
Algorithm 696
An Inverse Rayleigh Iteration for Complex
Band Matrices

GEZA SCHRAUF

Deutsche Airbus GmbH, Brernen

A FORTRAN 77 implementation (ofa generalized inverse Rayleigh iteration procedure for the
calculation of eigenvalues and left and right eigenvectors of a complex band matrix is described.
The core of the procedure is an algorithm that solves systems with the orig;nal matrix and with
the adjoint matrix by calculating cmly one LU-decomposition.

Categories and Subject Descriptors: F.2. 1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems- conqmtation on matrices; G. 1.0 [Numerical Analysis]:
General– numerical algorithms; G. 1.3 [Numerical Analysis]: Numerical Linear Algebra–
eigenvalues, linear systems (dmect and iteratwe methods), sparse and uery large systems

General Terms: Algorithms

Additional Key Words and Phrases: Banded matrices, inverse Rayleigh iteration

The algorithm was developed in order to determine the amplification rates of

instability waves in compressible boundary layers [5]. The problem can be

reduced to eigenvalue calculations of complex, banded, and asymmetric

matrices.

An algorithm for banded matrices is not contained in EISPACK [3]. The

computing time for an eigenvalue calculation of an N-dimensional, square

matrix is essentially proportional to IV 3. However, for a band matrix with a

bandwidth of M elements, M < N, the computing time can be reduced to

M2N when the band structure is taken into account.

It seems that an inverse Rayleigh iteration could be constructed using

LINPACK [1] routines. However, after the eigenvalue shift has been applied

to the matrix, the linear system to be solved could be exactly singular, and

LINPACK would stop at that point.

The whole program con~”orms to standard FORTRAN 77. Because the

standard does not contain complex double-precision numbers, we replace

complex by real arithmetic. The elements of the real and the imaginary part

of the matrix are stored in the two arrays AR and AI as illustrated by the

Author’s address: Deutsche Airbus GmbH, Postfach 107845, 2800 Bremen 1, Germany.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery To copy otherwise, or to republish, requires a fee and)or

specific permission.

01991 ACM 0098-3500/91/0900-0335 $01.50

ACM Transactions on Mathematical Software, Vol. 17, No. 3, September 1991,Pages335-340.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F114697.116807&domain=pdf&date_stamp=1991-09-01

336 0 G6za Schrauf

following example:

** ar,31 ar,41

* a,, 22 ar,32

ar,13 ar,23

o %,14
00
00
00
0 0
00

ar,51

a,, 42

%,33

a,, 24

%,15

o
0
0
0

0 0

a?., 52 0

%,43 ar,53

%,34 %’,44

%>25 ar,35

a,, 16 a,, 26

0 %,17

00
0 0

0
0
0

%,54

ar,45

a,, 36

%-, 27

ar, 18

0

000
000
0 0 0
0 0 0

%,55 00

ar,46 ar,56 o

%-,37 %,47 %357

ar, 28 ar,38 ar,48 *

%, 19 ar,29 %’,39 * *

The first index counts the position of the element in the band, and the second

one indicates the row. Only the band is stored, and the user has to supply

zeros for the positions marked with an asterisk, so that the array AR for the

real part of the matrix contains the following elements:

00 %,31 %,41

o ar>22 ar,32 ar,42

%, 13 a,, 23 %> 33 ar,43

ar, 14 ar,24 %,34 %,44

a,, 15 ar, 25 ar, 35 %>45

at-, 16 a,,26 ar,36 a?-, 46

ar, 17 %,27 %,37 ar,47

ar, 18 a,, 28 a,, 38 a,, 48

%, 19 a,, 29 ar, 39 0

%,51

a,,52

%,53

%,54

%,55

ar, 56

%.57

o
0

The imaginary part of the matrix is stored analogously in the array AI. This

storage arrangement is taken from Schrauf [4]. It has the advantage that the

elements of the rows are stored with consecutive addresses so that the

program vectorizes efficiently.
The calling sequence is the following:

CALL GIRI(AR, AI, AWR, AWI, M, N, XLR, XLI, JP, UR, UI, VR, VI,

INIT, WR, WI, OMEGAR, OMEGAI, EPS, NSIMPL, LAST,

IERROR, INFO, IUNIT)

The arguments are the following.

AR, AI DOUBLE PRECISION, input. AR(M, N), AI(M, N) contain the real
and imaginary parts of the matrix. Their values remain unchanged.

AWR, AWI DOUBLE PRECISION. AWR(M, N), AWI(M, N) are temporary arrays
used to store real and imaginary parts of the upper triangular matrix
of the LU-decomposition of A – oZ.

M INTEGER, input, number of elements in each row of the band. M
must be an odd number.

N INTEGER, input, number of equations.
XLR, XLI DOUBLE PRECISION. XLR((M – 1)/2, N), XLI((M – 1)/2, N) are

ACM Transactions on Mathematical Software, Vol 17, No 3, September 1991

Algorithm 696: An Inverse Rayleigh Iteration for Complex Band Matrices . 337

JP

UR, UI

VR, VI

INIT

WR, WI
OMEGAR,
OMEGAI

EPS

NSIMPL

LAST

IERROR

INFO

IUNIT

temporary arra,ys used to store real and imaginary parts of the
pseudo-lower-triangular matrix of the LU-decomposition of A – 01.
INTEGER, JP(N) is a temporary array used to store the pivoting
information.
DOUBLE PRECISION. UR(N), UI(N) contain real and imaginary
parts of initial approximation for the right eigenvector as input (used
if INIT = 1) and the real and imaginary part of the computed right
eigenvector as output.
DOUBLE PRECISION. VR(N), VI(N) contain real and imaginary

parts of initial approximation for the left eigenvector as input (used if

INIT = 1) and the real and imaginary part of the computed left

eigenvector as output.

INTEGER, input.

lNIT = O: No initial vectors are provided. The vectors UR = UI = VR
=Vz= (l,..., 1) are used as initial vectors for the iterative computa-
tion of the right and left eigenvectors.
INIT = 1: Initial approximations for the right and left eigenvectors
are provided. Tlheir real and imaginary parts are stored in the arrays
UR, UI, VR, VI.
DOUBLE PRECISION. WR(N), WI(N) are work arrays.
DOUBLE PRECISION. OMEGAR and OMEGAI contain an
initial approximation of the real and imaginary parts of the eigen-
value as input and the real and imaginary parts of the computed
eigenvalue as output.
DOUBLE PRECIS1ON, input. Absolute error tolerance for the com-
puted eigenvalue: The iteration is terminated if the absolute value of
the computed increment for the eigenvalue is lower than EPS. An
appropriate val Uefor EPS is, for example, the square root of MACHEP,
which is the smallest DOUBLE PRECISION constant for which 1 +
MACHEP >1 holds.
INTEGER, input. Number of simplified iteration steps without calcu-
lating a new LIJ-decomposition. The recommended value for NSIMPL
is 2.
INTEGER, input. Number of the last iteration step that is followed by
NSIMPL-simplllfied iteration steps. The recommended value for LAST
is 1.
INTEGER, output, error code:
IERROR = O: No errors occurred.
IERROR = 1: M is not odd.
IERROR = 2: The iteration did not converge.
INTEGER, input.
INFO = O: Convergence information is not displayed.
INFO = 1: Convergence information is displayed.
INTEGER, input. Unit number on that the convergence information is
written.

APPENDIX A

Organization of the LU-Decornposition

The core of the method is an algorithm that computes solutions of the two

systems

Ax=b (1)

A“y = c (2)

ACM Transactions on Mathematical Software, Vol 17, No, 3, September 1991

338 . G6za Schrauf

with only one LU-decomposition of A. In order to explain how we solve the

second system with the adjoint matrix, we have to review the Gauss algo-

rithm used to solve the first system. In the lth step of the Gauss algorithm

we interchange the lth and the jp(1)-th row of the intermediate matrix A z 1

and also the elements of the right-hand side b ~_,. This operation can be. .
expressed with the help of the permutation matrix

(

1

1

0 . . . 1

1

PL =

1“
1 . . . 0

1

1

as

Al = PtA1_l, gl = Plbl_l.

Afterwards, we eliminate the subdiagonals of ~ ~ by adding suitable multi-

ples X,l of the lth row of ~ ~ to the m. following rows and by changing the

right-hand side accordingly. In other words,

Al= G[~l, bl= Gl&,

where the matrix Gl is defined as

Gl =

1

1

t?ll 1

I gmol 1

After n – 1 steps, we obtain the upper triangular matrix

‘={EG’P’}A
and the modified right-hand side

(3)

(4)

We do not need to calculate the lower triangular matrix L of the decomposi-

tion. R suffices to have the elements of the matrices Gl that are stored in the

ACM TransactIons on Mathematical Software, Vol 17, No 3, September 1991

Algorithm 696: An Inverse Rayleigh Iteration for Complex Band Matrices . 339

array XL to perform the operation,

r = L–lb.

Comparing (4) and (5), we have

n–1

L-l = ~~1 GIP1.

We see now that we can easily perform the operation

(L*)-’ = (L-l)* = ‘fil PtG*l
1=1

that is required to solve (2). The lth step of solving

consists of computing

(5)

(6)

(7)

the system L*y = z

where ~ZZ is the complex conjugate of g, ~, first, and subsequently, of calculat -

ing

zl = P1.Z_l,

i.e., of interchanging the lth and the jp(1)-th element of .Z1.

It remains to show how to scdve

U*Z = c. (8)

The superdiagonals of U are stored in the arrays AR and AI as follows:

ar,ll

ar, 12

%,13

%,14

a,, 15

ar, 16

%,17

a,, 18

ar, 19

ar, 21

%,22

a,, 23

a,, 24

a,, 25

ar, 26

ar,27

ar,28

o

We could solve (8) as follows:

%,31

ar,32

‘r, 33

%“, 34

%-, 35

a?’, 36

%> 37

0

0

ar,41 %,51

a,, 42 ar,52

%,43 %,53

%,44 ar, 54

%,45 %,55

ar,46 o

00

0 0

00

1

[

max{l–1, m}

Zl=: c~—
1

z %1-z+lzl+l-i , for 1 = 2,.. .,n. (9)
% 1 L=2

In order to be able to vectorize the calculation of formula (9), we shift the

elements in the columns of AR, AI down

ziLJ+az J_i+l for i=2,. ... m,andj= n,. .,1.

ACM Transactions on Mathematical Software, Vol. 17, No. 3, September 1991.

340 . G6za Schrauf

Hence, we can compute zl as

i.e., with a formula in which the second index of ~ is independent of i.

THE GENERALIZED INVERSE RAYLEIGH ITERATION

If we know an approximation of an isolated eigenvalue h of the complex

matrix A, we can calculate h by choosing two initial vectors UO, UO, for

example, U. = UO = (1,....I)T,and use the following iteration scheme:

(1)Solve the two systems (A – h,_l~)x= U,-l,

(A – h,_ll)*y = u,_I.

(2) Normalize the solution vectors u,= I]xl]-lx,

u, = \]y\l–ly.

(3) Update A

The quotient in (3) is a generalized Rayleigh quotient. Therefore, the scheme

is called a generalized Rayleigh iteration. It can be shown [2] that the

iteration converges cubically.

REFERENCES

1

2

3

4

5

DONGARRA, J J , MOLER, C B , BUNCH, J. R., AND, STEWART, G W. LINPACK User’s

GuLde SIAM, Philadelphia, 1979,
OSTROWSKY, A M. On the convergence of the Rayleigh quotient lteratlon for the computa-

tion of characteristic roots and vectors I, II, III, IV, V, VI. Arch rat Mech. Anal 1 (1958),

233-241; 2 (1958), 423-428; 3 (1958) 325-340; 3 (1958) 341-347; 3 (1958) 472-481; 4

(1959) 153-165

SMITH, B T., BOYLE, J. M., DONGARRA, J. J , GARBOW, B S , I~EBE, Y , KLEMA, V C., AND

MOLER, C. B. Matrzx ELgensystem Routmes-EISPACK Gutde Sprmger Verlag, Berlin,

1976

SCHRAUF, G ALGORITHM 664 A Gauss algorithm to solve systems with large, banded

matrices using random-access disk storage ACM Trans. Math Softw 14 (1988), 257-260

SCHRAUF, G An efficient solver of the eigenvalue problem of the linear stabdity equations

for three-dimensional, compressible boundary-layer flows In Strom ungen mtt Abliisung, 6,

DGLR-Bericht 88-05, 1988 DGLR Fach-Symposium 8-10 Nov 1988, Braunschweig

Received January 1990; revised July 1990; accepted July 1990

ACM TransactIons on Mathematical Software, Vol 17, No 3, September 1991

