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ABSTRACT 
DNA self-assembly is an emerging technology with potential as a 
future replacement of conventional lithographic fabrication.  A key 
challenge is the specification of appropriate DNA sequences that are 
optimal according to specified metrics and satisfy various design 
rules.  To meet this challenge we developed a thermodynamics-
based design automation tool to evaluate the vast DNA sequence 
space (2.8k base pairs) and select appropriate sequences. We use 
this tool to design DNA nanostructures that were previously 
impossible with existing text distance based tools.  We also show 
that for nanoscale structures our approach produces superior results 
compared to existing tools. 

Categories and Subject Descriptors 
J.6 [Computer Aided Engineering]: Computer-aided design 
(CAD). J.3. [Physical Sciences and Engineering]: Chemistry, 
Engineering, Physics. 

General Terms: Algorithms, Design, Experimentation, 
Theory. 

Keywords: DNA self-assembly, nanostructure design, 
optimized self-assembly. 

1. INTRODUCTION 
DNA self-assembly is an emerging method for the bottom-up 

fabrication of nanoscale computing systems.  The precise binding 
rules of DNA enable creation of nanostructures with minimum pitch 
on the order of a few nanometers.  These nanostructures can be used 
to place and interconnect nanoscale components (e.g., crossed 
carbon nanotube FETs, ring-gated FETs, nanowires). 

The challenge in creating DNA nanostructures is to specify the 
appropriate DNA sequences such that the desired structure 
(geometry) forms and is thermodynamically stable.  To meet this 
challenge, DNA self-assembly can exploit the common technique of 
composing a small set of relatively simple motifs to create more 
sophisticated structures.  Many parts of this design process can 
benefit from design automation.  However, in this paper we focus 
on the key aspect of designing the DNA sequences that control how 

motifs can bind with each other.  Specifically, we seek to find DNA 
sequences that minimize the strength of unintentional interactions 
with the other motifs in the set while maximizing the strength of 
intentional interactions. 

This paper presents our approach to evaluate the sequence 
design space to create a fixed size 60nm X 60nm grid with 20nm 
pitch.  This structure is composed through a hierarchical assembly 
of motifs.  We focus on the design of the final assembly step that 
combines 16 cruciform motifs (arranged 4x4) to form the final grid 
structure.  For this structure, we must determine the best 96 
sequences that satisfy the structural and stability metrics.  To 
accomplish this we implemented an optimization algorithm that is 
aware of both intentional and unintentional interactions and exploits 
parallelism to rapidly evaluate the large sequence design space. 

We have experimentally verified our method by designing, 
synthesizing, and assembling the target nanostructure and 
characterizing it with atomic force microscopy (AFM).  We also 
show that our optimization algorithm produces superior sequences 
for a 2x2 grid than sequences produced using conventional text-
based sequence comparison or random sequence selection. 

The remainder of this paper is organized as follows.   Sections 
2 and 3 provide background on DNA Self-Assembly and DNA 
motifs, respectively.  The metrics for DNA designs are described in 
Section 4 and our target nanostructures are presented in Section 5.  
Section 6 describes various design automation approaches and we 
evaluate these designs in Section 7. 

2. DNA Self-Assembly 
DNA is an acronym that stands for a class of chemicals known 

as deoxyribonucleic acids and is widely studied in the context of 
molecular genetics.  We are concerned primarily with DNA as a 
substrate for fabricating nanostructures, and thus provide a brief 
review in this context. 

DNA’s basic building blocks—called a nucleotide—are 
composed of a phosphodiester covalently bound to a nucleoside or a 
derivative of a deoxyribose sugar and either a purine or pyrimidine 
nucleobase. The nucleobases commonly used in DNA self-assembly 
are the purines: adenine (A) and guanine (G), and the pyrimidines: 
thymine (T) and cytosine (C). The nucleotides bind to each other to 
form a linear chain through the phosphodiester bonds. This 
represents a so-called single-stranded DNA molecule.  
Geometrically compatible single strands can wrap around each other 
to form the well-known helical structure, or double stranded 
molecule (i.e., a double helix). 

The double stranded DNA structure is most stable when the 
pairwise nucleobase interactions are “complementary”, i.e., if A 
pairs with T and G pairs with C. Under these conditions each base 
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Figure 1 –  (a) Schematic of a cruciform composite motif, (b) 

AFM image of a hierarchical 8x4 grid, and (c) a protein-
patterned 4x4 grid. Each cavity in (a) and (b) is ~20nm wide. 

pair (bp) is approximately 2 nm wide (diameter of the helix) and on 
average 0.34 nm long (along the strand, per base). The helical twist 
of the two strands (in the most common form) is such that a full turn 
occurs between every 10th and 11th base. Further, the stability of 
this interaction is only approximately linear per base and depends 
on neighboring mismatch or complementary interactions [1]. The 
stability and exact dimensions, orientation, and form of the 
nucleobase interaction depend on several factors including the pH of 
the solution and local properties of the DNA. 

2.1 Thermodynamics 
The central theme in the use of static self-assembly for 

nanoscale fabrication is the application of an external control over 
an otherwise spontaneous reaction to direct its outcome [2]. This 
control directs the assembly of materials into structures that are 
interesting and relevant to a target design problem. In the context of 
computer system fabrication the self-assembly is used to direct the 
formation of switching devices (e.g., transistors and wires) to create 
logic circuitry, memory, and I/O interfaces.  

The temperature of the reaction volume (i.e., the solution) is a 
simple control in DNA self-assembly. This follows from the 
experimental evidence that demonstrates the formation of double 
helices from single strands of complementary DNA as the solution 
temperature is changed from high to low. The melting temperature 
(Tm) of a DNA strand is the temperature at which the transition from 
single strands to double strands has reached 50%. That is, half of the 
single strands in solution are bound to their complementary strand 
when the solution temperature is exactly the melting temperature of 
the strand. The Tm of two strands is dependent on their sequences 
and the degree to which they are complementary. This simple 
picture is complicated by the introduction of multiple sequences in 
solution. Further, the time evolving dynamics of these interactions 
are still under study [3]. It is the richness of this interaction that is at 
the root of why DNA can be used to form complex nanostructures.  

2.2 Sequence Design 
A strand of DNA obeys certain thermodynamic behavior, most 

importantly that double strands form at temperatures below the Tm 
of the constituent single strands, and this interaction can be complex 
if multiple unique (sequences) DNA strands  are in solution. 
Specification of the strand sequences provides external control over 
the self-assembly process (through temperature control) and 
determines the formation of structures (through complementarity). 
Good sequence design leads to a minimization of sequence 
mismatches, or unintentional interactions between strands of similar 
but not perfectly complementary sequences, at a given temperature 
and therefore produces a higher yield of the target structures.  

Sequence design is important because it determines many 
aspects of the target DNA nanostructure (e.g., geometry and 
stability).  Therefore it is critical to have good methods for choosing 
sequences.  One approach is to use abstractions to create 
increasingly sophisticated structures. 

3. DNA Motifs 
Complex designs are often created using a relatively small set 

of common building blocks—called motifs.  DNA self-assembly 
can exploit this same design principle to hierarchically create more 
sophisticated aperiodic structures.  For DNA there are many 
possible motifs, however we focus on only a few in the context of 
our target nanostructure (see Section 5). Motifs include junctions 
that enable three or more double stranded helices of DNA to interact 

and thus form specific structures (e.g., a triangle, a corner, etc.)  
Another important motif is a single strand of DNA protruding from 
a double stranded helix—called a sticky-end.  

Two motifs with complementary sequences on their sticky-
ends will bind to form a composite motif.  These composite motifs 
may also have embedded sticky-end motifs and thus can also bind 
with other composite motifs to form another, larger, composite 
motif.  This results in a hierarchical structure for motifs. 

The cruciform motif is composed from three smaller motifs:  a 
core, 4 shells, and 4 arms (each arm contains two 5-nt sticky-ends). 

Figure 1 shows: (a) a schematic of the cruciform motif, (b) an AFM 
image of a hierarchical 8x4 grid, and (c) a protein-patterned 
nanostructure  each developed in our laboratory using the methods 
described in this paper [4]. Although motifs provide an easy 
abstraction for reasoning about DNA nanostructures, there are many 
potential issues related to sequence dependent physical (structural) 
properties. For example, the above cruciform motif has a slight 
curvature in three-space, thus composite motifs formed with this 
motif must account for this curvature to ensure the desired final 
geometry is formed. Furthermore, the structural properties of DNA 
sequences can create strain in the final structure which can prohibit 
proper formation. 

There are many design considerations that must be accounted 
for in creating a DNA nanostructure.  When combined with the vast 
sequence space, these considerations motivate the need for 
computer aided design methods. 

4. Metrics and Design Rules 
The number of possible nanostructures that can be fabricated 

by motif-based DNA self-assembly is large. However, not all 
nanostructures can be synthesized efficiently due to the geometric 
and thermodynamic limitations of DNA hybridization. Such 
limitations require a set of experimentally verified design rules to 
act as templates for new designs. In this section we describe the 
metrics and design rules we have used to design and evaluate new 
nanostructures. 

4.1 Metrics 
Metrics enable meaningful comparisons between designs and 

when coupled with baseline or reference designs can be used to 
predict fabrication yields. Experimental data indicates that these 
metrics are correlated with high yields. The two metrics we use to 
evaluate a design are: (i) the average single-interaction energy 
measure (SEM) and (ii) the target-interaction likelihood measure 
(TLM). 

SEM— The average single-interaction energy measure is an 
estimate of the thermal stability of the motif interactions in a design. 
The SEM can be used as a relative measure of stability in terms of 
temperature. For example, a design with a large SEM will be stable 
at higher temperatures than a design with a low SEM. The SEM is 



calculated by averaging the melting temperature of each interaction 
between the motifs in a design. Therefore, a large SEM indicates 
that the average interaction strength between motifs is also large. 

While the thermal stability of a structure is important it is clear 
that if the structure forms incorrectly, yet with high stability, the 
fabrication process will produce a large fraction of flawed or 
defective structures. Therefore, a measure of how likely a structure 
will form must be coupled with the SEM to obtain a complete 
measure of the assembly process. 

TLM— The target-interaction likelihood measure is an 
estimate of the potential for a design to assemble a correct structure. 
The larger this value the less likely it is that a design will form 
incorrectly. This metric is calculated as the average distance from 
the diagonal on a non-specific vs. specific melting temperature plot 
for each motif against all other motifs. Motifs that are close to the 
diagonal (i.e., motifs with strong non-specific interactions) should 
be avoided since they will likely contribute to the formation of 
defective structures. This metric will always be positive. 

Thus, the SEM and TLM are metrics that enable a consistent 
thermodynamic framework in which to compare candidate designs. 
However, they do not provide insight into the geometric or 
structural quality of a design. The complexity of this problem 
motivates the use of design rules in choosing the structure and 
assembly order for a design. The design rules provide a template for 
the creation of structures from motifs and can guarantee geometric 
properties when the design is fabricated. 

4.2 Design Rules 
We have identified two design rules that enable the fabrication 

of complex nanostructures. The first is the use of a “corrugation” 
scheme that alternates the direction of each motif’s normal vector 
across the structure. The second design rule describes a “thermal 
ordering” of motif interactions based on melting temperatures and 
the desired structure.  

4.2.1 Corrugation 
The term “corrugation” was first introduced by Liu et al. [5] to 

describe a method to combat a curling effect observed in large 
periodic nanostructures. Each motif has an intrinsic curvature that is 
sequence dependent and may or may not be approximately zero. 
Further, the curvature can generate a strained structure if a curved 
motif is forced (by adjacent motifs) into a planar shape.  

A sufficiently large accumulation of strain along a vector that 
crosses the structure can curl the structure into a tubule. To avoid 
this strain the corrugation design rule specifies that motifs must be 
placed into the structure with alternating normal vectors such that 
their sum over the entire structure is minimal. Regardless of the 
curvature (or lack thereof) in the motif, the accumulation of strain 
can be minimized by symmetrically arranging motifs in this way. 
For example, consider a linear array of identical motifs each with 
some positive curvature. The structure will curl on itself if the 
motifs are aligned with each other. Instead, if the motif alignment 
alternates they will form a straight line. 

We have generalized this rule for 2D planar structures and 
apply it as a template for new designs. The remaining design task 
(Section 6) is to render the generic template into real nucleotide 
sequences that can be used to fabricate the target structure. While 
the corrugation design rule will ensure that the resulting structure is 
planar, we have found that the order in which motifs assemble into 
the final structure plays a significant role in the defect rate of the 

fabrication process. This has led us to apply a second design rule 
that specifies the motif assembly order. 

4.2.2 Thermal Ordering 
The DNA of each motif has a specific melting temperature 

below which an interaction (with other motifs) can take place and 
will be stable. These melting temperatures (estimated by the SEM) 
can be ordered from high to low and used as a criterion for picking a 
given arm-sticky-end sequence and motif. Since we can physically 
constrain the assembly temperature to be monotonically decreasing 
we can control the order in which motifs will assemble by choosing 
sequences with descending SEMs. 

Similar to the corrugation design rule, the thermal ordering 
design rule provides a template (in this case an assembly order) for 
the nanostructure and must ultimately be rendered into real 
nucleotide sequences. In the next section we describe our target 
nanostructure and how the metrics and design rules are applied. 

5. Target Nanostructure 
As a design example, consider a planar grid of motifs like the 

ones shown in fig. 1. The cruciform motif described in Section 3 is 
the basic element for the grid and the design must completely 
specify the nucleotide sequence for each motif. Using the 
hierarchical strategy we can reduce the complexity of this problem 
by using known nucleotide sequences for the cruciform motif and 
focus on the arm-sticky-end sequences. 

A 4x4 grid has 16 cruciform motifs and each cruciform 
requires four pairs of sequences (one pair for each arm per motif). 
Since the motifs only bind on the interior of the grid a total of 96 
arm-sticky-end sequences are required (96-arm). Prior work has 
been limited to periodic structures where as many as four or five 
motifs polymerize into 2D arrays; such systems require fewer arm-
sticky-end sequences due to the periodic reuse of motifs [6]. A 
classic example of this is the “AB” system that requires 20 distinct 
arm sequences for 2 motifs (20-arm). These sequences must ensure 
that each motif will bind in only 1 of 16 positions in the grid. We 
can apply the corrugation and thermal ordering design rules as 
templates for the grid at the outset and use the SEM and TLM 
estimates to choose from all candidate arm-sticky-end sequences. 
To maintain an optimal solution we evaluate all possible 5-
nucleotide (5-nt) arm-sticky-end sequences. Section 6 describes the 
sequence design process in detail and Section 7 evaluates the 
designs. 

6. Design Automation Methods 
Given the importance of sequence design for self-assembled 

systems there are a variety of available tools for this purpose [7-11]. 
However, these tools use heuristics, simplified interaction models 
(e.g., sequence text distance) or no hierarchies which make them 
unable to design large systems (i.e., our systems require non-
interacting sequences with >1200 base pairs). Even for small 
problems theses solutions do not generate a sufficient set stick-ends. 
For example, the 96-arm motif structure is too large for these 
methods. 

An alternative, but trivial, method is to randomly select 
sequences. Using a random sequence generator, thermodynamic 
analysis can be used to evaluate the design. The computational 
effort is low in this case but there are obviously no guarantees on the 
optimality of the resulting design. 



6.1 Thermodynamic Optimization Tool 
To overcome the limitations of text distance and random 

sequence generation we have implemented a new optimization tool.  
The tool is a parallel implementation of an exhaustive 
thermodynamic search that can optimize a target design given a 
target topology and basic motif design against both the SEM and 
TLM estimators described in Section 4. The outcome is a set of 
arm-sticky-end sequences that can be used to generate a set of 
motifs that are optimized to reduce non-specific interactions during 
the assembly process. The algorithm evaluates each possible arm-
sticky-end sequence against all other candidate sequences and motif 
sequences and maps their mutual interaction. Self-binding and 
region mismatching of up to 6 consecutive nucleotides are included 
in the evaluation.  

To calculate the thermodynamic interaction of candidate 
strands (needed for both the TLM and SLM estimators) we used a 
modified nearest-neighbor algorithm based on the freely available 
MELTING4 tool [12]. The MELTING4 code was modified to 
handle internal and terminal base pair mismatches [1, 13]. Terminal 
mismatches are treated by “padding” all evaluated sequences with a 
complementary 3-bp region. This better simulates the motif 
environment and ensures that the ends are complementary. The 
padding artificially increases the stability of a configuration 
(slightly) due to the additional matching base-pairs. This systematic 
bias means that the calculated values are more reliable as a relative 
measure of sequence melting temperature. 

Given the vast sequence interaction space that must be 
covered, the execution time on a single processor can quickly 
become prohibitively large as the size of the target structure 
increases. To overcome this limitation the algorithm partitions the 
problem into sub-parts which are then executed in parallel on 
computing clusters and multi-processor machines. This greatly 
reduces the time needed to perform an optimization run and allows 
the application to target larger and more complex DNA 
nanostructures. 

The following pseudo-code generates a TLM-optimized sticky-
end solution arm set for the 20-arm or 96-arm systems: 

 1: FindDNASet(seq_length,set_size,fixed_seq)  
 2: { 
 3:  arms = generate_all_seq(seq_length); 
 4:  arms = remove_verboten(arms); 
 5:  arms = add_complements(arms); 
 6:  arms = remove_duplicates(arms);  
 7:  seq_set = concat_set(arms, fixed_seq)  
 8:  results = cross_melt(seq_set); 
 9:  results = remove(results, fixed_seq); 
10:  results = rank_seq(results); 
11:  results = sort_by_TLM(results); 
12:  top = head(results, set_size); 
13:  return = top;  } 

The parameters are the target sticky-end length (5 for the 
cruciform motif), the target sequence set size (20 and 96 
respectively) and the fixed sequence set (the A and B cores, shells 
and arm stub strands). 

The first step is to generate all possible sequences of the target 
sticky-end length. In the next step, “verboten” sequences are 
removed from the problem space. Verboten sequences are 
sequences known to have unfavorable properties for self-assembly. 
The parallel cross-melt algorithm is executed and the resulting 
interaction data is used to rank the strands based on their specificity 
(TLM). The top sequences represent the TLM-optimal solution set.  

6.2 Alternative Designs 
Single Core— The quality of the solution set will improve if 

the number of fixed motif strands is minimized. This is intuitive, 
given that each fixed strand adds additional constraints on the 
solution space. For our target system we apply this by using a single 
core on all motifs rather than the original dual core motifs (A-type 
and B-type). The tool can optimize for a single core (e.g., A-only or 
B-only) system by simply modifying the set of fixed sequences 
dedicated to the motifs (cores, shells, and arms). 

Split Core— Our second approach to improve the design 
method makes use of the two motif types (A and B) in the context 
of hierarchical assembly. Both the 20-arm and 96-arm systems are 
assembled in two separated hierarchical steps. In the first step single 
strands assemble into motifs. In the second step motifs are mixed 
and due to their sticky-ends they assemble into the target grid-like 
structure. Thus, the interaction between the sticky-ends and the 
fixed strands (cores/shells) is critical in the first level of the 
hierarchy, when motifs are annealed. In the second step (grid 
anneal) the motifs are assumed to be thermodynamically stable and 
the major factor becomes the motif sticky-end interactions.  

We use this to generate an optimized set of sticky-ends for 
each motif type separately. This is equivalent to applying the Single 
Core method for both A and B motif types. The final set is obtained 
by combining the results of the two optimization runs with common 
sequences used only once. The A-type sticky-ends will have sub-
optimal interaction with the B core/shells (and vice versa), but the 
hierarchical assembly process guarantees that they are only 
simultaneously in assembly solution in the second step.  

Since the sticky-ends must be unique across the whole system, 
the effectiveness of this approach depends on the TLM estimates of 
the resulting solution sets for the A and B motifs. However, the 
sequences for the A and B core and shell strands were originally 
designed to be as different as possible in order to minimize their 
mutual interaction (i.e., large TLM for each motif type). We expect 
that this will also translate into significantly different solution sets 
for each core.  
The pseudo-code for the Split A/B design is the following: 

SplitDesign(set_size) 
{ 
 setA = FindDNASet(5,set_size,A_CoreShells);             
 setB = FindDNASet(5,set_size,B_CoreShells); 
 setA = sort_by_TLM(setA); 
 setB = sort_by_TLM(setB);  
 for (i=0;i<(set_size/2);i++) 
 seq = head(setA,1); 
 ret_setA = concat_set (ret_setA,seq); 
 setA = remove(setA, seq); 
 setB = remove(setB, seq); 
 seq = head(setB,1); 
 ret_setB = concat_set (ret_setB,seq); 
 setA = remove(setA, seq); 
 setB = remove(setB, seq); 
 } 
return = concat_set(ret_setA, ret_setB); 
} 

The solution sets for each core are separately computed and the 
final set is assembled from the top sequences of the two sets.  

SEM Optimization— The above methods were presented in 
the context of obtaining TLM-optimal sequence sets for low 
assembly error rates. However, improved structural stability (SEM) 
could also be an important design goal. For example, the self-
assembled system might need to be stable in certain temperature 
ranges in order to interface with other systems. Our design tool can 
optionally trade TLM-optimality for SEM-optimality. This trade-off 
is controlled with an SEM factor (SF) that expands the candidate set 
(proportionally) of TLM ranked sequences for subsequent ranking 



by their SEM estimates. The pseudo-code below illustrates this 
process: 

 
FindDNASet(seq_length,set_size,fixed_seq,  
  sem_factor)  
{ 
  ... (lines 3 to 11 from from original) 
  ex_set_size = set_size * (1 + sem_factor); 
  top = head (results, ex_set_size); 
  top = sort_by_SEM(top); 
  final = head (top, set_size); 
  return = final;   
} 

7. Evaluation 
We evaluate the results of each presented method (AB, A-only, 

B-only and Split A/B) in terms of specificity and stability (TLM and 
SEM estimates) as applied to a small 20-arm system and a 
structurally similar but larger 96-arm system (as described earlier). 
The results are compared with the expected values for a random 
sequence design as well as the original 20-arm set from [6] which 
was generated with the widely used text-distance tool SEQUIN [7]. 
Table 1 shows the results in terms of SEM, average non-specific Tm 
(NSTm) and TLM for each method.  

20-arm SEM NSTm TLM 
AB Core 7.12 -6.87 9.81 
AB Core Original* 11.77 4.83 4.24 
AB Random 10.04 4.01 3.32 
A-Only 7.66 -6.44 9.82 
B-Only 9.75 -4.68 10.00 
B-Only SF=4 14.08 -0.08 9.65 
AB Split  9.75 -4.74 9.99 
AB Split SF=7 15.75 2.32 9.31 
96-arm    
AB Core 6.66 -6.65 9.25 
AB Random 10.04 4.01 3.32 
A-Only 7.80 -5.83 9.44 
B-Only 8.17 -5.68 9.52 
B-Only SF=1 11.19 -1.38 9.11 
AB Split  8.28 -5.54 9.57 
AB Split SF=7 12.24 -1.29 9.15 

Table 1 – 20-arm and 96-arm results. *No 96-arm original exists. 
To evaluate the upper bounds for the SEM and TLM of each 

method we remove all fixed sequences (cores/shells) and evaluate 
the best possible sets for each metric. This simulates a theoretical 
system in which the core and shells do not interact with the sticky-
ends. To obtain the highest SEM design we use a large SF factor. 
The results are shown in table 2. 

20-arm SEM NSTm TLM 
No Core – rank by TLM 11.93 -3.29 10.47 
No Core – rank by SEM  18.94 6.95 7.22 
96-arm    
No Core – rank by TLM 8.96 -5.16 9.77 
No Core – rank by SEM 15.90 3.39 8.05 

Table 2 – Upper bounds on TLM and SEM with 5-nt sticky-ends 
The random sequence method results show a fairly high SEM, 

which translates into good expected stability for the target assembly. 
However the overall specificity (TLM) is very low, suggesting that 
the system is likely to form defective structures when self-
assembling. 

The SEQUIN-generated 20-arm original design shows a slight 
increase in both TLM and SEM when compared to random. 
However, the TLM is still low and this shows that using simple text-
distance metrics and heuristics for optimizing sequence sets can lead 
to uncertain results if low error rates are desired. 

The AB Core set generated with our tool shows a significant 
improvement in specificity. The target structure is thus much more 
likely to form correctly when using this method. The stability 
estimate is lower than the original design which means that the 
system will disintegrate at slightly lower temperatures. However, 
the SEM factor (SF) can be used to trade specificity for stability and 
can be used to balance the design.  

Figure 2 shows a scatter plot of three sequence sets for the 20-
arm system. The diagonal represents the line of zero specificity 
(TLM=0) where specific Tm equals non-specific Tm. The distance to 
this line from any given point (sequence) is the TLM. The AB Core 
sequences are clustered in a series of points situated at roughly 
similar TLMs. The random and original designs do not show this 
pattern and include sequences that are situated on the diagonal itself: 
these sequences are just as likely to base-pair with the core/shells as 
they are with their complements! These strands are likely to have a 
particularly disruptive effect on structure formation in their sets and 
there is some evidence that this is the case [4].   
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Figure 2 – AB Core, random and original 20-arm sets 

Figure 3 shows that when the number of fixed sequences 
(cores/shells) decreases (A-only or B-only vs. AB Cores) the 
average specificity of the system increases. The specificity of each 
arm-sticky-end is defined as the minimum of its TLM and the TLM 
of its complement. (In all 5-nt arm-sticky-end systems there are 600 
candidate sequences because 424 of the total possible 1024 
sequences are verboten and removed.) This result verifies the 
intuition that fixed sequences in the motifs restrict the number of 
high quality (i.e., high specificity) arm-sticky-end sequences.  
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Figure 3 – Specificity in arm-sticky-end space with different fixed 

sequence sets 
Figure 3 also shows the systematic bias induced by the 

thermodynamic optimization tool due to sequence padding. There is 
an offset of ~5.4 for non-zero TLM values for all the designs due to 
the always-complementary 3-bp pads used by our tool.  

The results of B-only, AB Cores and random methods for the 
96-arm design are presented in fig. 4. Random has many arm-stick-
ends that strongly interact with the core/shells (mapped on the 



diagonal). B-only shows the same clustering as AB Cores, but it is 
on average slightly farther away from the diagonal (higher 
specificity). The Split AB design is the best performer for TLM-

optimized designs, 
slightly outperforming 
even the single core B-
only method for larger 
systems. The scatter-plot 
is very similar to the B-
only set in fig. 4 and we 
omit it for brevity. Figure 
5 shows how the SF 
factor can be used to 
increase the SEM of a 
design at the expense of a 
slightly lower TLM. 

  In fig. 6 two such 
balanced designs, one 
based on the B-only 
method and one on an 

SEM-targeted Split AB are contrasted with the text-based design of 
the original AB and with the random method. The theoretical 
maximum SEM and TLM for 5-nt sticky-end designs are included 
for comparison. Table 3 lists our best AB-Cores arm-sticky-end 
sequences. 

 
Figure 5 – Trade-off: specificity can be traded for stability 
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Figure 6 – 20-arm designs balanced for the TLM and the SEM 

8. Conclusions 
The continued scaling of conventional CMOS fabrication 

techniques faces many challenges that may be overcome by a 
switch to bottom-up self-assembly.  DNA's precise binding rules at 
small scale (a few nm) make it a potential candidate for future 
fabrication of nanoscale computing systems.  This paper presents a 
thermodynamics-based computer aided technique for DNA 
nanostructure design.  Compared to existing text-based tools, our 
approach enables creating structures of previously unattainable size 
and produces superior designs for small structures.  

This work was supported by the NSF (CCR-03-26157), the 
AFRL (FA8750-05-2-0018), the Duke Provost Common Fund, 
and equipment donations from Intel and IBM. 

 
Seq. Comp. Seq. Comp. Seq. Comp. 
CGTGC GCACG CCTCG CGAGG TATGT ACATA 
CAAGC GCTTG ACGAC GTCGT TGTAT ATACA 
ACGTC GACGT CAGAC GTCTG TTAGA TCTAA 
ACAGC GCTGT ACTGC GCAGT TTACT AGTAA 
TGCAG CTGCA TGCTG CAGCA TAAGA TCTTA 
CTGTG CACAG TGCAC GTGCA AATAG CTATT 
AGCTC GAGCT AGAGC GCTCT AATTC GAATT 
CATGG CCATG CTTGG CCAAG ATACT AGTAT 
CAATC GATTG CATTC GAATG TAACT AGTTA 
AATGC GCATT ATTGC GCAAT TTAGT ACTAA 
AACGT ACGTT CTAAC GTTAG TACTT AAGTA 
CTTAC GTAAG TTACG CGTAA TAAGT ACTTA 
TAACG CGTTA CATTG CAATG TAGAT ATCTA 
ATGAC GTCAT ATGCT AGCAT TAGAC GTCTA 
TCATG CATGA TTGCT AGCAA TTCAT ATGAA 
TTGAG CTCAA AAGCT AGCTT ATTCT AGAAT 
TGCTT AAGCA ACTGT ACAGT TCAAT ATTGA 
TCACA TGTGA AGTAC GTACT TTAAC GTTAA 
TACGT ACGTA TGTAG CTACA AATCT AGATT 
TACTG CAGTA AAGTG CACTT TGATT AATCA 
TCAAC GTTGA TCTGA TCAGA TCATT AATGA 
TCTAG CTAGA TAGCT AGCTA TATGA TCATA 
AATGT ACATT ATGTT AACAT TTAAG CTTAA 
ATTGT ACAAT TTCAA TTGAA TTACA TGTAA 
GTTAT ATAAC AATAC GTATT TTGTA TACAA 
TAATG CATTA CAATA TATTG TTGAT ATCAA 
TTATG CATAA AATTG CAATT   

Table 3 - The best 160 x 5-nt arm-sticky-end sequences (and 
complements) found by our AB-Core method. These arm-sticky-ends 

are compatible with the tile motif in [4].  
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 Figure 4 – B-only, AB Cores and 
Random for 96-arm sets. 


