwise, an object may not have all the fields of its

class and field access may get stuck. Definite assignment is required to ensure
that variable access does not get stuck.

Eventually, we show that a sequence of reductions preserves well-typedness
by showing that each reduction preserves well-typedness. However, preserva-
tion of well-typedness requires additional assumptions, for example, confor-
mance of the initial heap. Thus, we need to show conformance of all intermedi-
ate heaps, that is, preservation of heap conformance with each step. We need
three auxiliary preservation theorems which are all proved by induction on
P � 〈e,(h, l)〉 → 〈e ′,(h ′, l ′)〉:

THEOREM 2.9. If P � 〈e,(h, l)〉 → 〈e ′,(h ′, l ′)〉 and P,E,h � e : T and P � h
√

then P � h ′ √.

THEOREM 2.10. If P � 〈e,(h, l)〉 → 〈e ′,(h ′, l ′)〉 and P,E,h � e : T and P,h �
l (:≤)w E, then P,h ′ � l ′ (:≤)w E.

THEOREM 2.11. If wf-J-prog P and P � 〈e,(h, l)〉 → 〈e ′,(h ′, l ′)〉 and D e
�dom l�, then D e ′ �dom l ′�.

Because preservation of definite assignment has not been treated in the
literature before, we look at a typical case in detail: sequential composition.
We assume D (e; e2) �dom l�, that is, D e �dom l� ∧ D e2 (�dom l� � A e) and
have to show D (e ′; e2) �dom l ′�, that is, D e ′ �dom l ′� ∧ D e2 (�dom l ′� � A e ′).
From D e �dom l� it follows by induction hypothesis that D e ′ �dom l ′�, and from
D e2 (�dom l� � A e) it follows with lemma

P � 〈e,(h, l)〉 → 〈e ′,(h ′, l ′)〉 =⇒ �dom l� � A e � �dom l ′� � A e ′

(which is proved by induction over →) together with monotonicity of D that
D e2 (�dom l ′� � A e ′), thus concluding the case.

The main preservation theorem is single step subject reduction:

THEOREM 2.12. If wf-J-prog P and P � 〈e,s〉 → 〈e ′,s ′〉 and P,E � s
√

and
P,E,hp s � e : T, then ∃ T ′. P,E,hp s ′ � e ′ : T ′ ∧ P � T ′ ≤ T.

The proof is again by induction on →.
Now we extend subject reduction to →∗. To ease notation we introduce the

following definition

P,E,s � e : T
√ ≡ P,E � s

√ ∧ P,E,hp s � e : T.

Now we can combine the auxiliary preservation theorems and subject reduction:

[[wf-J-prog P; P � 〈e,s〉 → 〈e ′,s ′〉; P,E,s � e : T
√

]]

=⇒ ∃ T ′. P,E,s ′ � e ′ : T ′ √ ∧ P � T ′ ≤ T.

Induction yields the final form of subject reduction:

THEOREM 2.13. If wf-J-prog P and P � 〈e,s〉 →∗ 〈e ′,s ′〉 and P,E,s � e : T
√

,
then ∃ T ′. P,E,s ′ � e ′ : T ′ √ ∧ P � T ′ ≤ T.
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Combining this theorem, the extension of Theorem 2.11 to →∗, and progress,
and replacing the runtime type system by the original one yields

COROLLARY 2.14. (Type Safety) if wf-J-prog P and P,E � s
√

and P,E � e :: T
and D e �dom (lcl s)� and P � 〈e,s〉 →∗ 〈e ′,s ′〉 and 	 ∃e ′′ s ′′. P � 〈e ′,s ′〉 → 〈e ′′,s ′′〉
then (∃ v. e ′ = Val v ∧ P,hp s ′ � v :≤ T) ∨ (∃ a. e ′ = Throw a ∧ a ∈ dom (hp s ′)).

If the program and the initial state are ok, and the expression is well-typed
(w.r.t. � ::) and has the definite assignment property, then reduction to normal
form either yields a value of a subtype of the initial expression or throws an
existing object.

Note that we intentionally leave out the details of many of these proofs be-
cause type safety proofs abound in the literature.

2.10 Related Work

Most closely related to our work is that of Nipkow and Oheimb [1998, 1999],
which provided the starting point for our big step semantics. Also closely re-
lated is the small step semantics by Drossopoulou and Eisenbach [1999]. The
main difference is that they distinguish three very similar languages and trans-
form from one into the next, whereas we have intentionally started with the
“enriched language” (hence the class annotations in field references) and have
taken care to identify it with the “runtime language.” There are also a num-
ber of smaller differences (for example, we have omitted interfaces and arrays
for space reasons, although they were present in our previous work [Nipkow
and Oheimb 1998]), in particular, the way in which method calls are unfolded.
We use local variables to hold the parameter values, whereas they choose new
names and add those to the store. A name is new if it is not yet in the domain of
the store. This scheme would need to be refined in a language like Jinja, where
we can have uninitialised local variables. Also closely related is the small step
semantics by Flatt et al. [1999] who define a much smaller subset of Java with-
out mutable variables. Nobody seems to have connected these two styles of Java
semantics before except Nipkow [2005], who obtained an even closer correspon-
dence, but at the cost of allowing dynamic binding in the big step semantics, as
well. Syme [1999] formalised the work by Drossopoulou and Eisenbach [1999]
in his theorem prover DECLARE. The main difference is that his store is a
list of maps, one for each method invocation. DECLARE, just like Isar [Wen-
zel 2002], aims at readable proofs. Ancona et al. [2001] analyse a feature of
Java we have ignored, namely, the possibility of declaring which exceptions a
method may raise. This leads to very subtle interactions between type system
and exceptions. Schirmer [2004] has analysed the interaction of packages and
access modifiers. On the other end of the spectrum, we have Featherweight
Java [Igarashi et al. 2001], a minimal subset of Java which was used to study
type soundness proofs. On the borderline of program verification, we have the
denotational semantics of Java by Huisman [2001]. Further aspects formalised
in the literature but beyond the scope of this article include multithreading,
dynamic class loading, inner classes, generic classes, and mixins.
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3. JINJA VIRTUAL MACHINE

This section presents the machine model of the Jinja virtual machine (Sec-
tion 3.1) and its operational semantics, first without (Section 3.2) and then
with (Section 3.3) runtime type checks.

3.1 Machine Model

The model of the Jinja VM comprises the state space and the definition of
method bodies. The state space of the Jinja VM is modelled closely after the
Java VM. The state consists of a heap, a stack of call frames, and a flag signifying
whether an exception was raised (and if yes, a reference to the exception object).

types jvm-state = addr option × heap × frame list

The heap is the same as in the source language. The exception flag corre-
sponds to the expression throw in the source language. The frame list is new.

Each method execution gets its own call frame containing its own operand
stack (a list of values), its own set of registers2 for local variables (also a list of
values), and its own program counter. We also store the class and name of the
method and arrive at:

types frame = opstack × registers × cname × mname × pc
opstack = val list
registers = val list

It will turn out that the list of local variables is of fixed length, that is, it does
not change with program execution. In fact, it is only modified and accessed
by updating and indexing it at some position. Hence it can be implemented as
an array. The size of the operand stack may change during execution, but here
the maximum size is known statically. This enables efficient implementation
for the stack, as well. Although the registers do not exclusively store the local
variables of the method, but also its parameters and this-pointer, we use the
terms registers and local variables interchangeably when the distinction is not
important or clear from the context.

The instruction set of the Jinja VM is listed in Figure 17. The instructions
are a bit more abstract than comparable Java VM instructions, but no further
conceptual simplifications have been made. In Java, there is, for instance, a
separate Load instruction for most of the basic machine types, while in Jinja
there is only one polymorphic instruction. The more high-level instructions
(that may seem to be a substantial simplification of a real machine such as
Getfield, Putfield, and Invoke) have a direct correspondence to instructions
in the Java VM.

Method bodies are lists of instructions together with an exception table and
two numbers, mxs and mxl0. These latter are the maximum operand stack
size and the number of local variables (not counting the this-pointer and the

2We deliberatly deviate here from the nomenclature of the JVM specification that calls these local
variables. They hold the this-pointer, the parameters, and what would be the local variables in

the source language. It will be important to distinguish between these in the discussion about the

compiler to follow.
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Fig. 17. The Jinja bytecode instruction set.

parameters of the method, which are stored in the first 0 to n registers). So, the
type parameter ′m for method bodies gets instantiated with nat × nat × instr
list × ex-table:

types jvm-method = nat × nat × instr list × ex-table
jvm-prog = jvm-method prog

The exception table is a list of tuples (f , t, C, h, d):

types ex-table = (nat × nat × cname × nat × nat) list

The asymmetric interval [f , t) denotes those instructions in the method body
that correspond to the try block on the source level. The handler pc h points
to the first instruction of the corresponding catch block. The code starting at
h is the exception handler, and d is the size of the stack the exception handler
expects. An exception handler protects a program position pc iff pc ∈ [f ,t). An
exception table entry matches an exception E if the handler protects the current
pc and if the class of E is a subclass of C.

3.2 Operational Semantics

This section defines the state transition relation of the Jinja VM.
For easy direct executability, our main definition of the operational semantics

of the Jinja VM is written in a functional rather than a relational style. The
function exec :: jvm-prog ⇒ jvm-state ⇒ jvm-state option describes one-step
execution:

exec P (xp, h, []) = None

exec P (�a�, h, frs) = None

exec P (None, h, (stk, loc, C, M, pc)·frs) =
(let i = (instrs-of P C M)[pc]; (xp ′, h ′, frs ′) = exec-instr i P h stk loc C M pc frs
in �case xp ′ of None ⇒ (None, h ′, frs ′)

| �a� ⇒ find-handler P a h ((stk, loc, C, M, pc)·frs)�)
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This says that execution halts if the call frame stack is empty or if an unhan-
dled exception has occurred. In all other cases, execution is defined: Function
exec decomposes the top call frame, retrieves the instruction list of the cur-
rent method via instrs-of, delegates actual execution for single instructions to
exec-instr, and finally sets the pc to the appropriate exception handler (with
find-handler) if an exception has occurred.

The function instrs-of selects the instruction sequence of method M in class
C of program P. As the operational semantics of the Jinja VM at this level is
phrased in a functional rather than a relational style, we turn the field and
method accessor relations of Section 2.1.4 into functions. To look up methods,
we use method, to look up fields, we use field. They satisfy:

P � C sees M: Ts→T = m in D =⇒ method P C M = (D, Ts, T, m)

P � C sees F:T in D =⇒ field P C F = (D, T).

Exception handling in find-handler (definition omitted) is similar to the Java
VM: It looks up the exception table in the current method, and sets the program
counter to the first handler that protects pc and that matches the exception
class. If there is no such handler, the topmost call frame is popped, and the
search continues recursively in the invoking frame. If no exception handler is
found, the exception flag remains set and the machine halts. If this procedure
does find an exception handler (f , t, C, h, d), it cuts down the operand stack of
the frame to d elements, puts a reference to the exception on top, and sets the
pc to h. This is different from the Java VM, where the stack is always emptied.
Thus, exception handling in the Jinja VM is a generalisation of the Java VM
where d is always 0. Leaving a number of elements on the stack gives us a nice
way to translate the try-catch constructs of the source language that handle
exceptions in the middle of an expression, as opposed to just on the statement
level as in Java.

For some proofs the relational view is more convenient than the functional
one. Therefore, we also define the one-step state transition relation:

P � σ
jvm−→1 σ ′ = (exec P σ = �σ ′�).

The state transition relation
jvm−→ for any finite number of steps is the reflexive

transitive closure of
jvm−→1.

The definition of exec-instr in Figure 18 is large, but straightforward. The pa-
rameters of exec-instr are the following: the instruction to execute, the program
P, the heap h, the operand stack stk and local variables loc of the current call
frame, the class C0 and name M0 of the method that is currently executed, the
current pc, and the rest of the call frame stack frs. One of the smaller definitions
in exec-instr is the one for the IAdd instruction:

exec-instr IAdd P h (Intg i2 · Intg i1 · stk) loc C0 M0 pc frs =
(None, h, (Intg (i1 + i2) · stk, loc, C0, M0, pc + 1) · frs).

This takes the top two values as integers from the stack, adds them, and puts
the result back onto the stack. The program counter is incremented, the rest
remains untouched.
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Fig. 18. Single-step execution.
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Most instructions in Figure 18 are of this simple form. Some of them use
new functions: hd and tl return the head and tail of a list, and the destructor
the-Addr is defined by the equality the-Addr (Addr a) = a. The New instruction
needs new-Addr, which was introduced in Section 2.2. A new object of class
C with all fields set to default values is produced by blank P C (not shown).
Remember that the field part of objects is a map from name and defining class
to value, so fs (F, C) used for Getfield and Putfield is the value of field F
defined in class C. The Checkcast instruction uses cast-ok P C h v (also not
shown) to check if the value v is an address that points to an object of, at least,
class C.

The definition for Invoke M n is the most complex: It first uses take n stk to
get the the first n elements of the stack (the parameters in reverse order), then it
looks up the dynamic class C of the object, determines the correct method (using
method P C M), and finally constructs the new state. If the object reference r
is Null, an exception is thrown, otherwise a new call frame for the invoked
method is prepared. The new call frame has an empty operand stack, the object
reference r as the this-pointer in local variable 0, the parameters (rev ps is ps in
reverse order) in the next n variables, and the rest of the local variables filled
with a dummy value arbitrary (replicate n v is a list of length n that contains
only v-elements). The new call frame also records the method (defining class D
and name M), and has the pc set to 0.

It is in this Invoke context that Return is best understood: If the current
frame is the only one on the frame stack, the machine halts; if the current
frame is not the only one, then the next frame on the stack must be the caller
where the corresponding Invoke occurred. The Return instruction removes the
current frame from the call stack and manipulates the caller frame. In the
caller, it drops the parameters and the object reference, that is, n + 1 elements,
from the stack (drop n xs is the dual to take n xs), puts the return value v on
top, and increments the pc.

This style of VM is also called aggressive because it does not perform any
runtime type or sanity checks. It just assumes that everything is as expected,
for example, for IAdd it assumes that there are indeed two integers on the stack.
If the situation is not as expected, the operational semantics is unspecified at
this point. In Isabelle, this means that there is a result (because HOL is a logic
of total functions), but nothing is known about that result. It is the task of the
bytecode verifier to ensure that this does not occur.

3.3 A Defensive VM

Although it is possible to prove type safety by using the aggressive VM alone, it
is crisper to write and more obvious to see what the bytecode verifier guarantees
when we additionally look at a defensive VM. The defensive VM builds on the
aggressive one by performing extra type and sanity checks. We can then state
the type safety theorem by saying that these checks will never fail if the bytecode
is well-typed. This differs from the approach of Wright and Felleisen [1994] that
we follow for the source language, where we prove progress and preservation
instead. The separation into exec-instr and check-instr allows us to write the
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semantics in a functional rather than relational style at the single-step level.
This in turn results in a higher degree of automation in the proofs.

To indicate type errors, we introduce another data type.

datatype ′a type-error = TypeError | Normal ′a

Similar to Section 3.2, we build on a function check-instr that is lifted over
several steps. At the deepest level, we take apart the state, check if the current
method exists, feed check-instr with parameters (which are the same as for
exec-instr), and check that pc and stack size are valid:

check P σ ≡
let (xcpt, h, frs) = σ

in case frs of [] ⇒ True
| (stk, loc, C, M, pc)·frs ′ ⇒

P � C has M ∧
(let (C ′, Ts, T, mxs, mxl0, ins, xt) = method P C M; i = ins[pc]

in pc < |ins| ∧ |stk| ≤ mxs ∧ check-instr i P h stk loc C M pc frs ′).

The next level is the one-step execution of the defensive VM, which stops in
the case of a type error. If there is no type or other kind of error, it simply calls
the aggressive VM:

execd P σ ≡ if check P σ then Normal (exec P σ ) else TypeError.

Again, we also define the relational view. This time, it is easier to give two

introduction rules for
djvm−→

execd P σ = TypeError

P � Normal σ
djvm−→ 1 TypeError

execd P σ = Normal �σ ′�
P � Normal σ

djvm−→ 1 Normal σ ′
.

We write
djvm−→ for the reflexive transitive closure of

djvm−→ 1.
It remains to define check-instr, the heart of the defensive Jinja VM. We do

so in Figure 19. The IAdd case looks like this:

check-instr IAdd P h stk loc C0 M0 pc frs = (1 < |stk| ∧ is-Intg (hd stk) ∧ is-Intg (hd (tl stk)))

IAdd requires that the stack has at least two entries (1 < |stk|), and that these
entries are of type Integer (checked with the is-Intg function). For Load and
Store there are no type constraints because they are polymorphic in Jinja. In
the Java VM, the definition would be in the style of IAdd, requiring integer for
iload, float for fload, and so on. The discriminator functions is-Addr and is-Ref
in Figure 19 do the obvious.

Because of its size, we also take a closer look at the instruction Getfield:

check-instr (Getfield F C) P h stk loc C0 M0 pc frs =
(0 < |stk| ∧ (∃ C ′ T. P � C sees F:T in C ′) ∧
(let (C ′, T) = field P C F; ref · = stk
in C ′ = C ∧ is-Ref ref ∧

(ref 	= Null −→
h (the-Addr ref ) 	= None ∧
(let �(D, vs)� = h (the-Addr ref ).
in P � D �∗ C ∧ vs (F, C) 	= None ∧ P,h � the (vs (F, C)) :≤ T)))).
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Fig. 19. Type checks in the defensive Jinja VM.

The Getfield F C instruction is supposed to access the object reference on top
of the stack, remove it from the stack, and put the value of field F defined in
class C onto the stack instead. To ensure that this can work without errors,
the first two conjuncts in this definition demand that the stack is large enough
to hold the object reference, and that the field F is visible from class C. The
let-part collects the defining class and the type of field F, as well as the object
reference. The next line checks that the field is of the right class (C ′ = C) and

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.



A Machine-Checked Model for a Java-Like Language • 655

Fig. 20. Aggressive and defensive Jinja VM commute if there are no type errors.

that we are indeed dealing with an object reference. If that reference does not
happen to be Null, the heap at position ref must contain an object of a subclass
of C, the object must contain a field F (vs (F, C) 	= None), and the field value
must be of the type that was declared for the field. The Putfield instruction
works analogously.

It is easy to see that defensive and aggressive VMs have the same operational
one-step semantics if there are no type errors.

THEOREM 3.1. One-step execution in aggressive and defensive machines com-
mutes if there are no type errors.

execd P σ 	= TypeError =⇒ execd P σ = Normal (exec P σ )

Figure 20 depicts this result as a commuting diagram. The proof is trivial (and
fully automatic in Isabelle) because the defensive VM is constructed directly
from the aggressive one.

For executing programs, we will later also need a canonical start-state. In
the Java VM, a program is started by invoking its static main method. We
start the Jinja VM by invoking any existing method M (without parameters)
in a class C. We define the canonical start-state start P C M as the state with
exception flag None, a heap start-heap P, and a frame stack with one element.
The heap start-heap P contains the preallocated system exceptions and is oth-
erwise empty. The single frame has an empty operand stack, the this-pointer
set to Null, the rest of the register set filled up with a dummy value arbitrary,
the class entry set to C, the name to M, and the program counter to 0.

start-state P C M ≡
let (D, Ts, T, mxs, mxl0, b) = method P C M
in (None, start-heap P, [([], Null·replicate mxl0 arbitrary, C, M, 0)])

This concludes the formalisation of the Jinja VM. It will serve as the basis
for the proof of type safety to follow.

3.4 Related Work

Most closely related to the virtual machine formalisation presented here is the
Ph.D. thesis by Klein [2003].The authors Barthe et al. [2001] use the Coq system
for a similar formalisation of the Java VM, and Liu and Moore [2003] show one
of the most comprehensive executable models of the KVM (a restricted JVM for
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Fig. 21. Example of a method well-typing.

embedded devices) in the theorem prover ACL2. Cohen [1997] was the first to
propose the concept of a defensive Java VM and to formalise it in a theorem
prover. Bertelsen [1997] was one of the first to give a formal semantics for
the JVM. Most publications about Java’s bytecode verifier contain some form
of reference virtual machine, be that in the form of a traditional small step
semantics or in an explicitly executable format in a theorem prover. Instead of
recounting all of these, here we refer the reader to the overview articles [Alves-
Foss 1999; Hartel and Moreau 2001; Nipkow 2003a] and to the related work
section on bytecode verification in Section 4.11.

4. BYTECODE VERIFIER

The JVM relies on the following assumptions for executing bytecode:

Correct Types. All bytecode instructions are provided with arguments of the
type they expect on operand stack, registers, and heap.

No Overflow and Underflow. No instruction tries to retrieve a value from the
empty stack, nor puts more elements on the stack than statically specified in
the method, nor accesses more registers than statically specified in the method.

Code Containment. The program counter is always within the code array of
the method. Specifically, it must not fall off the end of the method’s code.

Initialised Registers. All registers apart from the this-pointer and the method
parameters must be written to before they are first read. This corresponds to
the definite assignment requirement for local variables on the source level.

It is the purpose of the bytecode verifier (BV) to ensure statically that these
assumptions are met at any time during execution.

Bytecode verification is an abstract interpretation of bytecode methods: in-
stead of values, we only consider their types. A state type characterises a set of
runtime states by giving type information for the operand stack and registers.
For example, the first state type in Figure 21 ([],[Class B, Integer]) characterises
all states whose stacks are empty, whose register 0 contains a reference to an
object of class B (or to a subclass of B), and whose register 1 contains an integer.
A method is called well-typed if we can assign a well-typing to each instruction.
A state type (ST, LT) is a well-typing for an instruction if it is consistent with
the successors of the instruction and if the instruction can be executed safely
in any state whose stack is typed according to ST and whose registers are
typed according to LT. In other words, the arguments of the instruction are
provided in the correct number, order, and type. We explain consistent in the
following.
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The example in Figure 21 shows the instructions on the left and the types of
stack elements and registers on the right. The method type is the full righthand
side of the table, a state type is one line of it. The type information attached
to an instruction characterises the state before execution of that instruction.
The �. . .� around each entry means that it was possible to predict some type
for each instruction. If one of the instructions had been unreachable, the type
entry would have been None. We assume that class B is a subclass of A and
that A has a field F of type A.

Execution starts with an empty stack and the two registers holding a refer-
ence to an object of class B and an integer. The first instruction loads register 0,
a reference to a B object, on the stack. The type information associated with
the following instruction may puzzle at first sight: It says that a reference to
an A object is on the stack, and that usage of register 1 may produce an error.
This means the type information has become less precise but is still correct; a
B object is also an A object and an integer is now classified as unusable (Err).
The reason for these more general types is that the predecessor of the Store
instruction may have either been Load 0 or Goto −3. Since there exist different
execution paths to reach Store, the type information of the two paths has to be
merged. The type of the second register is either Integer or Class A, which are
incompatible; the only common supertype is Err.

Bytecode verification is the process of inferring the types on the right from
the instruction sequence on the left and some initial condition, and of ensur-
ing that each instruction receives arguments of the correct type. Type infer-
ence is the computation of a method type from an instruction sequence, and
type checking means checking that a given method type fits an instruction
sequence.

Figure 21 is an example of a well-typed method: We are able to find a well-
typing. If we change the third instruction from Load 0 to Store 0, the method
will not be well-typed. The Store instruction would try to take an element from
the empty stack and could therefore not be executed.

In the following, we will formalise the Jinja bytecode verifier by introduc-
ing an abstract framework for well-typedness, then we will instantiate this
framework in Sections 4.6 and 4.7 to get a description of well-typedness for
Jinja VM programs. In addition, we will get an executable program that com-
putes these well-typings in Sections 4.8 and 4.9. Finally, we show in Sec-
tion 4.10 that execution of well-typed programs is safe in the sense motivated
previously.

The typing framework uses semilattices (Section 4.1) and an abstract trans-
fer function to describe well-typings (Section 4.2). After detailing which con-
straints on the transfer function are necessary to obtain an executable al-
gorithm in Section 4.3 and refining the transfer function to make instantia-
tion easier in Section 4.4, we show an implementation of Kildall’s algorithm
within the framework (Section 4.5). As the framework itself has already ap-
peared elsewhere [Klein 2003; Klein and Nipkow 2003; Nipkow 2001], we
will keep its description brief and only reproduce the main definitions and
properties.
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4.1 Semilattices

This section introduces the formalisation of the basic lattice-theoretic concepts
required for data flow analysis and its application to the JVM.

4.1.1 Partial Orders. Partial orders are formalised as binary predicates.
Based on the type synonym ′a ord = ′a ⇒ ′a ⇒ bool and the notations x �r y ≡
r x y and x �r y ≡ x �r y ∧ x 	= y, r :: ′a ord is by definition a partial order iff the
predicate order :: ′a ord ⇒ bool holds for r:

order r ≡
(∀ x . x �r x) ∧ (∀ x y . x �r y ∧ y �r x −→ x = y) ∧ (∀ x y z . x �r y ∧ y �r z −→ x �r z)

A partial order r satisfies the ascending chain condition on A if there is no
infinite ascending chain x0 �r x1 �r . . . in A, and # is called a top element if
x �r # for all x. Instead of “no infinite ascending chain,” we require in Isabelle
the equivalent “the converse of r is well-founded.”

acc r ≡ wf {(y, x) | x �r y} top r # ≡ ∀ x. x �r #.

4.1.2 Semilattices. Based on the supremum notation x �f y ≡ f x y and the
two type synonyms ′a binop = ′a ⇒ ′a ⇒ ′a and ′a sl = ′a set × ′a ord × ′a binop,
the tuple (A,r,f ) :: ′a sl is by definition a semilattice iff the predicate semilat ::
′a sl ⇒ bool holds:

semilat (A, r, f ) ≡
order r ∧ closed A f ∧ (∀ x ∈ A . ∀ y ∈ A . x �r x �f y) ∧ (∀ x ∈ A . ∀ y ∈ A . y �r x �f y) ∧
(∀ x ∈ A . ∀ y ∈ A . ∀ z ∈ A . x �r z ∧ y �r z −→ x �f y �r z),

where closed A f ≡ ∀ x ∈ A . ∀ y ∈ A . x �f y ∈ A.
Data flow analysis is usually phrased in terms of infimum semilattices. Here,

a supremum semilattice fits better with the intended application where the
ordering is the subtype relation and the join of two types is the least common
supertype (if it exists).

The next sections look at a few data types and the corresponding semilattices
which are required for the construction of the Jinja VM bytecode verifier. The
definition of those semilattices follows a pattern: They lift an existing semi-
lattice to a new semilattice with more structure. They extend the carrier set
and define two functionals, le and sup, that lift the ordering and supremum
operation to the new semilattice. In order to avoid name clashes, Isabelle pro-
vides separate name spaces for each theory. Qualified names are of the form
Theoryname.localname, and they apply to constant definitions and functions
as well as type constructions. So, Err.sup later on refers to the sup functional
defined for the error type in Section 4.1.3.

Let (A, r, f ) in the following be a semilattice.

4.1.3 The Error Type and Err-Semilattices. Theory Err introduces an er-
ror element to model the situation where the supremum of two elements does
not exist. It introduces both a data type and an equivalent construction on
sets:

datatype ′a err = Err | OK ′a err A ≡ {Err} ∪ {OK x |x . x ∈ A}
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The additional x . in {OK x |x . x ∈ A} tells Isabelle that x is a bound variable.
It is used if the set comprehension is of the form {f x |x . P x} rather than just
{x | P x}. An ordering r on ′a can be lifted to ′a err by making Err the top element:

le r (OK x) (OK y) = x �r y
le r Err = True
le r Err (OK ) = False

LEMMA 4.1. If acc r then acc (le r).

The following lifting functional is frequently useful:

lift2 f (OK x) (OK y) = f x y
lift2 f Err = Err
lift2 f Err = Err

This leads to the notion of an err-semilattice. It is a variation of a semilattice
with a top element. Because the behaviour of the ordering and the supremum
on the top element is fixed, it suffices to say how ordering and supremum behave
on nontop elements. Thus, we can represent a semilattice with top element Err
compactly by a triple of type esl:

′a ebinop = ′a ⇒ ′a ⇒ ′a err ′a esl = ′a set × ′a ord × ′a ebinop.

Conversion between the types sl and esl is easy:

esl :: ′a sl ⇒ ′a esl sl :: ′a esl ⇒ ′a err sl
esl (A, r, f ) ≡ (A, r, λx y . OK (f x y)) sl (A, r, f ) ≡ (err A, le r, lift2 f ).

A tuple L :: ′a esl is by definition an err-semilattice iff sl L is a semilattice.
Conversely, we have Lemma 4.2.

LEMMA 4.2. If semilat L then err-semilat (esl L).

The supremum operation of sl(esl L) is useful on its own:

sup f ≡ lift2 (λx y . OK (x �f y)).

4.1.4 The Option Type. Theory Opt uses the type option and introduces
the set opt as dual to set err,

opt A ≡ {None} ∪ {�y� |y . y ∈ A}.
an ordering that makes None the bottom element, and a corresponding supre-
mum operation:

le r �x� �y� = x �r y
le r None = True
le r � � None = False

sup f �x� �y� = (case f x y of Err ⇒ Err | OK z ⇒ OK �z�)
sup f z None = OK z
sup f None z = OK z.

LEMMA 4.3. Let esl (A, r, f ) = (opt A, le r, sup f ). If err-semilat L, then
err-semilat (esl L).
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It is possible to define an sl that lifts a semilattice to an option semilattice, but
we only use the esl version below.

LEMMA 4.4. If acc r, then acc (le r).

4.1.5 Products. Theory Product provides what is known as the coalesced
product, where the top elements of both components are identified. In terms of
err-semilattices, this is:

esl :: ′a esl ⇒ ′b esl ⇒ ( ′a × ′b) esl
esl (A, rA, f A) (B, rB, f B) ≡ (A × B, le rA rB, sup f A f B)

le :: ′a ord ⇒ ′b ord ⇒ ( ′a × ′b) ord
le rA rB (a1, b1) (a2, b2) ≡ a1 �rA a2 ∧ b1 �rB b2

sup :: ′a ebinop ⇒ ′b ebinop ⇒ ( ′a × ′b) ebinop
sup f g (a1,b1) (a2,b2) ≡ Err . sup (λx y.(x,y)) (a1 � f a2) (b1 �g b2).

Note that × is used both on the type and the set level.

LEMMA 4.5. If err-semilat L1 and err-semilat L2, then err-semilat (esl L1 L2).

LEMMA 4.6. If acc rA and acc rB, then acc (le rA rB).

4.1.6 Lists of Fixed Length. Theory Listn provides the concept of lists of a
given length over a given set. In HOL, this is formalised as a set rather than a
type:

list n A ≡ {xs | |xs| = n ∧ set xs ⊆ A}.
This set can be turned into a semilattice in a componentwise manner, essentially
viewing it as an n-fold Cartesian product:

sl :: nat ⇒ ′a sl ⇒ ′a list sl le :: ′a ord ⇒ ′a list ord
sl n (A, r, f ) ≡ (list n A, le r, map2 f ) le r ≡ list-all2 (λx y. x �r y),

where map2 :: ( ′a ⇒ ′b ⇒ ′c) ⇒ ′a list ⇒ ′b list ⇒ ′c list and list-all2 :: ( ′a ⇒ ′b
⇒ bool) ⇒ ′a list ⇒ ′b list ⇒ bool are the obvious functions. To follow, we use
the notation xs [�r ] ys for xs �le r ys.

LEMMA 4.7. If semilat L, then semilat (sl n L).

LEMMA 4.8. If order r and acc r, then acc (le r).

In case we want to combine lists of different lengths, or if the supremum on
the elements of the list may return Err (not to be confused with Err.sup, the
sup functional defined in Theory Err, Section 4.1.3), the following function is
useful:

sup :: ( ′a ⇒ ′b ⇒ ′c err) ⇒ ′a list ⇒ ′b list ⇒ ′c list err
sup f xs ys ≡ if |xs| = |ys| then coalesce (map2 f xs ys) else Err

coalesce [] = OK []
coalesce (e·es) = Err.sup (λx xs. x·xs) e (coalesce es).
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Fig. 22. Data flow graph for step 3 s3 = [(1,t1),(4,t4)].

This corresponds to the coalesced product. In the following, we also need the
structure of all lists up to a specific length:

upto-esl :: nat ⇒ ′a esl ⇒ ′a list esl
upto-esl n (A, r, f ) ≡ (

⋃
i ≤ n list i A, le r, sup f ).

LEMMA 4.9. If err-semilat L, then err-semilat (upto-esl m L).

4.2 Well-Typings

This section describes well-typings abstractly. On this abstract level, there is
no need yet to talk about the instruction sequences themselves. They will be
hidden inside a function that characterises their behaviour. This function and
a semilattice form the parameters of the model.

Data flow analysis and type systems are based on an abstract view of the
semantics of a program in terms of types instead of values. At this level, pro-
grams are sequences of instructions, and the semantics can be characterised
by a function step :: pc ⇒ ′s ⇒ (pc × ′s) list, where pc is an abbreviation for nat.
It is the abstract execution function: step p s provides the results of executing
the instruction at p, starting in state s, together with the positions where ex-
ecution continues. Contrary to the usual concept of transfer function or flow
function in the literature, step p not only provides the result, but also the struc-
ture of the data flow graph at position p. This is best explained through an
example. Figure 22 depicts the information we get when step 3 s3 returns the
list [(1,t1),(4,t4)]: Executing the instruction at position 3 with state type s3 may
lead to position 1 in the graph with result t1, or to position 4 with result t4.

Note that the length of the list and the target instructions do not only depend
on the source position p in the graph, but also on the value of s. It is possible
for the structure of the data flow graph to dynamically change in the iteration
process of the analysis. It may not change freely, however. Section 4.3 will in-
troduce certain constraints on the step function that the analysis needs in order
to succeed.

Data flow analysis is concerned with solving data flow equations, which are
systems of equations involving the flow functions over a semilattice. In this
case, step is the flow function and ′s the semilattice. Instead of an explicit for-
malisation of the data flow equation, it suffices to consider certain prefixed
points. To that end we define what it means that a method type τs :: ′s list is
stable at p:

stable τs p ≡ ∀ (q, τ ) ∈ set (step p τs[p]). τ �r τs[q].
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Stability induces the notion of a method type τs as being a well-typing w.r.t.
step:

wt-step τs ≡ ∀ p<|τs| . τs[p] 	= # ∧ stable τs p.

# is assumed to be a special element in the state space (the top element of the
ordering). It indicates a type error.

An instruction sequence is well-typed if there is a well-typing τs such that
wt-step τs.

4.3 Constraints on the Transfer Function

This section defines constraints on the transfer function that the data flow
algorithm in Section 4.5 requires to succeed.

The transfer function step is called monotone up to n iff the following holds:

mono n ≡ ∀ τ ∈ A . ∀ p < n . ∀ τ ′ . τ �r τ ′ −→ set (step p τ ) {�r} set (step p τ ′),

where

A {�r} B ≡ ∀ (p, τ ) ∈ A . ∃ τ ′ . (p, τ ′) ∈ B ∧ τ �r τ ′.

This means if we increase the state type τ at a position p, the data flow graph
may have more edges (but not less), and the result at each edge may increase
(but not decrease).

If for all p < n and all τ the position components of step p τ are less than n,
then step is bounded by n. This expresses that from below instruction n, instruc-
tion n and beyond are unreachable; control never leaves the list of instructions
below n.

bounded n ≡ ∀ p < n. ∀ τ . ∀ (q, τ ′) ∈ set (step p τ ) . q < n

If for all p < n and τ ∈ A the values that step p τ returns are again in A, then
step preserves A up to n:

preserves n ≡ ∀ τ ∈ A . ∀ p < n . ∀ (q, τ ′) ∈ set (step p τ ) . τ ′ ∈ A

4.4 Refining the Transfer Function

The single transfer function step of Section 4.2 is compact and convenient for
describing the abstract typing framework. For a large instantiation, however,
it carries too much information in one place to be modular and intuitive. We
will therefore first refine step into a part app for applicability and a part eff
for the effect of instructions, and then instantiate these parts in Section 4.7.
Furthermore, the state space ′s will be of the form ′t err for a suitable type
′t, in which case the error element # is Err itself. Given app :: pc ⇒ ′t ⇒ bool,
eff :: pc ⇒ ′t ⇒ (pc × ′t) list, and n::nat (the size of the method type), step is
defined as follows:

step p Err = error
step p (OK τ ) = (if app p τ then map-snd OK (eff p τ ) else error)

error ≡ map (λx . (x, Err)) [0 . . < n]
map-snd f ≡ map (λ(x, y) . (x, f y)).
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The function error is used to propagate the error element Err to every position
in the method type.

If we take the semilattice (A, r, f ) to be an err-semilattice and the order r to
be of the form le r ′, we can similarly refine the notion of a well-typing w.r.t. step
to a well-typing w.r.t. app and eff :

wt-app-eff τs ≡ ∀ p < |τs| . app p τs[p] ∧ (∀ (q, τ ) ∈ set (eff p τs[p]) . τ �r ′ τs[q]).

This is very natural: Every instruction is applicable in its start state, and the
effect is compatible with the state expected by all successor instructions.

Function step, composed of app and eff as defined previously, has type
pc ⇒ ′t err ⇒ (pc × ′t err) list. This is an instance of the type that the stability
predicates in Section 4.2 expect. If we furthermore set n to |τs|, we get the
following lemma.

LEMMA 4.10. If the composed function step is bounded by n = |τs|, then
wt-app-eff and wt-step coincide:

bounded |τs| =⇒ wt-step (map OK τs) = wt-app-eff τs.

4.5 Kildall’s Algorithm

A well-typing is a witness of well-typedness in the sense of stability. Now we
turn to the problem of computing such a witness. This is precisely the task of a
bytecode verifier: It computes a method type such that the absence of # in the
result means the method is well-typed. Formally, a function bcv :: ′s list ⇒ ′s list
is a bytecode verifier w.r.t. n :: nat and A :: ′s set iff

∀ τs0∈list n A . (∀ p < n . (bcv τs0)[p] 	= # )
= (∃ τs∈list n A .τs0 [�r] τs ∧ wt-step τs).

The notation [�r ] lifts �r to lists (see also Section 4.1.6), and # is the top element
of the semilattice. In practise, bcv τs0 itself will be the well-typing, and it will
also be the least well-typing. However, it is simpler not to require this.

This section first defines and then verifies a functional version of Kildall’s
algorithm [Kildall 1973; Muchnick 1997], a standard data flow analysis tool.
In fact, the description of bytecode verification in the official JVM specifica-
tion [Lindholm and Yellin 1999, 129–130] is essentially Kildall’s algorithm,
an iterative computation of the solution to the data flow problem. The main
loop operates on a method type τs and a worklist w :: pc set. The worklist
contains the indices of those elements of τs that have changed and whose
changes still need to be propagated to their successors. Each iteration picks
an element p from w, executes instruction number p, and propagates the new
states to the successor instructions of p. Iteration terminates once w becomes
empty: In each iteration p is removed, but new elements can be added to w.
The algorithm is expressed in terms of a predefined while-combinator of type
( ′a ⇒ bool ) ⇒ ( ′a ⇒ ′a ) ⇒ ′a ⇒ ′a, which satisfies the recursion equation

while b c s = (if b s then while b c (c s) else s).
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The term while (λs . b s ) (λs . c s ) is the functional counterpart of the imperative
program while b(s) do s := c(s). The main loop can now be expressed as

iter τs w ≡
while (λ(τs, w ) . w 	= {} )

(λ(τs, w ) . let p = SOME p . p ∈ w in propa (step p τs[p] ) τs (w − {p}))
(τs, w ).

Since the choice SOME p . p ∈ w in iter is guarded by w 	= {}, we know that
there is a p ∈ w. An implementation is free to choose whichever element it
wants.

Propagating the results qs of executing instruction number p to all successors
is expressed by the primitive recursive function propa:

propa [] τs w = (τs, w)

propa (q ′·qs) τs w =
(let (q, τ ) = q ′; u = τ �f τs[q]; w ′ = if u = τs[q] then w else {q} ∪ w
in propa qs (τs[q := u]) w ′).

In the terminology of the official JVM specification [Lindholm and Yellin 1999,
130], τ is merged with the state of all successor instructions q, that is, the
supremum is computed. If this results in a change of τs[q], then q is inserted
into w.

Kildall’s algorithm is simply a call to iter where the worklist is initialised with
the set of unstable indices; upon termination, we project on the first component:

kildall τs ≡ fst (iter τs {p | p < |τs| ∧ ¬ stable τs p}).
The key theorem is that Kildall’s algorithm is a bytecode verifier as defined

previously.

THEOREM 4.11. If (A, r, f) is a semilattice, r meets the ascending chain con-
dition on A, and step is monotone, preserving, and bounded w.r.t. A and n, then
kildall is a bytecode verifier w.r.t. A and n.

PROOF. The correctness proof proceeds along the following lines: (1) Given
the assumptions of Theorem 4.11, kildall is a total function. The work list either
becomes smaller, or if new positions are introduced, the elements they point to
are larger than the element at the position that was taken out. Since there
are no infinitely ascending chains in r, the algorithm must terminate; and (2)
The following are invariants of the analysis (mainly because of monotonicity of
step): all positions not in the worklist are stable, and the computed method type
is always between the start value τs0 and any well-typing τs which is stable
everywhere and satisfies τs0 �r τs. Upon termination the worklist is empty,
and kildall τs0 is stable everywhere. With (1) and (2), Theorem 4.11 follows
easily. The implication from left to right holds with the result of the algorithm
as witness. The result is stable, it does not contain # (by assumption), and it is
above τs0 because of (2). The implication from right to left holds because wt-step
implies that τs is stable and does not contain #. Because of (2), kildall τs0 is
smaller than τs, hence, it does not contain # either.
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This specification of Kildall’s algorithm is executable; the worklist (in the
specification a set) can be implemented by a list, the SOME operator by hd.

4.6 Semilattice for the Jinja VM

This section takes the first step to instantiate the framework of Sections 4.1
through 4.5. It defines the semilattice structure on which Jinja’s bytecode ver-
ifier builds. It begins by turning the Jinja types ty into a semilattice in Theory
SemiType, to follow. We can then use the abstract combinators of Section 4.1 to
construct the stack and register structure.

The carrier set types is easy: the set of all types declared in the program.

types P = {T | is-type P T}
The order is the standard subtype ordering ≤ of Jinja and the supremum oper-
ation follows it.

sup :: jvm-prog ⇒ ty ⇒ ty ⇒ ty err
sup P NT (Class C) = OK (Class C)
sup P (Class C) NT = OK (Class C)
sup P (Class C) (Class D) = OK (Class (lub P C D))
sup P t1 t2 = (if t1 = t2 then OK t1 else Err)

The lub function (not shown here) computes the least upper bound of two classes
by walking up the class hierarchy until one is a subclass of the other. Since
every class is a subclass of Object in a well-formed program (see also wf-prog
in Section 2.4), this least upper bound is guaranteed to exist.

With SemiType .esl P ≡ (types P, λx y . P � x ≤ y, sup P) we have proved the
following theorem.

THEOREM 4.12. If P is well-formed, then SemiType.esl is an err-semilattice
and the subtype ordering ≤ satisfies the ascending chain condition:

wf-prog P =⇒ err-semilat (SemiType.esl P)
wf-prog P =⇒ acc (λx y. P � x ≤ y).

PROOF. The proof is easy; it is obvious that ≤ is transitive and reflexive. If
P is well-formed, ≤ is also antisymmetric, hence a partial order. It satisfies the
ascending chain condition because if P is well-formed, the class hierarchy is a
tree with Object at its top. We have already argued that sup is well defined,
and it is easy to see that it is closed w.r.t. types P. Hence, SemiType.esl P is an
err-semilattice.

We can now construct the stack and register structure. State types in the
Jinja BV are the same as the example in Figure 21: Values on the operand
stack must always contain a known type ty, and values in the local variables
may be of an unknown type and therefore be unusable (encoded by Err). To
handle unreachable code, the BV needs an additional option layer: If None
occurs in the well-typing, the corresponding instruction is unreachable. On the
HOL-type level:

types tys = ty list tyl = ty err list
tyi = tys × tyl tyi

′ = tyi option.
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The types of the stack and the local variables are tys and tyl , respectively. We
call tyi the instruction type, and let the term state type refer to either of tyi or
tyi

′. It will be clear from the context which of these is meant.
The data flow analysis also needs to indicate type errors during the algorithm

(see also Section 4.4), so we arrive at tyi
′ err for the semilattice construction.

Turning tyi
′ err into a semilattice is easy because all of its constituent types

are (err-)semilattices. The expression stacks form a semilattice because the
supremum of stacks of different size is Err; the local variables form a semilattice
because their number mxl is fixed:

stk-esl :: jvm-prog ⇒ nat ⇒ tys esl
stk-esl P mxs ≡ upto-esl mxs (SemiType.esl P)

loc-sl :: jvm-prog ⇒ nat ⇒ tyl sl
loc-sl P mxl ≡ Listn.sl mxl (Err.sl (SemiType.esl P)).

Stack and local variables are combined into a coalesced product via
Product.esl and then embedded into option and err to create the final
semilattice for ′s = tyi

′ err:

sl :: jvm-prog ⇒ nat ⇒ nat ⇒ tyi
′ err sl

sl P mxs mxl ≡ Err.sl (Opt.esl (Product.esl (stk-esl P mxs) (Err.esl (loc-sl P mxl)))).

It is useful in the following with special notation ≤′ for the ordering on tyi
′.

Combining the theorems about the various (err-)semilattice constructions
involved in the definition of sl (starting from Theorem 4.12, using Lemmas 4.1
to 4.9), it is easy to prove

COROLLARY 4.13. If P is well-formed, then sl is a semilattice. Its order (written
le P mxs mxl) satisfies the ascending chain condition:

wf-prog P =⇒ semilat (sl P mxs mxl)
wf-prog P =⇒ acc (le P mxs mxl).

4.7 Applicability and Effect Instantiated

In this section we instantiate app and eff from Section 4.4 for the instruction
set of the Jinja VM. As for the source language, we have divided the definitions
into one part for normal execution and one part for exceptional.

Since the BV verifies one method at a time, we can see the context of a method
and a program as fixed for the definition. The context consists of the following
values:

P :: jvm-prog the program,
C ′ :: cname the class the method we are verifying is declared in,
mxs :: nat maximum stack size of the method,
mxl :: nat size of the register set for local variables,
Ts :: ty list types of the parameters of the method,
Tr :: ty return type of the method,
is :: instr list instructions of the method,
xt :: ex-table exception handler table of the method,
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Fig. 23. Applicability of instructions.

The context variables are proper parameters of eff and app in the Isabelle
formalisation. We treat them as global here to spare the reader endless param-
eter lists in each definition. Formally, we use Isabelle’s locale mechanism to hide
these parameters in the presentation. Ballarin [2003] describes locales in detail.

4.7.1 Normal Execution. We begin with the definition of applicability for
normal execution. The intermediate function appi, defined in Figure 23, works
on tyi, and app will later lift it to tyi

′. The definition is parallel to check-instr in
Section 3.3, it just works on types instead of on values. The definition is smaller
than that of check-instr because some of the conditions cannot be expressed at
the type level alone. These conditions are the ones that access the heap or the
frame stack (most notable in the Getfield, Putfield, and Return instructions).
It will be the responsibility of the type safety proof to show that the BV still
manages to guarantee that all checks in the defensive machine are successful.

Let’s take a closer look at the IAdd example again:

appi IAdd pc (T1 · T2 · ST, LT) = (T1 = T2 ∧ T1 = Integer).

This is completely parallel to the defensive machine. The pattern on the left-
hand side ensures that there are at least two elements on the stack, and the
righthand side requires that they are both integers.
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Fig. 24. Successor program counters for the non-exceptional case.

Fig. 25. Effect of instructions on the state type.

The nonexceptional effect of instructions eff i is equally simple. First, we
calculate the successor program counters in Figure 24, and after that, the effect
of the instruction on the type level in Figure 25.

The successors are easy; most instructions simply proceed to pc + 1. The
relative jumps in IfFalse and Goto use the nat and int functions to convert
the HOL-types nat to int, and vice versa. Return and Throw have no successors
in the same method (for the nonexceptional case). The Invoke n M instruction
has no normal successor if the the stack at position n contains NT—it will
always throw a NullPointer exception in this case. It is different from Getfield
and Putfield because they have enough information in the instruction itself
to determine the effect. Invoke, on the other hand, must rely on computed
information at ST[n] to determine the return type of the method. In the Java
VM, the Invoke instruction contains the static class of the method (and is thus
easier to handle).

The effect eff i on tyi is shown in Figure 25. The destructor ok-val is defined
by ok-val (OK x) = x.

The IAdd instruction is in this case:

eff i IAdd (T1 · T2 · ST, LT) = (Integer · ST, LT).

Again, as befits an abstract interpretation, the definition is completely parallel
to the operational semantics, this time to exec-instr of the aggressive machine.
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Fig. 26. Finding relevant exception handlers.

The next step is combining eff i and succs:

norm-eff :: instr ⇒ pc ⇒ tyi ⇒ (pc × tyi
′) list

norm-eff i pc τ ≡ map (λpc ′. (pc ′, �eff i i τ�)) (succs i τ pc).

The result is a list of edges in the control flow graph determined by succs,
each of them marked with the result of eff i. As we use norm-eff only for the
reachable instructions in the following, we can safely mark the successors as
reachable with � �.

We now have two functions, appi and norm-eff, describing normal execution
in the bytecode verifier. The next section turns to exceptions.

4.7.2 Exceptions. Abstractly, exceptions merely add more edges to the con-
trol flow graph. In the JVM (Jinja as well as Java), these edges must all lead
to the start of the exception handler that is relevant for the current instruc-
tion. Only at runtime is this relevant handler uniquely determined; statically,
we must consider a number of handlers because the relevance of a handler
depends on which exception was raised. The Invoke instruction, for instance,
may raise a NullPointer exception or it may propagate an exception up that
was thrown in the invoked method. For each of these cases a different han-
dler might be relevant. As for the conditional branch instruction, the bytecode
verifier simply checks all of them.

Thus, the first thing we need to do is to determine which handlers might be
relevant for an instruction. Figure 26 shows this in three stages: relevant-class
i P C is True iff i can raise an exceptions of class C, is-relevant-entry P i pc e is
True iff entry e in the exception table might match instruction i at position pc,
and finally, relevant-entries P i pc xt is the list of exception table entries that
are relevant for instruction i at position pc.

For applicability in the exception case, we require that the class name men-
tioned in the exception handler is indeed a declared class, and that the stack is
between mxs and the number d of entries the exception handler expects.

xcpt-app :: instr ⇒ pc ⇒ tyi ⇒ bool
xcpt-app i pc (ST, LT) ≡
∀ (f , t, C, h, d)∈set (relevant-entries P i pc xt). is-class P C ∧ d ≤ |ST| ∧ d < mxs
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The effect of instructions in the exception case is equally simple. Each edge
leads to the start of the exception handler, and the local variables are un-
changed. We cut down the operand stack to d elements of the current stack,
and push the exception object on top.

xcpt-eff :: instr ⇒ pc ⇒ tyi ⇒ (pc × tyi
′) list

xcpt-eff i pc (ST, LT ) ≡
map (λ(f , t, C, h, d). (h, �(Class C·drop (|ST| − d) ST, LT )�)) (relevant-entries P i pc xt)

4.7.3 Combining Normal and Exceptional Execution. Combining the nor-
mal and exceptional case, we can now build the full effect function: If an in-
struction is unreachable, it has no outgoing edges; if it is reachable, the overall
effect is simply an append of the normal and the exception case.

eff :: instr ⇒ pc ⇒ tyi
′ ⇒ (pc × tyi

′) list

eff i pc t ≡ case t of None ⇒ [] | �τ� ⇒ norm-eff i pc τ @ xcpt-eff i pc τ

For applicability we have: An instruction is applicable if it is unreachable
(then it can do no harm) or if it is applicable in the normal and in the excep-
tion case. Additionally, we require that the pc does not leave the instruction
sequence.

app :: instr ⇒ pc ⇒ tyi
′ ⇒ bool

app i pc t ≡
case t of None ⇒ True
| �τ� ⇒ appi i pc τ ∧ xcpt-app i pc τ ∧ (∀ (pc ′, τ ′)∈set (eff i pc t). pc ′ < |is|)

4.8 Well-Typings

Having defined the semilattice and the transfer function in Sections 4.6 and
4.7, we show in this section how the parts are put together to get a definition
of well-typings for the Jinja VM.

The abstract framework gives us a predicate wt-app-eff (Section 4.4) describ-
ing well-typings τs :: tyi

′ list as method types that fit an instruction sequence.
To obtain type-safety and an executable bytecode verifier, we additionally re-
quire a start condition for instruction 0 (at method invocation) and some side
conditions explained in the following.

The operational semantics of Invoke tells us the start condition at method
invocation: The stack is empty, the first register contains the this-pointer (of
type Class C ′), the next registers contain the parameters of the method, and
the rest of the registers are reserved for local variables (which do not have a
value yet). Note that the definitions are still in the context of a fixed method,
as defined in Section 4.7, so C ′ is the class to be verified, Ts are the parameters,
and mxl0 the number of local variables (which is related to mxl of Section 4.7
by mxl = 1 + |Ts| + mxl0). The ≤′ is the semilattice order on tyi

′ of Section 4.6.

wt-start τs ≡ P � �([], OK (Class C ′)·map OK Ts @ replicate mxl0 Err)� ≤′ τs[0 ]

The method type τs is a well-typing for a method if it satisfies wt-method. To
define it, we instantiate wt-app-eff from the framework with λpc τ . app is[pc] pc
τ for the abstract app, and λpc τ . eff is[pc] pc τ for the abstract eff.
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wt-method τs =
(is 	= [] ∧ |τs| = mpc ∧ OK ‘ set τs ⊆ states P mxs mxl ∧ wt-start τs ∧ wt-app-eff τs)

The states are the carrier set of the semilattice. Recall that the method type
τs does not contain the Err layer of the semilattice, hence, we take the image
OK ‘ set τs of set τs under OK. For well-typedness, wt-method also requires that
the method contains at least one instruction and that the method type covers
all instructions.

It is occasionally useful in the proofs, and also for the compiler to follow, to
define the notion of an instruction being well-typed. This is just the matrix of
the ∀ p < |τs| in wt-app-eff (c.f. Section 4.4). Since it will be used outside the
fixed method context of this section, it has more parameters.

P,Tr ,mxs,mpc,xt � i,pc :: τs ≡
app i pc τs[pc] ∧ (∀ (pc ′, τ ′)∈set (eff i pc τs[pc]). P � τ ′ ≤ ′ τs[pc ′])

The notation P,Tr ,mxs,mpc,xt � i,pc :: τs is read as: In the context of program
P, return type Tr , maximum stack size mxs, number of instructions mpc and
exception table xt, the instruction i at position pc is well-typed w.r.t. method
type τs::tyi

′ list.
It remains to lift well-typings from methods to programs. Well-typings of

programs are functions � :: tyP with

types tyP = cname ⇒ mname ⇒ tyi
′ list

These functions return a well-typing for each class and method in the program.
A Jinja VM program is well-formed according to � if each method body is well-
typed. At this point, the full parameter list of wt-method becomes visible.

wf-jvm-prog� ≡
wf-prog (λP C (M, Ts, Tr , mxs, mxl0, is, xt). wt-method P C Ts Tr mxs mxl0 is xt (� C M))

wf-jvm-prog P ≡ ∃ �. wf-jvm-prog� P

4.9 An Executable Bytecode Verifier

In Section 4.8 we defined well-typings for the Jinja VM. This section shows how
to instantiate the type inference algorithm of Section 4.5 to get an executable
bytecode verifier for Jinja.

With the semilattice as defined in Section 4.6 and the transfer function of
Section 4.7, and still within the same method context as for wt-method, we only
need to provide the correct start value to Kildall’s algorithm to get an executable
BV:

wt-kildall ≡
is 	= [] ∧
(let τ0 = �([], [OK (Class C ′)] @ map OK Ts @ replicate mxl0 Err)�;

τs0 = OK τ0·replicate (|is| − 1) (OK None)

in ∀ n < |is|. (kildall τs0)[n] 	= Err).

Position 0 in τs0 is the same as the start value in wt-start. Since we know
nothing yet about the positions greater than 0, we fill in the bottom element
OK None for these.
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Lifting to full programs and filling in the method context is the same as for
wt-method:

wf-jvm-progk P ≡
wf-prog (λP C ′ (M, Ts, Tr , mxs, mxl0, is, xt). wt-kildall P C ′ Ts Tr mxs mxl0 is xt) P.

This definition only gives us a working BV if step meets the conditions of Theo-
rem 4.11. We have shown that the transfer function step, built from app and eff
as described in Sections 4.4 and 4.7, is monotone, bounded, and type preserv-
ing (w.r.t. states and |is|). Albeit large (a case distinction over the instruction
set), the proof that step is monotone and type preserving is easy and mostly
automatic. That step is bounded is checked explicitly by the app component of
step.

Using Theorem 4.11, we have thus proved the following:

THEOREM 4.14. The executable BV is sound and recognises all well-typed
programs:

wf-jvm-progk P = wf-jvm-prog P

4.10 Type-Safety

This section is about the type-safety of the aforementioned well-typing specifi-
cation. The type-safety theorem states that the bytecode verifier is correct and
that it guarantees safe execution. If the bytecode verifier succeeds and we start
the program P in its canonical start state (Section 3.3), the defensive Jinja VM
will never return a type error. With Theorem 3.1, this implies that the checks of
the defensive machine are redundant and the aggressive machine can be used
safely instead.

THEOREM 4.15. If C is a class in P with a method M, formally
P � C sees M: []→T = b in C, and if wf-jvm-prog P, then

P � Normal (start-state P C M) ′ djvm−→ σ ′ =⇒ σ ′ 	= TypeError.

To prove this theorem, we set out from a program P for which the bytecode
verifier returns true, that is, for which there is a � such that wf-jvm-prog�

P holds. The proof builds on the observation that all runtime states σ that
conform to the types in � are type-safe. For σ conforms to �, we write P,� � σ

√
.

For P,� � σ
√

to be true, the following must hold: if in state σ execution is at
position pc of method M in C, then the state type (� C M)[pc] must be of the
form �τ�, and for every value v on the stack or in the register set, the type of v
must be a subtype of the corresponding entry in its static counterpart τ . This
is the essence of the conformance relation. To show that it is invariant during
execution, it needs to be strengthened. We show the complete formal definition
of conformance in the following, but to avoid getting bogged down in detail we
continue to sketch the general proof outline first. For this strong conformance
we have shown that it is invariant during execution if the program is well-typed.

LEMMA 4.16. If wf-jvm-prog� P and P � σ
jvm−→ σ ′ and P,� � σ

√
, then

P,� � σ ′ √.
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The proof is by induction on the length of the execution and then by case dis-
tinction on the instruction set. For each instruction, we conclude from the con-
formance of σ together with the app part of wf-jvm-prog that all assumptions of
the operational semantics are met (such as “the stack is not empty”). Then we
execute the instruction and observe that the new state σ ′ conforms to the corre-
sponding τ ′ in eff pc τ . This invariance lemma corresponds to subject reduction
in a traditional small step semantics.

Lemma 4.16 is still not sufficient for type-safety, though; it might be the case
that start P C M does not conform to �. We have shown that this is not so.

LEMMA 4.17. If wf-jvm-prog� P and P � C sees M: []→T = m in C, then
P,� � start-state P C M

√
.

Lemmas 4.16 and 4.17 together say that all states that occur in any execution
of program P conform to � if we start P in the canonical way.

The last step in the proof of Theorem 4.15 is Lemma 4.18. It corresponds to
progress in a traditional small step semantics.

LEMMA 4.18. An execution step started in a conformant state cannot produce
a type error in well-typed programs:

If wf-jvm-prog� P and P,� � σ
√

then execd P σ 	= TypeError.

The proof of Lemma 4.18 is by case distinction on the current instruction in
σ . Similar to the proof of Lemma 4.16, the conformance relation together with
the app part of wf-jvm-prog ensures check-instr in execd returns true. Because
we know that all states during execution conform, we can conclude as in Theo-
rem 4.15: There will be no type errors in well-typed programs.

We now show the formal definition of the conformance relation between dy-
namic Jinja VM states and static states (types) in the Jinja BV.

For the proof of the invariance lemma (Lemma 4.16) to go through, the in-
tuitive notion of conformance we have just given is not sufficient; the formal
conformance relation P,� � σ

√
is stronger. It describes in detail the states that

can occur during execution, the form of the heap, and the form of the method
invocation stack.

We begin by lifting the single value conformance P,h � v :≤ T of Section 2.9
to stack and local variables. For the stack, this is just the pointwise lifting of
:≤ to lists. As usual, we write P,h � vs [:≤] ST for this. For the local variables,
we first need to treat the Err level:

P,h � v :≤# E ≡ case E of Err ⇒ True | OK T ⇒ P,h � v :≤ T.

Lifting to lists P,h � vs [:≤#] LT is then canonical again.
A call frame conforms if its stack and register set conform and if the program

counter lies inside the instruction list.

conf-f P h (ST, LT ) is (stk, loc, C, M, pc) ≡
P,h � stk [:≤] ST ∧ P,h � loc [:≤#] LT ∧ pc < |is|

This is still not enough. For proving the Return case, we also need information
about the structure of the call frame stack. The predicate conf-fs which follows
describes the structure of the call frame stack beneath the topmost frame. The

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.



674 • G. Klein and T. Nipkow

parameters M0, n0, and T0 are the name, number of parameters, and return
type of the method in the topmost frame.

conf-fs P h � M0 n0 T0 [] = True

conf-fs P h � M0 n0 T0 ((stk, loc, C, M, pc)·fs) =
(∃ ST LT Ts T mxs mxl0 is xt.

(� C M)[pc] = �(ST, LT )� ∧ P � C sees M: Ts→T = (mxs, mxl0, is, xt) in C ∧
(∃ D Ts ′ T ′ m D ′.

is[pc] = Invoke M0 n0 ∧ ST[n0] = Class D ∧ P � D sees M0: Ts ′→T ′ = m in D ′ ∧
P � T0 ≤ T ′) ∧

conf-f P h (ST, LT ) is (stk, loc, C, M, pc) ∧
conf-fs P h � M |Ts| T fs)

In the preceeding definition, a list of call frames conforms if it is empty. If it is
not empty, then for the head frame, the state type (� C M)[pc] for the current
instruction must denote a reachable instruction, the call frame must belong to
a defined method, it must be halted at the Invoke instruction which created the
call frame above (this is not easily expressed without access to something like a
call history, but it is enough to demand that the M and n in Invoke M n are M0

and n0, and that the return type of a lookup on the class D in ST[n0] conforms
to T0, the return type the frame above expects), and finally, the current frame
and the rest of the call frame stack must conform.

The following is the top level conformance relation between a state and a pro-
gram type. The first two cases are trivial, the third case requires a conformant
heap (P � h

√
), and contains special handling for the topmost call frame and

delegates the rest to conf-fs. The topmost frame is special because it does not
need to be halted at an Invoke instruction. The topmost frame must conform
and the current state type must denote a reachable instruction. The method
lookup provides conf-f and conf-fs with the required parameters.

P,� � (None, h, [])
√ = True

P,� � (�x�, h, fs)
√ = (fs = [])

P,� � (None, h, (stk, loc, C, M, pc)·fs)
√ =

(∃ Ts T mxs mxl0 is xt s.
P � h

√ ∧ P � C sees M: Ts→T = (mxs, mxl0, is, xt) in C ∧ (� C M)[pc] = �s� ∧
conf-f P h s is (stk, loc, C, M, pc) ∧
conf-fs P h � M |Ts| T fs)

Figure 27 is a snapshot of the Jinja VM state in the middle of a typical
program execution. On the left there is the Jinja VM with its frame stack and
heap, and on the right there are the method types the BV predicted for this
program. The program declarations appear on the lower right side in the static
part.

The state on the left in Figure 27 conforms to the static type information
on the right: All objects in the heap conform because the values of the field F
(declared in class B) are all of type Class A (Null is of type Class A, and the
address Addr 0 points to an object of Class B, which is a subclass of Class A). All
frames but the topmost one are halted at the Invoke instruction that created
the next frame. The dynamic operand stacks conform to the static ones because
their length is the same and all values have conforming type. The topmost
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Fig. 27. Jinja VM execution snapshot.

frame conforms as well because its pc points to a valid instruction (Getfield F
B), and the value on the dynamic operand stack is an address that points to an
object of class C.

4.11 Related Work

The bytecode verifier presented here is a simplified version of the one by Klein
[2003], which in turn built on the work by Nipkow [2001] and Pusch [1999].
Most closely related to these is the work by Barthe and Dufay [2004] who use
the Coq system for a formalisation of the JavaCard virtual machine and its
BV. They formalise the full JavaCard bytecode language, but with a simplified
treatment of some features like bytecode subroutines.

The ASM formalisation of Stärk et al. [2001] contains almost all of the Java
BV’s features and is executable. It does not use mechanical support or checking
for its proofs.
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Paper formalisations of Java bytecode verification begin with Stata and
Abadi [1998] who give a first formal type system for the JVM. Freund and
Mitchell [2003] and Freund [2000] build on this type system and extend it to a
substantial subset of the JVM.

Working towards a verified implementation in SPECWARE, Coglio et al. [2000]
have specified and analysed large portions of the bytecode verifier. Goldberg
[1998] rephrases and generalises the overly concrete description of the BV given
in the JVM specification [Lindholm and Yellin 1999] as an instance of a generic
data flow framework. Qian [2000] also proves the correctness of an algorithm
for turning his type checking rules into a data flow analyser. However, his
algorithm is still quite abstract. The formulation of the bytecode verification
algorithm as a direct instance of an abstract data flow framework first appears
in the work by Nipkow [2001] and is refined by Klein and Nipkow [2003] and
Klein [2003].

There is an interesting variant of type inference for the JVM, namely,
lightweight bytecode verification [Rose and Rose 1998; Rose 2002, 2003]. It
uses a certificate to reduce time and space usage during type inference. For
space reasons, we have omitted it here, but lightweight bytecode verification
fits in nicely with our formalisation of the VM type system [Klein and Nipkow
2001]. Moreover, it can be formulated as an inference algorithm in the same
abstract framework that we use for Kildall’s data flow analyser [Klein 2003].
Other variations of lightweight bytecode verification algorithms are surveyed
by Leroy [2003].

There is a large body of literature on bytecode verification that concen-
trates on special language features such as subroutines [Coglio 2004; Klein
and Wildmoser 2003], object initialisation, dynamic class loading, thread mon-
itors, and access control. There are also a number of more or less radically
different approaches to type inferences like model checking, reducing the BV
to Haskell type inference, and using ML-style polymorphism. We refer to the
overview articles for these.

5. COMPILER

Our compiler operates in two stages: First, it replaces variable names in ex-
pressions by indices (Section 5.2), then it generates the actual JVM code (Sec-
tion 5.3). Once we have lifted compilation of expressions to the level of programs
(Section 5.4), we show that both compiler stages preserve the big step seman-
tics (Sections 5.5 and 5.6). Finally, we show that not only the semantics, but
also the well-typedness of expressions and well-formedness of programs is pre-
served by compilation, that is, that the compiler produces well-typed JVM code
(Sections 5.8 and 5.9).

5.1 Intermediate Language

The intermediate language of expressions is called expr1 and is identical to
expr except that all variable names are replaced by natural numbers, save
for field access and field assignment. To avoid duplication, in Isabelle/HOL
we have defined one parameterised data type ′a exp, and expr and expr1 are
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Fig. 28. Evaluation rules for expr1 differing from those for expr.

abbreviations for the instances vname exp and nat exp. The type of J1 programs
is defined by

types J1-prog = expr1 prog.

In contrast to J-prog, methods no longer need parameter names because they
have been replaced by numbers.

5.1.1 Big Step Semantics. The motivation for our choice of intermediate
language is that its semantics is based on almost the same state space as the
JVM: Local variables are no longer stored in a map but in a fixed length list of
values, that is, in an array. Its big step semantics is of the form P �1 〈e,s〉 ⇒
〈e ′,s ′〉, where P :: J1-prog, e, e ′ :: expr1, and s, s ′ :: heap × val list.

Most of the evaluation rules for expr1 are the same as the ones for expr.
The ones that differ are shown in Figure 28. The modifications in the rules for
variable access, variable assignment, and exception catching simply reflect the
difference between a map and an array. Note that the rules are defensive in that
they require the index to be within the bounds of the array. The rule for blocks
expresses that all local variables are preallocated and blocks are irrelevant for
the semantics. However, they are not irrelevant for the type system because of
the types of local variables.

The method call rule has changed because the state in which the body is
evaluated needs to be initialized with an array (ls2

′). The initial section of that
array contains the address of the object and the parameters, and the remain-
der is initalized with an arbitrary value just as in the semantics of Invoke in
the JVM (see Section 3.2). To find out how many local variables are needed,
max-vars (Figure 30) computes the maximal depth of nested local variables.
However, the depth may say nothing about the actual indices, for example, in
{29:T0; {17:T1; e}}. But the layout of ls2

′ assumes the two are related: All indices
in body must be below 1 + size vs + max-vars body. This assumption is justi-
fied because, as we will see later, stage 1 of the compiler produces intermediate
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Fig. 29. Definition of B.

Fig. 30. Definition of max-vars.

expressions with the following property: Starting from some given index, say 4,
indices increase by 1 for each nested block. For example, {5:T0; {6:T1; e1}; {6:T2;
e2}} is fine, but {6:T1; {5:T0; e}}, {5:T0; {7:T2; e}}, and {6:T1; {7:T0; e}} are not.
This property is formalized by B in Figure 29 and could be called an inverse de
Bruijn numbering scheme.

5.1.2 Type System. Again we replace a map by a list: In the judgment P,E
�1 e :: T, the environment E is now of type ty list (and P :: J1-prog). Most rules for
this type system are identical to the ones for expr. The ones that have changed
are shown in Figure 31. They also rely on the inverse de Bruijn numbering
scheme by ignoring the i in {i:T; e}.

5.1.3 Well-Formedness. Well-formedness of J1 programs is essentially
well-formedness of Jinja programs (Section 2.8) where the conditions on the
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Fig. 31. Typing rules for expr1 differing from those for expr.

parameter names have been dropped and inverse de Bruijn numbering is
required:

wf-J1-mdecl P C (M, Ts, T, body) ≡
(∃ T ′. P,Class C · Ts �1 body :: T ′ ∧ P � T ′ ≤ T) ∧ D body �{..|Ts|}� ∧ B body (|Ts| + 1)

wf-J1-prog ≡ wf-prog wf-J1-mdecl

In the definition of D (Section 2.7) we pretended that it operates on expr, but
in reality it is defined on the polymorphic type ′a exp and hence works on expr1

as well.

5.2 Stage 1: Names to Indices

The translation from expr to expr1 is parametrised by the list of variables de-
clared on the path from the root of the expression to the current subexpression.
The index of a variable is the position of its rightmost occurrence in that list: In
[A, B, A, C, D], A has index 2, B index 1, and C index 3. The formal definition

index [] y = 0

index (x · xs) y = (if x = y then if x ∈ set xs then index xs y + 1 else 0 else index xs y + 1)

reveals that the index of an element not in the list is the length of the list. Func-
tion compE1 :: vname list ⇒ expr ⇒ expr1 ( Figure 32) traverses an expression
and translates variable names via index.

5.3 Stage 2: Code Generation

Code generation comprises the generation of an instruction list and an excep-
tion table. Generating the instruction list (function compE2 :: expr1 ⇒ instr list
in Figure 33) is straightforward since we are already on the level of indices
rather than names. The only case that may need some explanation is try-catch.
We compile the code as suggested in the official JVM specification [Lindholm
and Yellin 1999]: first, the try block, then a jump over the rest to the end, then
(and this is the entry point for the exception handler) the exception reference
is stored in the local variable, and finally, the catch block. Remember that int
is the injection from naturals (produced by the length function) into integers
(required by branch instructions).

Producing the code is simplified because branch instructions are relative.
Hence, the compiler does not need to compute an absolute address. The
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Fig. 32. Definition of compE1.

Fig. 33. Definition of compE2.

exception table, however, contains absolute addresses. Hence, its generation
(function compxE2 :: expr1 ⇒ pc ⇒ nat ⇒ ex-table in Figure 34) requires
the current program counter as a parameter. The final parameter is the
current size of the stack. Function compxE2 traverses the expression top-down
and left-to-right, collecting the handler information from all the try-catch
constructs it encounters while keeping track of the current program counter
(by adding the size of the compiled code to the left to it) and the current stack
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Fig. 34. Definition of compxE2.

size (by incrementing it suitably). Each try-catch generates one entry in the
exception table. It contains the stack size d before execution of the try-catch;
this is the stack size we must return to when an exception is encountered
and execution continues with the catch block. The precise addresses in this
exception table entry are, of course, implicitly determined by the layout of
the code produced by compE2. It is crucial that this entry is placed behind
the exception tables belonging to the try and catch blocks: Because the JVM
searches exception tables from the left, it will only find this entry if none of
the more directly enclosing handlers match. At least this is the intuition. The
proof follows.

5.4 Program Compilation

Lifting expression compilation to the level of programs is easy: Simply replace
all method bodies by their compiled version. This is defined generically as

compP :: ( ′a ⇒ ′b) ⇒ ′a prog ⇒ ′b prog
compP f ≡ map (compC f)

compC :: ( ′a ⇒ ′b) ⇒ ′a cdecl ⇒ ′b cdecl
compC f ≡ λ(C, D, Fdecls, Mdecls). (C, D, Fdecls, map (compM f) Mdecls)

compM :: ( ′a ⇒ ′b) ⇒ ′a mdecl ⇒ ′b mdecl
compM f ≡ λ(M, Ts, T, m). (M, Ts, T, f m).

Now we can lift the two compiler stages from expressions to programs:

compP1 :: J-prog ⇒ J1-prog
compP1 ≡ compP (λ(pns, body). compE1 (this · pns) body)

compP2 :: J1-prog ⇒ jvm-prog
compP2 ≡ compP compMb2
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Fig. 35. Definition of max-stack.

compMb2 ≡
λbody. let ins = compE2 body @ [Return]; xt = compxE2 body 0 0

in (max-stack body, max-vars body, ins, xt).

Function compP1 compiles each method body in the context of this and uses its
parameter names as the only local variables. Function compP2 compiles each
method body into the required 4-tuple of maximal stack size (Figure 35), the
number of local variables, the instructions, and the exception table.

The main compiler J2JVM is simply the composition of compP1 with compP2.

5.5 Correctness of Stage 1

Although the translation from names to indices appears straightforward, for-
mulating its correctness is already a bit involved. We want to prove preservation
of the semantics, that is, that an evaluation P � 〈e,(h, l)〉 ⇒ 〈e ′,(h ′, l ′)〉 implies
some evaluation compP1 P �1 〈compE1 Vs e,(h, ls)〉 ⇒ 〈compE1 Vs e ′,(h ′, ls ′)〉. It
is plausible that set Vs should be a superset of fv e and that [Vs [
→] ls] should be
related to l. Equating them does not work because variables in Vs that have not
yet been assigned to will not be in dom l—uninitialised variables again compli-
cate matters. Hence, we have to settle for the weaker l ⊆m [Vs [
→] ls] where

m1 ⊆m m2 ≡ ∀ a∈dom m1. m1 a = m2 a

is defind for arbitrary maps. This relationship should be preserved, that is, l ′

⊆m [Vs [
→] ls ′] should hold.
We are now ready for the main theorem.

THEOREM 5.1. If wwf-J-prog P and P � 〈e,(h, l)〉 ⇒ 〈e ′,(h ′, l ′)〉 and fv e ⊆ set
Vs and l ⊆m [Vs [
→] ls] and | Vs| + max-vars e ≤ |ls| then ∃ ls ′. compP1 P �1

〈compE1 Vs e,(h, ls)〉 ⇒ 〈fin1 e ′,(h ′, ls ′)〉 ∧ l ′ ⊆m [Vs [
→] ls ′].

First we examine the additional premises. Weak well-formedness is necessary
for method calls: In order to apply the induction hypothesis arising from the
evaluation of the method body, we need to establish an instance of fv e ⊆ set Vs,
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namely, that the only free variables in the body are this and the parameters.
The premise |Vs| + max-vars e ≤ |ls| ensures that ls is large enough to hold all
local variables needed during the evaluation of e. In the conclusion, compE1 Vs
e ′ has been replaced by fin1 e ′, where fin1 :: expr ⇒ expr1 is the “identity” on final
expressions: fin1 (Val v) = Val v and fin1 (Throw a) = Throw a. This simplifies the
proposition and the proof because it removes the pointless Vs.

PROOF. The proof is by induction on P � 〈e,(h, l)〉 ⇒ 〈e ′,(h ′, l ′)〉. The only
nontrivial cases are blocks and try-catch. We discuss the block case, as it isolates
the main issue, which is local variables. Let e be {V:T; e0}. From the assumptions
fv e ⊆ set Vs, l ⊆m [Vs [
→] ls] and |Vs| + max-vars e ≤ |ls|, the preconditions
for the induction hypothesis follow and we obtain an ls ′ such that compP1 P �1

〈compE1 Vs0 e0,(h, ls)〉 ⇒ 〈fin1 e ′,(h ′, ls ′)〉 (1) and l ′ ⊆m [Vs0 [
→] ls ′] (2), where
Vs0 is Vs @ [V]. This ls ′ is also the witness for our goal. Its first conjunct compP1

P �1 〈compE1 Vs e,(h, ls)〉 ⇒ 〈fin1 e ′,(h ′, ls ′)〉 follows directly from (1) by the rule
for blocks. The second conjunct is the conclusion of the following general lemma
about maps:

[[l ⊆m [Vs [
→] ls]; l ′ ⊆m [Vs [
→] ls ′, V 
→ v]; V ∈ set Vs =⇒ ls[index Vs V ] = ls ′
[index Vs V ];

|ls| = |ls ′|; |Vs| < |ls ′|]]
=⇒ l ′(V := l V) ⊆m [Vs [
→] ls ′].

It is proved via the chain l ′(V := l V) ⊆m [Vs [
→] ls ′, V 
→v](V := l V)) = [Vs
[
→] ls ′](V := l V) ⊆m [Vs [
→] ls ′], where the rightmost ⊆m is proved by a case
distinction on whether l V is None or not.

The first premise of the lemma is one of our assumptions. The second premise
(with v being ls ′

[ |Vs |]) follows from (2) because |Vs| < |ls|, which follows from

the assumption |Vs| + max-vars e ≤ |ls|. Premise |ls| = |ls ′| holds because J1-
evaluation does not change the length of the list of local variables. Thus, we are
left with the premise

V ∈ set Vs =⇒ ls[index Vs V ] = ls ′
[index Vs V ]

which follows because evaluation does not modify hidden local variables. We
call an element in a list hidden if it occurrs again further to the right:

hidden :: ′a list ⇒ nat ⇒ bool

hidden xs i ≡ i < |xs| ∧ xs[i] ∈ set (drop (i + 1) xs).

Now we introduce a predicate unmod :: expr1 ⇒ nat ⇒ bool (Figure 36) such
that unmod e i means i is not assigned to in e. It is easy to prove that hidden
variables are unmodified and that evaluation preserves unmodified variables:

hidden Vs i =⇒ unmod (compE1 Vs e) i

[[P �1 〈e,(h, ls)〉 ⇒ 〈e ′,(h ′, ls ′)〉; unmod e i; i < |ls|]] =⇒ ls[i] = ls ′
[i].

Now assume V ∈ set Vs. It follows easily that hidden Vs0 (index Vs V), hence that
unmod (compE1 Vs0 e) (index Vs V), and hence that ls[index Vs V ] = ls ′

[index Vs V ],
thus proving the remaining premise.
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Fig. 36. Definition of unmod.

5.6 Correctness of Stage 2

We need to prove that evaluation on the J1-level implies a related execution
sequence on the JVM-level:

THEOREM 5.2. If P1 � C sees M: Ts→T = body in C and P1 �1 〈body,(h, ls)〉
⇒ 〈e ′,(h ′, ls ′)〉 then compP2 P1 � (None, h, [([], ls, C, M, 0)])

jvm−→ (exception e ′,
h ′, []).

Essentially, this theorem says that when executing a method body we obtain
the same final heap on the JVM-level as on the J1-level. The local variables
have disappeared from the final JVM state because we are right at the end of
the computation, where the frame stack is empty. Function exception of type
′a exp ⇒ addr option extracts the exception reference if there is one: exception
(Throw a) = �a� and exception = None.

Unfortunately, this theorem needs to be strengthened greatly before it be-
comes provable by induction. The result is

LEMMA 5.3. Let P1 :: J1-prog, e :: expr1 and P ≡ compP2 P1. As-
sume P,C,M,pc � compE2 e and P,C,M � compxE2 e pc |vs| / I,|vs| and
{pc.. < pc + |compE2 e|} ⊆ I. If P1 �1 〈e,(h, ls)〉 ⇒ 〈e ′,(h ′, ls ′)〉, then, letting σ ≡
(None, h, (vs, ls, C, M, pc) · fs), there are two cases:

—If e ′ = Val v then

P � σ
jvm−→ (None, h ′, (v · vs, ls ′, C, M, pc + |compE2 e|) · fs).

—If e ′ = Throw a then there is a pc ′ such that pc ≤ pc ′ < pc + |compE2 e| and
¬ caught P pc ′ h ′ a (compxE2 e pc |vs|) and

P � σ
jvm−→ find-handler P a h ′ ((vs, ls ′, C, M, pc ′) · fs).

We will discuss the various components of this lemma in turn.
Instead of a method body, we allow the arbitrary expression e. As a conse-

quence, we require that the pc in the top frame points to the compiled expres-
sion. To this end we define
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P,C,M,pc � is ≡ is ≤ drop pc (instrs-of P C M)

P,C,M,pc ( i ≡ ∃ is. drop pc (instrs-of P C M) = i · is,

where P,C,M,pc � is means that the instruction list is is a prefix (≤) of the
instructions of method M starting at pc, and P,C,M,pc ( i means that i is the
instruction at pc in M. Exception handling complicates matters further. We
need to say that the exception table compiled from e is contained in the excep-
tion table of M in such a way that exceptions thrown by e are not erroneously
caught by exception table entries further to the left (because exception tables
are searched from the left). We also need to say that if an exception thrown by
e is caught by an entry further to the right, that entry does not expect more
elements on the stack than we currently have. This is what P,C,M � compxE2

e pc |vs| / I,|vs| expresses:

P,C,M � xt / I,d ≡
∃ xt0 xt1.

ex-table-of P C M = xt0 @ xt @ xt1 ∧ pcs xt0 ∩ I = {} ∧ pcs xt ⊆ I ∧
(∀ pc∈I. ∀ C pc ′ d ′. match-ex-table P C pc xt1 = �(pc ′, d ′)� −→ d ′ ≤ d),

where ex-table-of P C M returns the exception table component of method P C M,
and pcs :: ex-table ⇒ pc set yields all program counters guarded by some entry
in the table: pcs xt ≡ ⋃

(f , t, C, h, d)∈set xt {f .. < t}. The requirement concerning
the exception entries to the right of xt is expressed via function match-ex-table,
which we describe informally: match-ex-table P C pc xt1 searches xt1 for an
entry matching an exception of class C thrown at pc. If it finds a suitable entry,
it returns the corresponding pair (pc ′, d ′) of the handler pc and the size the
stack has to be reduced to, which must be less than or equal to d.

Let us now turn to the conclusion of the lemma. If the J1 evaluation ends in
a value v, there is a corresponding JVM execution which deposits v on top of the
operand stack. If the J1 evaluation ends with an exception, there must be a pc ′

where the corresponding JVM exception is raised. This pc ′ must lie within the
instruction list generated from e, the exception (identified by pc ′ and the class
of the exception object h ′ a) must not be caught by an exception handler in e,
and the final JVM state is the one reached by searching the frame stack for a
matching handler. The definition of caught is straightforward and omitted.

PROOF. Lemma 5.3 is proved by induction on P1 �1 〈e,(h, ls)〉 ⇒ 〈e ′,(h ′, ls ′)〉.
Each case is a lengthy combination of JVM executions of the compiled subex-
pressions of e (obtained from the induction hypotheses) to obtain the JVM exe-
cution of compE2 e. We will sketch one case, the penultimate rule in Figure 4,
which describes the evaluation of e = try e1 catch (C ′ V) e2 when e1 throws an
exception of a subclass of C ′. Let σ 0 = (None, h0, (vs, ls0, C, M, pc) · fs), pc1 =
pc + |compE2 e1|, and σ 0

′ = (None, h1, (Addr a·vs, ls1, C, M, pc1 + 1) · fs).

First, we show P � σ 0
jvm−→ σ 0

′. From the induction hypothesis for the eval-
uation of e1 we obtain pc ′ such that pc ≤ pc ′ < pc1 and ¬ caught P pc ′ h1 a
(compxE2 e1 pc |vs|) and P � σ 0

jvm−→ find-handler P a h1 ((vs, ls1, C, M, pc ′) · fs).
It remains to show that find-handler returns σ 0

′, which is the case if it reaches
the entry at the end of xt = compxE2 e pc |vs| = compxE2 e1 pc |vs| @ compxE2

e2 (pc1 + 2) |vs| @ [(pc, pc1, C, pc1 + 1, |vs|). From the assumption P,C,M � xt
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/ I,|vs|, it follows that ex-table-of P C M is of the form xt0 @ xt @ xt1 and that
pcs xt0 and I are disjoint. Because pc ≤ pc ′ < pc1 implies pc ′ ∈ {pc.. < pc +
|compE2 e|} and because by assumption {pc.. < pc + |compE2 e|} ⊆ I, we cannot
have pc ′ ∈ pcs xt0, that is, the exception is not protected by an entry in xt0. We
already know that it is not caught by compxE2 e1 pc |vs| and it cannot be caught
by compxE2 e2 (pc1 + 2) |vs| either because all of its entries protect program
counters ≥ pc1+2 > pc ′. Thus, find-handler reaches the matching entry at the
end of xt.

Executing the Store instruction yields P � σ 0
′ jvm−→ σ 1, where σ 1 = (None,

h1, (vs, ls1[i := Addr a], C, M, pc1 + 2)·fs). Let pc2 = pc1 + 2 + |compE2 e2|. If
the evaluation of e2 ends in Val v, it follows easily from the second induction

hypothesis that P � σ 1
jvm−→ (None, h2, (v·vs, ls2, C, M, pc2)·frs), as required. If

it ends in an exception Throw xa, the second induction hypothesis yields a pc ′′

such that pc1+2 ≤ pc ′′ < pc2 and ¬ caught P pc ′′ h2 xa (compxE2 e2 (pc1 + 2)

|vs|) and P � σ 1
jvm−→ σ 2, where σ 2 = find-handler P xa h2 ((vs, ls2, C, M, pc ′′) · fs).

This pc ′′ will also be the witness of the overall goal. We need to show that pc
≤ pc ′′ < pc + |compE2 e|, which is trivial, that the exception is not caught by
xt, which follows because it is not caught by compxE2 e2 (pc1 + 2)|vs| and the
remaining entries of xt all protect program counters < pc1 < pc ′′, and that P

� σ 1
jvm−→ σ 2, which we already have.

The proof of Theorem 5.2 from Lemma 5.3 is straightforward.

5.7 Main Correctness Theorem

Composing Theorems 5.1 and 5.2 yields the main correctness theorem.

THEOREM 5.4. If wwf-J-prog P and P � C sees M: Ts→T = (pns, body) in C
and P � 〈body,(h, [this · pns [
→] vs])〉 ⇒ 〈e ′,(h ′, l ′)〉 and |vs| = |pns| + 1 and
| rest| = max-vars body, then J2JVM P � (None, h, [([], vs @ rest, C, M, 0)])
jvm−→ (exception e ′, h ′, []).

If the program is weakly well-formed, then a big step evaluation of a Jinja
method body implies a corresponding JVM execution of the compiled program.
The initial JVM state contains the same heap, an empty operand stack, and
a list of local variables consisting of the parameter values vs followed by an
arbitrary rest which only needs to be of the right length max-vars body.

We may also want to prove the converse: Any result produced by the com-
piled program can be produced by the source program. Given the preceeding
correctness result and the fact that the JVM is deterministic, it would suffice
to prove that if the compiled program terminates, so does the source program.
We have not done so.

5.8 Preservation of Well-formedness: Stage 1

Now we turn from the semantics to the question of type correctness and gen-
eral well-formedness of the generated code. Preservation of well-typedness by
compE1 is easily proved by induction on e:
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LEMMA 5.5. If P,[Vs [
→] Ts] � e :: U and |Ts| = |Vs|, then
compP f P,Ts �1 compE1 Vs e :: U.

Because program compilation compP does not modify the types, which is re-
flected in a number of lemmas such as compP f P � T ≤ T ′ iff P � T ≤ T ′, it
does not matter what f is.

The preservation of definite assignment requires a sequence of lemmas, all
proved by induction on e, the first three automatically.

If A e = �A� then A ⊆ fv e.

If A e = None then A (compE1 Vs e) = None.

D e None

If A e = �A� and fv e ⊆ set Vs then A (compE1 Vs e) = �index Vs ‘ A�.

If A ⊆ set Vs and fv e ⊆ set Vs and D e �A� then D (compE1 Vs e) �index Vs ‘ A�.

Here f ‘ A is the image of A under f : f ‘ A ≡ {y | ∃ x∈A. y = f x}. The final lemma
has the following corollary:

COROLLARY 5.6 If D e �set Vs� and fv e ⊆ set Vs and distinct Vs, then
D (compE1 Vs e) �{.. < |Vs|}�.

The combination of this corollary (applicable because all parameter names
of a well-formed method are distinct and do not contain this), Lemma 5.5, and
the easy lemma B (compE1 Vs e) |Vs| yields

THEOREM 5.7. If wf-J-prog P, then wf-J1-prog (compP1 P).

The proof is straightforward using the lemma (where
∧

is universal quantifi-
cation)

[[
∧

C M Ts T m.

[[P � C sees M: Ts→T = m in C; wf-mdecl wf 1 P C (M, Ts, T, m)]]

=⇒ wf-mdecl wf 2 (compP f P) C (M, Ts, T, f m);

wf-prog wf 1 P]]

=⇒ wf-prog wf 2 (compP f P),

which essentially says that compP f turns a wf 1 well-formed program into a wf 2

well-formed program if f turns a wf 1 well-formed method into a wf 2 well-formed
method.

5.9 Preservation of Well-formedness: Stage 2

We have to show that compE2 maps a well-typed J1 expression into a well-
typed instruction list. For that purpose, we follow Stärk et al. [2001] and define
a “type compiler” that compiles an expression into type annotations (a method
type) for the instruction list that compE2 produces:

compT :: ty list ⇒ nat set option ⇒ ty list ⇒ expr1 ⇒ tyi
′ list.
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As in Section 4.7, we fix the program and the method we are in:
P :: J1-prog the program,
mxl :: nat number of local variables,
mxs :: nat maximum stack size,
Tr :: ty and return type of the method.

The type compiler call compT E A ST e produces the method type for compE2 e
in the context of the environment E assuming that initially (a) the local vari-
ables in A :: nat set option are initialised, and (b) the stack elements are typed
according to ST :: ty list. It uses the following auxiliary functions:

tyl E A ′ ≡ map (λi. if i ∈ A ′ ∧ i < |E| then OK E[i] else Err) [0.. < mxl]

computes the typing of the local variables based on their declared types in E
and their initialisation status in A ′ :: nat set.

tyi
′ ST E A ≡ case A of None ⇒ None | �A ′� ⇒ �(ST, tyl E A ′)�

computes the state type described by ST, E, and A. Remember that A = None
indicates unreachability.

after E A ST e ≡ tyi
′ (ty E e·ST) E (A � A e)

produces the state type characterising stack and local variables after the eval-
uation of e. Thus, we need to push the type of e onto the stack and take the
effect of e on A into account. Function ty is a functional version of type checking
and is characterised by P,E �1 e :: T =⇒ ty E e = T

The full definition of compT is shown in Figure 37 and uses the additional
function

compTa E A ST e ≡ compT E A ST e @ [after E A ST e]

because the method type that compT produces (intentionally) lacks the state
types directly before and after the execution of the corresponding instruction
list. That is, it is one element shorter than the instruction list, describing only
the states between the instructions. As a simple example, let e be the expression
1 := Val (Intg 42) and hence,

compE2 e = [Push (Intg 42), Store 1, Push Unit].

With E = [Class C, Integer], A = �{0}� and ST = [] we obtain

compT E A ST e = [�([Integer], [OK (Class C), Err])�, �([], [OK (Class C), OK Integer])�].

Since we are dealing with instruction lists in isolation rather than with whole
methods, we need a new well-typedness notion. We write � is, xt [::] τs to mean
that the instruction list is together with the exception table xt is well-typed
w.r.t. the method type τs :: tyi

′ list:

� is, xt [::] τs ≡
|is| < |τs| ∧ pcs xt ⊆ {0.. < |is|} ∧ (∀ pc < |is|. P,Tr ,mxs,|τs|,xt � is[pc],pc :: τs).

The key theorem says that the instruction list and exception table are well-
typed w.r.t. the method type produced by the type compiler:
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Fig. 37. Type compiler.

THEOREM 5.8. If P,E �1 e :: T and D e A and B e |E| and
|ST| + max-stack e ≤ mxs and |E| + max-vars e ≤ mxl,

then � compE2 e, compxE2 e 0 |ST| [::] tyi
′ ST E A·compTa E A ST e.

PROOF. By induction on e. In order to combine different well-typedness
propositions we need a central lemma which follows readily from the defini-
tions:

LEMMA 5.9. If � is1, xt1 [::] τs1 @ τs2 and � is2, xt2 [::] τs3 and |τs1| = |is1|
and τs3 ≤ τs2 then � is1 @ is2, xt1 @ shift |is1| xt2 [::] τs1 @ τs2.

Here shift n xt shifts all program counters in xt by n and ≤ again means prefix.
This lemma works well in the presence of forward jumps, but for backward ones
we need another:

LEMMA 5.10. If � is, xt [::] τs and P,Tr ,mxs,mpc,[] � i,pc :: τs and pc =|is|
and mpc = |τs| and |is| + 1 < |τs|, then � is @ [i], xt [::] τs.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 4, July 2006.



690 • G. Klein and T. Nipkow

Fig. 38. Proof summary for while.

We present just one case of the proof of Theorem 5.8, the while-loop. The
correspondence of instructions compE2 (while (e) c) (first column) and types
compTEAST (while (e) c) (second column) is best described by a table:

compE2 e τ ·τse where τ = tyi
′ ST E A and τse = compT E A ST e

IfFalse . . . τ e where τ e = tyi
′ (Boolean·ST) E A0 and A0 = A � A e

compE2 c τ 1·τsc where τ 1 = tyi
′ ST E A0 and τsc = compT E A0 ST c

Pop τ c where τ c = tyi
′ (ty E c·ST) E A1 and A1 = A0 � A c

Goto . . . τ 2 where τ 2 = tyi
′ ST E A1

Push Unit τ 1

τ ′ where τ ′ = tyi
′ (Void·ST) E A0

Using the abbreviations ise = compE2 e, xte = compxE2 e 0 |ST|, isc = compE2 c,
xtc = compxE2 c 0 |ST|, xtc

′ = shift (|ise| + 1) xtc, test = IfFalse . . ., goto = Goto
. . . and τs = τ ·τse @ [τ e, τ 1] @ τsc @ [τ c, τ 2, τ 1, τ ′] (i.e., τs = compT E A ST
(while (e) c)), we can summarize the proof in the table in Figure 38 where the
uncommented lines follow easily.

The remaining cases follow the same pattern. Try-catch requires

LEMMA 5.11. If |is1| = |τs1| and is-class P C and |ST| < mxs and � is1 @ is2, xt [::]

τs1 @ (tyi
′ (Class C·ST) E A·τs2) and

∀ τ∈set τs1.

∀ ST ′ LT ′.
τ = �(ST ′, LT ′)� −→
|ST| ≤ |ST ′| ∧ P � �(drop (|ST ′| − |ST|) ST ′, LT ′)� ≤′ tyi

′ ST E A,

then � is1 @ is2, xt @ [(0, |is1| − 1, C, |is1|, |ST|)] [::] τs1 @ (tyi
′ (Class C·ST) E A·τs2).

to justify the additional exception table entry.

Now it is not very difficult to conclude the next theorem.

THEOREM 5.12. If wf-J1-prog P, then wf-jvm-prog (compP2 P).

By definition of wf-jvm-prog we need a table � such that wf-jvm-prog� (compP2

P). The table can be computed by compTP :: J1-prog ⇒ tyP
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compTP P C M ≡
let (D, Ts, T, e) = method P C M; E = Class C·Ts; A = �{..|Ts|}�;

mxl = 1 + |Ts| + max-vars e
in tyi

′ mxl [] E A·compTa P mxl E A [] e

and the proof of wf-jvm-prog� follows largely from Theorem 5.8. Note that tyi
′

and compTa are explicitly supplied with their implicit arguments mxl and P
because these are no longer fixed globally but are the specific values in this
definition.

5.10 Preservation of Well-Formedness: Main Theorem

Combining Theorems 5.7 and 5.12 yields the main theorem:

THEOREM 5.13. If wf-J-prog P, then wf-jvm-prog (J2JVM P).

If the source program is well-formed — which includes every method body
being well-typed — then the compiled program is also well-formed and will
pass bytecode verification. This is a nontrivial property not guaranteed by Java
compilers (for example, JDK 1.2 and 1.3) [Stärk and Schmid 2001].

5.11 Related Work

There is a sizable amount of literature on compiler verification in general [Dave
2003] which we cannot possibly survey here, but very little specifically for Java.
An early landmark in mechanically verified compilers is the work by Young
[1989] whose source language has procedures but no OO features, but whose
target language is a real rather than a virtual machine. The work by Strecker
[2002] and Klein and Strecker [2004] is closely related to ours, but their main
theorem does not consider exceptions, which is a considerable simplification.
Furthermore, their type compiler intrinsically assumes that variables are ini-
tialized and do not change their type (which they can if you have local variables
and reuse storage as we do).

Stärk et al. [2001] show that terminating computations are compiled into
terminating ones, just as we have done. They also claim to prove a 1:1 corre-
spondence between Java and JVM executions. However, their main theorem
fails to imply that nonterminating computations are compiled into nontermi-
nating ones (which we have not shown, either). Its statement and proof need
to be augmented to prove that one cannot have a diverging Java computation
in correspondence with a terminating JVM execution. Furthermore, it is inter-
esting to note that their compiler has one stage only. Our stage 1 disappears
in the sentence “we suppress the details of a consistent assignment of JVM
variable numbers x to (occurrences of) Java variables x,” combined with the
fact that their Java semantics treats local variables like the JVM: Upon exit
of a block, the local variables of the block are unchanged and still visible. This
works only because Java forbids nested declarations of the same variable, which
Jinja allows. Finally, it is interesting to note that their formalization uses at-
tributed syntax trees that tell for example, what the current environment E of
each subexpression is, whereas we pass E explicitly into many of our functions.
Although this is true for the whole formalization, it is most noticeable for the
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type compiler with its lengthy parameter list. It may well reduce clutter in our
formalization to work with expressions annotated with E, etc. We have not done
so to minimize the number of concepts needed.

The correctness of compiling exceptions is studied by Hutton and Wright
[2004]. They treat a very simple expression language and a stack machine
where all exception handling information is kept on the stack. Because there
is no separate exception table, this leads to simpler exception handling on the
machine level and simpler proofs. It is possible that their machine could serve
as a convenient stepping stone between Jinja and the Jinja VM.

League et al. [2002] compile Featherweight Java into Fω, which is very dif-
ferent from our compilation into the JVM.

6. CONCLUSION

We have given a completely formal account of the core of a Java-like sequen-
tial language, abstract machine, and compiler. Although there are some inter-
esting contributions to the analysis of individual facets, for example, definite
assignment, the emphasis is on a unified model. At the same time, we have
demonstrated that it is possible to present this model in a style appropriate for
a scientific journal, although the formal and machine-checked metalanguage
prohibits some of the liberties (like “. . . ”) of traditional journal articles (and we
have decided not to take others like hiding injections such as �.�). Of course,
Jinja is still a small language compared to Java, but we hope that our theories
will become the basis for further extensions of Jinja, just as others, for example,
Büchi and Weck [1998], have extended some of our earlier Java formalisations.

The whole development (excluding this article) runs to 20000 lines of Isa-
belle/HOL text (with few comments), roughly 350 printed pages, and just over
1000 theorems (available at www.in.tum.de/~nipkow/Jinja/). The proofs take
about 25 minutes to process on a 3GHz Pentium IV with 1GB RAM. This is a
major investment, but one that can be built up to gradually: from type checking
via prototyping to full-blown theorem proving. The early stages are cheap and
worthwhile for any language definition, the final stage is more of an investment
but yields a considerable increase in confidence—particularly since the proofs
are structured and the general drift of an argument can be followed even by a
non-theorem-proving expert.

We have already hinted that the whole formalisation is executable (with the
exception of wf-jvm-prog, a specification that is implemented by the executable
BV). That is, Isabelle/HOL supports the translation of a mixture of recursive
functions and inductive relations into executable (ML) code [Berghofer and
Nipkow 2002; Berghofer 2003] and we have run test cases to increase our con-
fidence in the intuitive correctness of our definitions. Although we have not
broached this aspect at all, we consider prototyping essential for projects such
as ours, where the initial specification (here, the source language) is already
too large to be “obviously” correct. In addition, we consider these executable
ML prototypes as reference implementations for the language, the compiler, the
bytecode verifier, etc. Although these prototypes do not have the performance re-
quired for production purposes, theorem provers offer the right environment for
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achieving the required performance: Efficient programs can be proved correct
w.r.t. initial specifications and then exported to ML just like the prototypes. In
fact, the Jinja code generator is a standard recursive functional program with-
out particular performance bottlenecks and may not need much tuning. The
bytecode verifier is another matter because its fixed point engine passes a large
list around in a single-threaded manner, but the generated ML code does not
take advantage of this. ACL2 and PVS have code generators that could safely
implement this list by an array that is updated destructively. There is ongoing
work to provide similar features in Isabelle. We are convinced that theorem
provers provide the right means to develop certified efficient language proces-
sors that are largely functional but imperative where necessary. Liu and Moore
[2003] already provide strong evidence for this thesis.
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