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Abstract— We consider the following situation for a given
large-scale network: Starting from an initial node we move
to its neighbor node and repeat that until reaching a target
node. How fast can we do this without any global topological
information? This problem is considered “searching networks”,
and several approaches have been proposed. In this paper, we
present a general framework of search strategies, under which all
of these existing approaches can be formalized. Our framework
characterizes random search strategies by the following three
parameters: memory for previously-visited nodes, look-ahead
property and transition probability. Through computational
simulations for large-scale networks with small-worldness and
scale-freeness, we investigate the relationship between the effect
of parameters of the strategies and the coefficients of networks
such as the clustering coefficient. The comparison result provides
a guideline to obtain good parameters of the strategies according
to the diameter and the clustering coefficients of networks.

I. INTRODUCTION

Given a network/graph, we consider the following situation:
Starting from an initial node, we move to its neighbor node
and repeat that until reaching a target node as fast as possible.
If we know the whole (global) topology of the network and
can compute the shortest path from the global topological
information, we can easily reach the target node via the
shortest path. Actually, that assumption is natural for small-
scale networks, such as real-world transportation networks, so
many shortest path algorithms, e.g., Dijkstra’s algorithm, are
well studied. On the other hand, for some types of networks,
such as the WWW network and social networks, it is difficult
to obtain the whole topological information of the networks.
Usually, these networks have a large number of nodes and also
easily change their topology; this implies that it is actually
impossible to run a shortest path algorithm because such an
algorithm requires to memorize all the topological information
in general. How should we do for such networks only with
limited memory and local topological information? In this
paper, we present a generic search strategy, which is tunable
by three parameters related to these factors, and the goal of
the paper is to provide a guideline of designing a good search
strategy.

To construct the generic search, we review some basic
ideas about search with limited memory. One of the simplest
approaches is to utilize the random walk. The standard random
walk is the process which repeats the following procedure:
A particle on a node randomly chooses one of its neighbor
nodes with same probability, and moves to it (e.g., [15]).
Obviously, the procedure requires only a small memory and
local topological information. The standard random walk is
intensively studied. For example, for any graph G, it is known
that the expected number of steps to get from node u to another
node v is bounded by O(n3), where n is the number of nodes
of G, and the expected number of steps to visit all the nodes
is also bounded by O(n3) [2]. This implies that if we use
the standard random walk for search the expected number
of running steps (i.e., the expected number of edges passed
through from a start node to a target node) is also O(n3).

However, this time bound is not so good for the purpose of
search, and actually bad for some case; it is known that there
exists a graph whose expected running steps is Ω(n3) [2],
although such graphs are hardly seen in real-world. Anyway,
the standard random walk is actually not suitable for network
search because it sometimes takes stupid behaviors: a particle
on v coming from u, a neighbor of v, may visit u again. That
is, the standard random walk might be interesting from the
theoretical viewpoint, but not practical as a search strategy.
Actually, it is easy to avoid this behavior, and it is OK to add
one-state memory in order to prohibit moves to the previous
node. How is the effect of the prohibition? Furthermore, in the
standard random walk, the probability of choosing a neighbor
node for move is identical among the neighborhood nodes. Is
this really best utilizing local topological information?

To answer these, many approaches have been proposed
and their performance is investigated through computational
simulations for networks with typical real-world network
properties, say small-worldness and scale-freeness. S.-J. Yang
proposes several types of search strategies based on random
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walk, but they are also equipped with small memories to
avoid useless moves [19]. No-back walk is the simplest one
and forbids to move to the previous node. no-triangle-loop
walk and no-quadrangle-loop walk extend the no-back walk
and prohibit the moves to not only the previous node but
also the second previous node and the third previous node,
respectively. Some random search strategies use not identical
transition probabilities but biased ones instead. In such strate-
gies, usually the transition probabilities are defined according
to local topological information. For example, in maximum
connectivity first strategy, the highest degree node among the
current node’s neighbors is searched first. Note that all of
these approaches are equipped with the look-ahead property
in which the particle on an adjacent node of the target can
directly move to the target node in the next step instead of
randomly choosing a next node.

As for the transition probability, recently, Ikeda et al. [12]
has proposed β-random walk, in which transition probability is
defined by the degree of the corresponding node and parameter
β. They also give an optimal value of parameter β, and
for this β, the hitting time is O(n2) and the cover time is
O(n2 log n) [12]. Recall that these of the standard random
walk are both O(n3). Roughly speaking, the optimal parameter
of β shows that choosing a lower degree node (with a higher
probability) is good to achieve a fast random walk in general.
On the other hand, the results of “maximum connectivity first
policy” show that choosing a higher degree node is better
under the graphs having scale-free property [14]. Is this due
to the scale-freeness?

Based on these observations, in this paper, we present a
generic search strategy: We characterize search strategies in
terms of the following features: memory for previously-visited
nodes, look-ahead property and transition probability. As for
memory, k-tabu is a mechanism of prohibiting moves to k
previously-visited nodes. l-look-ahead is the one of reaching
the target node directly if it is within distance l from the
current node. As for the transition probability, we adopt the
one of the above β-simple random walk. By these capabilities,
we define (k, l, β)-random walk as a generic search strategy,
i.e., (k, l, β)-random walk is the search strategy that is based
on the β-simple random walk but also has k-tabu and l-
look-ahead capabilities. For example, under this framework,
the search strategy based on the standard random walk is
characterized as (0, 0, 0)-random walk, and no back walk is
characterized as (1, 1, 0)-random walk, and so on. The aim of
this paper is to provide a good perspective on performance
analysis and comparison studies for the search strategies by
using this characterization.

To this end, we perform computational experiments (sim-
ulations) in order to investigate the relationship between the
performance and the parameters. In the computational sim-
ulations, we implement (k, l, β)-random walk and apply it
with several parameters to large-scale networks with small-
worldness and scale-freeness as real-world networks, and
random graphs by Erdős and Rényi [9] as an artificial type of
networks. The simulation results give a guideline for designing

good search strategies according to models of graphs.
The rest of the paper is organized as follows. Section II

gives introductions about small-world and scale-free networks
as real-world networks, their generating models, and also basic
ideas of random walks. In section III, we give a brief survey
about several existing search strategies, and then present our
generic search strategy. Section IV gives the performance
analysis/comparison of the strategies through computational
simulations, and section V concludes this paper.

II. PRELIMINARIES

A. Graphs/Networks and their properties

Let G = (V, E) be a finite undirected connected graph,
where V is a set of n nodes (or vertices) and E is a set of
n edges. In this paper, we also call G a network. For u ∈ V ,
N(u) denotes the set of nodes adjacent to u (i.e., N(u) = {v |

(u, v) ∈ E}), and deg(u)
def
= |N(u)| is called u’s degree. A

x0—xk path is a sequence of (x0, x1, . . . , xk−1, xk) satisfying
(xi−1, xi) ∈ E for i = 1, . . . , k, and the length of the path is
k. The distance dis(u, v) between two nodes u, v is the length
of a shortest u—v path.

To characterize or quantify a given graph, various measures
are proposed. Among them, we focus on the characteristic
path length and the clustering coefficient, both of which are
introduced by Watts et al. [18]. The characteristic path length
of node u, denoted by LG(u), is the average distance from
u to any other nodes v ∈ V \ {u}. The characteristic path
length of graph G, denoted by LG, is the average on LG(u).
Formally,

LG(u)
def
=

1

n − 1

∑

v 6=u

dis(u, v), and LG
def
=

1

n

∑

u∈V

LG(u).

The clustering coefficient of a node u, denoted by CG(u),
is the proportion of the number of edges between the nodes
within its neighborhood to the number of edges that could
possibly exist between them. The clustering coefficient of
graph G, denoted by CG, is the average on CG(u). Formally,

CG(u)
def
=

2Eu

deg(u)(deg(u) − 1)
, and CG

def
=

1

n

∑

u∈V

CG(u).

where Eu is the number of edges between the neighbors of
u, i.e., |{(v1, v2) ∈ E | v1, v2 ∈ N(u)}|.

In general, there is no strong relation between LG and CG.
For example, CG’s of both path graphs and complete binary
trees are equal to 0, but LG of the former is large (O(n))
while LG of the latter is O(log n). Moreover, for complete
graphs, both LG and CG are equal to 1. However, various
kinds of real-world networks such as WWW [1], co-author
relationship on science papers [16], airline routes [4] and
biological metabolic networks [13], have a common feature
about LG and CG, called small-worldness, whose definition
is introduced by Watts et al. [18]. The small-world property
is characterized as

LG ≈ Lrand and CG � Crand,



where Lrand ∼ log(n)/ log(d) and Crand ∼ d/n (d is the
average degree of the graph) represent the average values of
LG and CG of random graphs with almost the same size
respectively. It is known that both of them are small if the
number of edges is small.

On the other hand, these real-world networks are known to
have another characteristics: It is reported that in many real-
world networks [3], [4], [7], the degree distribution follows the
power-law, i.e., the probability P (d) that a node has degree d
satisfies

P (d) ∝ d−γ .

The network whose degree distribution follows the power-law
is called scale-free network. Barabási et al. [5] showed that the
scale-free networks can be generated by two simple generating
rules: growth and preferential attachment, as shown later.

In the next section, we review three major network gener-
ating models, ER, WS and BA, all of which are intensively
studied.

B. Network models

In this subsection, we review three major network gener-
ating models, ER, WS and BA models. ER is a model of
random graphs [8], WS is a model of generating small-world
networks [18], and BA is a model of generating scale-free
networks [5]. These are most typical generating models of the
corresponding types of networks.

1) ER model: ER model is proposed by Erdős and Rényi
and is the model that generates random graphs (networks) [8].
In this model, graphs are generated as follows: We first prepare
n isolated nodes. Then, for each pair of nodes, we connect
them with a given probability pe. Thus, the expected number
of the edges is pen(n − 1)/2. The distribution of degree d is

P (d) =

(

n − 1

d

)

pd
e(1 − pe)

n−1−d,

which is binomial with the average degree d̄ = pe(n − 1). If
n → +∞, this converges to

P (d) →
e−d̄d̄d

d!
,

which is the Poisson distribution.
2) WS model: WS model is proposed by Watts and Strogatz

and is the model that generates small-world networks [18]. In
this model, we prepare a regular lattice graph in which all the
nodes are placed on a circle and then each node is connected
to its kw neighbors (See Figure 1 (left)).

Fig. 1. A lattice graph (left) and a rewired one (right)

Then rewire each edge in E with a given probability pw.
“Rewiring the edge” means removing one end of the edge
and connecting to another node uniformly chosen so as not to
make any self-loops or multiple edges. (Figure 1 (right) is a
graph after rewiring.). The number of the edges is nkw/2.

The probability pw decides CG and LG values, i.e., pw

determines if the resulting graph has the small-worldness.
For example, if pw = 0 the resulting graph is the lattice
graph itself, which does not have the small-world property.
If pw = 1, the resulting graph is almost same as a random
graph, which is not also small-world. It is known that for
0.01 < pw < 1 the resulting graphs have the small-worldness.

3) BA model: BA model proposed by Barabási and Albert
is the model that generates scale-free networks [5]. This model
is defined in two rules. (1) Growth: We first prepare the
complete graph with m0 nodes. At every time step, we add a
new node and connect it to distinct m′(≤ m0) nodes randomly
chosen from the existing nodes. (That is, m′ edges are added.)
(2) Preferential attachment: The probability that node u is
chosen is deg(u)/

∑

v∈V ′ deg(v), where V ′ is the set of nodes
at the time. This process is repeated in t steps. Therefore, after
t steps, the number of the nodes and the edges are respectively
m0 + t and m0(m0 − 1)/2 + m′t.

C. Random walk

In this subsection, we give basic ideas of random walks,
which play an important role in this paper.

The random walk on finite graphs is the process that repeats
moving a particle on a certain node to one of its neighbor
nodes with some probability. In general, the “random walk”
means the standard random walk in which the particle moves
to one of the neighbor nodes with the same probability [6].
That is, the transition matrix P = (pu,v) is given by

pu,v =

{

1/deg(v) (v ∈ N(u))
0 (otherwise).

Note that the standard random walk uses only the degree
information of the node on which the particle exists. The
hitting time HG(u, v) is the expected number of steps in which
the particle starting from u reaches v. The hitting time of graph
G is defined by HG = maxu,v∈V HG(u, v). In the standard
random walk, the hitting time of any graph G is bounded by
O(n3) [10].

Recently, Ikeda et al. have generalized the standard random
walk, and proposed β-simple random walk [12]. The β-simple
random walk uses a generalized transition probability of the
particle on u, which is based on not only deg(u) but also
deg(v) of v ∈ N(u). The transition matrix is given by

p(β)
u,v =

deg−β(u)
∑

w∈N(u) deg−β(w)
,

where β ∈ R. When β = 0, the β-simple random walk is
identical to the standard random walk. In the β-simple random
walk, it is proved that the hitting time of any graph G is
bounded by O(n2) at β = 0.5 [12]. This β is actually optimal
in the sense that for any transition matrix there exists a graph



whose hitting time is Ω(n2). The β = 0.5 means that in
the transition probability, nodes with lower degree are more
preferable.

III. LOCAL SEARCH STRATEGIES

The goal of this paper is to provide a good search strategy
on real-world networks, i.e., networks with small-worldness or
scale-freeness. Now we formally define the search problem.
We are given a network (graph), a start node u ∈ V and a
target node v ∈ V . The problem is to find v through a certain
path u—v whose length is as short as possible.

As mentioned in section I, it is supposed that the size of
the network is very large and sometimes the topology is also
changeable. Therefore, the traditional memory-based searches
such as the breadth-first search and shortest path algorithms
are not applicable, and various search strategies based on
“walk” are proposed. A general idea of walk-based searches is
described as follows: We put a particle on the start node and
repeatedly move it to one of the neighbor nodes until reaching
the target node. In this setting, we are requested to lead the
particle to the target node as fast as possible.

In this section, we briefly describe past walk-based strate-
gies and then present our generic search strategy, (k, l, β)-
random walk.

A. Past studies

One of the simplest search strategies is just to use the
standard random walk as a search. However, since the standard
random walk is memoryless, useless visits can be taken,
i.e., the particle coming from u to w (not the target node)
sometimes visits u again. One direction of the studies is to
prohibit such useless visits by using small (short) memory. The
no-back walk is the standard random walk with the capability
of prohibiting to move to the previous node [19]. The no-
triangle- and no-quadrangle- loop walk are the extensions of
the no-back walk and they prohibit to move to the second and
the third previous node as well, respectively [19]. The self-
avoiding walk also has the identical transition probabilities
and prohibits to move to all the nodes previously visited [11],
[19].

Another research direction is to use a different transition
probability. PRF chooses a node with the probability pro-
portional to the degrees of neighbor nodes, and moves the
particle deterministically to the target node if it is in the
neighbor nodes [14]. The maximum connectivity first strategy
moves the particle to one of the neighbor nodes whose
degree is maximum [14]. It is reported that both methods,
in which nodes with higher degree are preferable, have good
performance for small-world networks. On the other hand,
recall that in the β-simple random walk for a (general) graph
has the best performance when β = 0.5, which means that
nodes with lower degree are more preferable (see section II.
C.). It is a little interesting, because these may imply that
scale-free networks have special structures in terms of random
walks.

Note that all these strategies has look-ahead property and
move the particle directly to the target node if it is in the
neighbor nodes. Among these, it was reported that the self-
avoiding walk has good performance in the number of edges
passed through [11], [19].

B. A generic search strategy: (k, l, β)-random walk

As shown above, many existing search strategies are based
on random walks (which may use different transition prob-
ability) and also are equipped with memory for prohibiting
moves and look-ahead property. Here, we present a general
framework, which can formalize these strategies by three
parameters: k-tabu, l-look-ahead and β-transition probability,
where k, l are nonnegative integers and β is a real number.

The k-tabu is a mechanism that prohibits to move to the k
nodes previously visited by memorizing (listing) them. (If all
the neighbor node of the current position are listed, then move
to one of the nodes according to the transition probability.) The
list is easily implemented as a queue.

The l-look-ahead property is a mechanism that checks if the
target node is within distance l from the current node. If yes,
the particle can reach the target directly. This can be easily
implemented by the simple bread-first search.

The k-tabu and l-look-ahead property can be combined with
many search strategies. In this paper, we combine these proper-
ties with β-simple random walk, and call this (k, l, β)-random
walk. The (k, l, β)-random walk is described as follows:

• Step 0 : Prepare an empty list with size k. (Called tabu
list.)

• Step 1 : Use the l-look-ahead property. If it founds the
target node, then output and halt.

• Step 2 : Prepare an empty candidate list. Check if each
neighbor node is in the k-tabu list. If no, add it to the
candidate list. After checking all the neighbor nodes, if
the candidate list is still empty, then add all the neighbors
to the candidate list.

• Step 3 : For all the nodes in the candidate list, compute
the transition probability by

p(β)
u,v =

{

deg−β(u)
P

w∈candidate list deg−β(w)
(v ∈ candidate list)

0 (otherwise).

Choose a node according to the probability. Add the
chosen node to the tabu list and move to it. Goto Step 1.

By definition, the standard random walk and the β-simple
random walk are characterized as (0, 0, 0)-random walk and
(0, 0, β)-random walk, respectively. Also note that all the
strategies explained in section III. A. can be characterized
as (k, l, β)-random walk with certain parameters. Table I
shows the correspondence of them with the values of three
parameters.



TABLE I

EXISTING STRATEGIES AND (k, l, β) PARAMETERS

past strategy (k, l, β)-RW

standard random walk (0,0,0)
no-back walk [19] (1,1,0)

no-triangle-loop walk [19] (2,1,0)
no-quadrangle-loop walk [19] (3,1,0)
self-avoiding walk [11], [19] (∞,1,0)

preferentially self-avoiding walk [19] (∞,1,-1)
maximum connectivity first [14] (∞,1,-∞)

IV. COMPUTATIONAL SIMULATION

In this section, we investigate good search strategies of our
(k, l, β)-random walk through computational simulations for
networks with small-worldness or scale-freeness.

First, we explain how to prepare the networks for the
simulations and how to set the (k, l, β) parameters.

A. Settings of the simulations

1) Generated networks and their parameters: We prepare
three types of networks (graphs), ER, WS and BA. We use
only the connected graphs out of the simple graphs generated
by each model. For comparison, we construct the networks
with the same numbers of nodes and edges. For this purpose,
we set the parameters of each generating model so that a
network with n nodes has about 2n edges and the average
degree d = 4. Therefore, the model-specific parameters are
set as follows.

ER model: In a graph of ER model, the expected number
of edges is equal to pen(n−1)/2, which should be 2n. Hence
we set the probability pe = 4/(n − 1).

WS model: Since the average degree of the graph is 4,
we set the degree of the initial regular lattice graph 4. As
for the the rewiring probability pw, we need to specify some
proper values to assure the small-worldness of the graph. To
decide this, we use the metrics µ called small-worldliness
which provides the quantitative measure of small-worldness,
introduced by Walsh [17]:

µ = (CG/LG)/(Crand/Lrand).

As pw grows from 0, rewired edges work as “shortcut”.
Because of the shortcuts, LG drops rapidly but CG remains
large, so µ grows fast. On the contrary, as pw comes close to
1, CG gets smaller while rewired edges affect LG no longer,
so µ also gets smaller; the network loses small-worldliness.
Figure 2 shows µ plotted against pw at n = 1000 and
kw ∈ {2, 4, 6, 10}, the degrees of lattice graphs. This figure
shows µ is maximum when pw is around 0.1 regardless of kw.
The similar tendencies are shown for other n’s and kw’s, so
we set pw = 0.1.

 0

 10

 20

 30

 40

 50

 60

0.0001 0.001 0.01 0.1 1

m
u

p_w

k_w=4 
k_w=6 
k_w=8 

k_w=10

Fig. 2. small-worldliness µ

BA model: As shown in section II, the exact numbers of
nodes and edges in BA model are m0+t and m0(m0−1)/2+
m′t, respectively. Given a number of nodes n, we set the time
step t = n and m0 = m′ = 2 so that the number of edges is
about 2n.

Table II shows examples of the average feature quanti-
ties of 20 networks of n = 500, which are used in the
computational simulations. In the simulations, we prepare
networks with n nodes for each generating model for n ∈
{50, 100, 200, 300, 500}.

TABLE II

FEATURE QUANTITIES

average deg deg var LG CG diameter
ER 4.16 3.76 4.54 0.0063 9.40
WS 4.00 0.39 7.59 0.37 15.15
BA 3.99 24.0 3.76 0.043 7.00

2) Parameter settings of (k, l, β): For the networks gener-
ated by those models with the parameters specified above,
we run the (k, l, β)-random walks. The parameters used
in the simulations are all combinations of k ∈ {0, 1, 2},
l ∈ {0, 1, 2} and β ∈ {−1,−0.5, 0, 0.5, 1}. We denote this
by (k, l, β) ∈ ({0, 1, 2}, {0, 1, 2}, {−1,−0.5, 0, 0.5, 1}). To
compare their performance, we evaluate the number of edges
passed through from a start node to a target node (i.e., the
number of steps) for all pairs of start and target nodes. For
each setting of parameters and start-target pair, we perform
50 trials of simulations and compute their average steps. The
mean and max of the number of steps over all 1

2n(n−1) pairs
for one network are called the mean steps and the max steps,
respectively. The latter corresponds to the hitting time.

In summary, we implement (k, l, β)-random walks
with (k, l, β) ∈ ({0, 1, 2}, {0, 1, 2}, {−1,−0.5, 0, 0.5, 1}),
and apply them to 20 distinct networks with
n ∈ {50, 100, 200, 300, 500} nodes of ER, WS and BA
models. For each combination of the parameters, we calculate
the average of the results on them.



B. Results and discussions

We first see the overall tendencies of the simulation results.
Figures 3-8 show the results for (k, l, β) ∈ (0,1,{-1,-

0.5,0,0.5,1}). In each figure, the mean or max steps are plotted
against the number of nodes. From these results, we observe
that the mean and max steps increase near-linearly with the
number of nodes for every parameter. This tendency is wholly
seen for other parameters (other figures are partially listed in
appendix).

Tables III and IV show the mean and max steps for n = 500
and β ∈ {-1,-0.5,0,0.5,1}. As for mean steps, if l = 0, namely
in case without look-ahead property, the steps are smaller at
β > 0 while at l = 1 they are smaller at β < 0. On the other
hand, the max steps are smaller at β > 0 regardless of whether
or not the look-ahead property is used.
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Fig. 3. mean steps : ER model, (k, l)=(0,1)
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Fig. 4. mean steps : WS model, (k, l)=(0,1)
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Fig. 5. mean steps : BA model, (k, l)=(0,1)
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Fig. 6. max steps : ER model, (k, l)=(0,1)
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Fig. 7. max steps : WS model, (k, l)=(0,1)
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Fig. 8. max steps : BA model, (k, l)=(0,1)

Now, we review the relationship between steps and param-
eters k, l and β from Tables III and IV.

• k = 0, l = 0
In this case, the search strategy is equivalent to the β-
simple random walk. Both the mean and max steps are
minimum if β ∈{0,0.5,1} on each model. This might be
derived from that in β-simple random walks on general
finite graphs, the best β is 0.5 with respect to the hitting
time, though β = 0.5 is not always the best in these
cases.
Now we compare the results by the models. In WS
model, the steps little depend on β, while in ER and BA
models they greatly depend on β . The reason is that
WS model networks have similarity to regular graphs



because they are rewired regular lattice graph whose
rewiring probability pw in our simulation is 0.1, very
small. Namely, these networks seem to have almost same
degrees, in which the transition probability of the β-
simple random walk is identical regardless of β. The
degree variance of WS networks in Table II supports this
idea.

• k ∈ {1, 2}, l = 0
Both the mean and max steps at β > 0 are smaller than
at β < 0 (also seen in Figures 9(a)-9(f) in appendix). The
reason would be as follows: These cases k > 0 inherit the
results for k = 0 and l = 0. Compared with the results
at k = 0, the ones at k = 1 are greatly improved. On the
contrary, at k = 2, the effect on ER and BA model is less,
while on WS model the reduction effect is still observed.
Networks of WS model, which have large CG as shown
in Table II, usually contain many triangles. Because of
the triangles, the node second previously visited is likely
to be adjacent to the current node and thus k-tabu may
work effectively.

• k ∈ {0, 1, 2}, l > 0
Both the mean and max steps are reduced drastically.
The effect of the l-look-ahead is prominent on BA model,
followed by the ones on ER and WS models. This can be
understood from the following reason: Networks of BA
model have small LG as shown in Table II, which implies
that there are many nodes u that have many nodes within
small distances. Since the look-ahead can check nodes
with small distances without visiting, networks with small
LG can check more nodes; implicitly more nodes are
visited.
As for the mean steps, those at β < 0 are rather smaller
than at β > 0. This is also seen in Figures 3- 5. The
search strategy with look-ahead property can check more
nodes from the node with higher degree. Because of this,
the search with small β (i.e., nodes with higher degrees
have higher priority) can easily reach the target node.
On the contrary, as for the max steps, those are at β > 0
smaller than at β < 0. Although we do not understand the
exact reason, we consider it is because the performance
of negative β strategies may greatly depend on locations
of the start and the target nodes. For example, if the start
node is located at an area of nodes with higher degrees
and the target node is located at a sparse area, then the
particle can hardly escape from the dense area. Thus,
even if negative β strategies have good performance for
the mean steps, in worst cases (max steps), they may
require more steps to reach the target. The effect of k is
similar to the one at l = 0.

It should be noted that negative β-random walks (higher
degree nodes have higher priority) are not always better than
positive β-random walks (lower degree nodes have higher
priority), and only when l ≥ 1 and for the mean steps, the
former is better than the latter. These results imply that the
goodness of other existing results (e.g., [14]) is not because

of the biased transition probability itself but because of the
combination of the one and the look-ahead capability.

TABLE III

MEAN STEPS

n = 500 l = 0 l = 1 l = 2

β=-1 ER WS BA ER WS BA ER WS BA
k = 0 2040 1363 3505 287 757 156 62 428 15
k = 1 1240 825 1693 199 458 99 46 263 12
k = 2 1237 670 1602 199 373 96 46 215 11

β=-0.5 ER WS BA ER WS BA ER WS BA
k = 0 1267 1349 1381 265 769 117 64 437 17
k = 1 863 819 993 190 467 86 47 269 13
k = 2 861 663 980 190 378 85 47 219 13

β=0 ER WS BA ER WS BA ER WS BA
k = 0 973 1355 979 268 790 121 69 450 23
k = 1 681 819 735 190 477 84 50 275 16
k = 2 680 660 733 189 384 84 50 223 16

β=0.5 ER WS BA ER WS BA ER WS BA
k = 0 902 1380 1031 297 820 154 79 468 34
k = 1 599 824 644 196 489 86 53 283 19
k = 2 598 660 643 196 391 86 53 228 19

β=1 ER WS BA ER WS BA ER WS BA
k = 0 993 1426 1362 366 861 222 100 492 54
k = 1 570 835 610 207 502 88 57 291 20
k = 2 570 663 610 207 399 88 57 233 20

TABLE IV

MAX STEPS

n = 500 l = 0 l = 1 l = 2

β=-1 ER WS BA ER WS BA ER WS BA
k = 0 53132 5378 24997 13967 3168 1979 2816 2506 399
k = 1 14653 3238 8611 6667 1734 895 2084 1370 218
k = 2 14543 2677 7970 6662 1343 855 2028 1099 214

β=-0.5 ER WS BA ER WS BA ER WS BA
k = 0 18048 4449 5921 7568 3119 776 2212 2416 242
k = 1 6562 2638 2991 4228 1694 536 1643 1364 170
k = 2 6475 2140 2939 4245 1287 522 1653 1088 170

β=0 ER WS BA ER WS BA ER WS BA
k = 0 7980 4016 2633 4775 3044 516 1927 2376 212
k = 1 3509 2301 1740 3003 1701 396 1394 1363 151
k = 2 3537 1834 1764 3048 1283 398 1414 1075 149

β=0.5 ER WS BA ER WS BA ER WS BA
k = 0 4886 3947 3174 3797 3078 561 1898 2412 248
k = 1 2620 2153 1751 2518 1718 361 1274 1394 147
k = 2 2660 1643 1756 2521 1277 358 1272 1065 143

β=1 ER WS BA ER WS BA ER WS BA
k = 0 4392 3976 7973 3908 3200 731 2124 2475 338
k = 1 2376 2130 1708 2327 1711 343 1248 1372 149
k = 2 2344 1605 1727 2266 1300 343 1218 1088 149



V. CONCLUSION

In this paper, we have presented a generic search strategy
with three parameters k-tabu, l-look-ahead and β-transition
probability, which formalizes existing random walk-based
strategies on large-scale networks. One virtue of this frame-
work is to provide a good perspective, which can make us
understand relationship among the existing search strategies
and also give some guidelines to design a good search strategy
according to some graph quantities. Through the computa-
tional simulations for networks by standard graph generating
models, ER, WS and BA, we discuss relationship between
these three parameters in our framework and the properties
of networks. The results of the simulations are summarized
as follows: In terms of the number of steps, k-tabu and l-
look-ahead property work more effectively on networks with
large CG and small LG, respectively. As for the mean steps,
the strategy without look-ahead would be better off moving
to a node with a lower degree by priority, while the one with
look-ahead would take the opposite way, which matches the
results of the existing studies. On the contrary, concerning the
max steps, moving to a node with a lower degree is better
regardless of the usage of the look-ahead property.

There are several directions for further studies considered.
One of the most important directions is to give theoretical
analyses for random walks on small-world or scale-free net-
works. Another direction, quantifying the costs of tabu and
look-ahead, also might be an interesting research topic.
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This appendix provides more results of the computational simulations that have been omitted due to the readability.
It may be read to the discretion of the program committee.

APPENDIX

This appendix provides computational simulation results, which are not listed in the main body. The mean and max steps
seem to inclease in near-linear with the number of nodes. The right and left side figures show the mean and max steps
respectively on each model for (k, l, β) ∈ ({1, 0, {−1,−0.5, 0, 0.5, 1}}). As we see in section IV, the mean and max steps at
β > 0 are smaller than at β < 0 for k = 1.
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(a) mean steps : ER model
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(b) max steps : ER model
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(c) mean steps : WS model
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(d) max steps : WS model
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(e) mean steps : BA model
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(f) max steps : BA model

Fig. 9. Results for (k, l, β) ∈(1,0,{-1,-0.5,0,0.5,1})


