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A method of interpolation that accurately interpolates data values that satisfy a function is said

to have the accuracy of that function. The desired or required properties for a univariate

interpolation method are reviewed, and the accuracy of a third-deg-ree polynomial is found to be

one of the desired properties. A method of univariate interpolation having the accuracy of a

third-degree polynomial while retaining the desired properties of the method developed earlier

by Akima ( J. ACM 17,4 (Ott. 1970), 589-602) has been developed. The new] y developed method

is based on a piecewise function composed of a set of polynomials, each of (at most) degree three,

and applicable to successive intervals of the given data points. The method estimates the first

derivative of the interpolating function (or the slope of the curve) at each given data point from

the coordinates of seven data points. The resultant curve looks natural in many cases when the

method is applied to curve fitting. The method is presented with examples. The possible use of a

higher-degree polynomial in each interval is also examined.

Categories and Subject Descriptors: G. 1.1. [Numerical Analysis]: Interpolation-s@ne and
piecewise polynomial interpolation

General Terms: Algorithms

Additional Key Words and Phrases Curve fitting, third-degree polynomial, univariate interpola-

tion

1. INTRODUCTION

Interpolation is a mathematical procedure for supplying intermediate terms

in a given series of terms. In this paper, we consider interpolation of

univariate (one-variable) single-valued functions. We seek a method of inter-

polation that produces a natural-looking curve when it is applied to curve

fitting. (When there is no risk of confusion, the two terms “interpolation”

and “curve fitting” are usecl synonymously.)

Some time ago, Akima [2, 3] developed a method (hereafter referred to as

the original A method) that produces natural-looking curves. In many cases
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it suppresses excessive undulations (or wiggles) of the curves. It is described

in several textbooks [5, 8] and is included in the IMSL (International Mathe-

matical and Statistical Libraries, Inc. ) Library under the routine name of

IQHSCU [15]. Examinations of the method with some “hostile” examples,

however, have revealed that it needs further improvement.

There are several aspects of interpolation. A method emphasizes an aspect.

The method developed by Fritsch and Carlson [11] or its improved version by

Fritsch [9] or by Fritsch and Butland [10] (referred to collectively as the

F- C-B method) outperforms the original A method when monotonicity of

data must be preserved. The method developed by Roulier [19] or by McAllis-

ter and Roulier [17, 18] (referred to collectively as the M-R method) pre-

serves convexity of data in addition to monotonicit y. There are also many

other shape-preserving methods, as described by Gregory [12].

In the primitive stage of development, a given method can in most cases be

superior to others. In the advanced stage, however, a given method is

superior only in some cases. There are several desirable properties of interpo-

lation, depending on the particular purposes of the user. Since some desirable

properties are mutually incompatible (as discussed later), any one method

cannot possess all the desired properties simultaneously.

In this paper we identify the required or desired properties for an interpola-

tion method, discuss their mutual compatibility, and establish our goals for

developing an improved method in Section 2. One of our goals is to develop a

method that has the accuracy of a third-degree (cubic) polynomial, i.e., a

method that interpolates accurately when the given set of data points lies on

a cubic curve. We have developed a method (referred to as the improved A

method) that meets these goals in Section 3. Like the original A method, the

improved A method does not always preserve monotonicity or convexity. We

propose the improved A method as a replacement for the original A method

when the natural appearance of the resultant curve is important; we do not

propose it as a replacement for the F- C-B or M-R methods when monotonic-

ity or convexity must be preserved.

In addition, the behavior of some interpolating functions in a unit interval

is examined in the Appendix, and possible use of higher-degree polynomials

is considered as a variation of the improved A method in Section 4. Some

examples are shown in Section 5. A summary and remarks for the use of the

improved A method are given in Section 6. A Fortran subroutine subprogram

that implements the improved A method is presented in the accompanying

algorithm [4].

Throughout this paper, we use the following conventions:

—the x and y variables represent the independent variable and the function
value;

—the x and y variables also represent the abscissa and ordinate of a

two-dimensional Cartesian coordinate;

—the first derivative of the function (or the slope of the curve) is represented

by y’;
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–the x, y, and y’ values at data point P, are represented by x,, .Y,, and y;;

and

—the sequence {x, } is in an increasing order.

2. REQUIRED OR DESIRED F>ROPERTIES OF INTERPOLATION

In order for the curve to be smooth when interpolation is applied to curve

fitting, we require that the interpolating function and its first derivative be

continuous (i. e., in mathematical terms, that the function be Cl continuous).

Since in many cases we want the curve to be affected cmly in a small

neighborhood of the data point when a data point is added, deleted, or moved,

we require that the method be based on local procedures confined to a small

neighborhood of the point at which interpolation is required. (This require-

ment was recognized before the turn of the century. ) A method based on local

procedures was developed by Karup [16] and later improved by Ackland [1].

We do not consider global methods such as the spline-function method [6, 13].

Although some traditional methods such as Lagrange’s and Newton’s [7, 14]

are based on local procedures, we do not consider them either, since they fail

to produce a Cl-continuous curve.

Symmetry of the method is another required property. Symmetry means

the method produces a symmetric curve when the data points are symmetric.

Invariance under certain types of coordinate transformation is a desirable

property in some applications. The desirability of invariance under a linear-

scale transformation

X=au

y = bv, (1)

where a and b are nonzero constants, is obvious. In some cases, invariance

under another type of linear transformation

x=au

y= bu+cv, (2)

where a, b, and c are nonzero constants, is also desirable. 1n studying the

fluctuation of a clock, for example, one may plot either the reading of the

clock against the correct time (as an almost 45” -slope curve) or the error

against the correct time (as an almost horizontal curve), ancl both plottings

should represent physically the same phenomenon.

The following are other desirable properties in various applications:

–Continuity of the method. Continuity is the property that the resultant

curve changes very little when a small change is made in the input data.

–Linearity of the method, Linearity is the property that the interpolated

values satisfy y(x) = af( x) + bg( x) if y, = af( x,) + bg(xl) for all i, where

a and b are nonzero constants and ~(x) and g(x) are functions of x.

–Improving the behavior of the resulting curve by insertion of an additional
data point.
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—Preserving the shape of data such as monotonicity and convexity. Mono-

tonicity must be preserved, for example, when the input data point set

represents a probability function.

—Producing a curve that looks natural. A skilled draftsman draws a

natural-looking curve with French curves, and we want our method to do

likewise. We emphasize this property in developing the improved method.

A natural-looking curve has not been defined mathematically. We describe

here the behavior of a curve that makes the curve look unnatural. We know

intuitively that a curve looks unnatural if it has excessive undulations,

excessive inflection points, or if a line segment is embedded in a generally

curved portion of the curve. Such behaviors must be avoided if possible.

Some requirements for producing a natural-looking curve need adjustment

and compromise. Suppressing excessive undulations requires that, when

several successive data points are on a straight line and other data points are

elsewhere, the portion of the curve that connects the collinear data points be

a line segment. The requirement of a line segment for several collinear data

points and the requirement for suppressing embedded line segments need

mutual adjustment. If we require a line segment for three collinear data

points, this requirement tends to produce unnatural-looking line segments.

We feel that a deviation from the line segment should be allowed when only

three data points are collinear. We therefore require a line segment when

four data points or more are collinear. (The original A method produces a

line segment when only three data points are collinear, and sometimes fails

to produce a natural-looking curve.)

In addition to the above, we also describe the property of producing a

natural-looking curve in terms of the accuracy of a mathematical function.

We say that an interpolation method has the accuracy of a function if the

method interpolates accurately when the data points lie on a curve of the

function. We also know intuitively that curves of some simple functions such

as a low-degree polynomial or a sinusoidal function look good and natural. A

third-degree polynomial is a polynomial of the lowest degree that can have an

inflection point, so we require the accuracy of a third-degree polynomial for

our method. (Ackland’s osculatory method has the accuracy of a second-

degree polynomial. Karup’s method and the original A method have the

accuracy of a second-degree polynomial conditionally, when the given data

points are equally spaced in their abscissas.)

Requiring a line segment for three collinear data points is incompatible

with the requirement of accuracy for a third-degree polynomial, while requir-
ing a line segment for four collinear data points is compatible. This is

because a straight line can intersect a cubic curve at three points at most.
Since a third-degree polynomial remains a third-degree polynomial under

the coordinate transformations represented by (1) and (2), the requirement

for the accuracy of a third-degree polynomial is consistent with the require-
ment for invariance under those coordinate transformations.

Regardless of the number of collinear data points, the requirement of a line

segment for several collinear data points is incompatible with the
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requirement for continuity a~f the method. For example, the curve resulting

from the original A method (that produces a line segment for three collinear

data points) changes abruptly when three data points P,_ ~, P,_ ~, and P, are

collinear and three data points P,, P,+ ~, and P,+ ~ are changed from almost

collinear to exactly collinear. Although we have increased the number of

collinear data points for a line segment from three to four, similar discontinu-

ous behaviors can occur. We drop the requirement for continuity.

Regardless of the number of collinear data points, again, the requirement

of a line segment for several collinear data points is incompatible with the

requirement for linearity of the method. We do not require linearity in

developing an improved metlhod. (The original A method that produces a line

segment for three collinear clata points is nonlinear.)

The property of preserving monotonicity dictates that the portion of the

curve between a pair of successive data points having an identical ordinate

value must be a horizontal line segment, and the property of preserving

convexity dictates that the plortion of the curve that connects three collinear

data points must be a line segment. Thus, the monotonicity or convexity

requirement tends to produce embedded line segments and is incompatible

with the requirement for accuracy of a third-degree polynomial. It may not be

a good idea to require preserving monotonicity or convexity when such a

property is not really needed. Since we already have the F--C-B and M-R

methods as good interpolation methods that preserve rnonotonicity or convex-

ity, we drop the requirement for preserving monotonicity or convexity.

3. THE METHOD

We first review the basic procedures of the osculatory method which has the

accuracy of a second-degree polynomial [11 and the original A method [2, 31

which has some of the desired properties.

In both methods, the interpolating function is a piecewise function com-

posed of a set of third-degree polynomials. The third-degree polynomial for

the y value in the interval between x, and x,+ ~ is represented by

Y= ao+~l(x–xt) +a2(x–xz)2 +a3(x–xL)3. (3)

The coefficients of the polynomial are determined by the given y values and

the estimated y’ values at the endpoints of the interval, as

%=YZ,

al =y’L,

CZ2= - [2(y; -- m,) + (Y;+l - nL)]/( %+, - ~t))

[a3 = (Y: – VLJ + (Y;+l – m, )]/[( %+1 - %)21> (4)

where m, is the slope of thle line segment connecting P, and p,+ 1, and is

represented by

m, = (Yt+l – y, )/(%+1 - %) (5)

The only difference between the two methods is in the procedure of estimat -

ing the first derivative of the interpolating function at each given data point.
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In the osculatory method, the first derivative at P, is estimated as the first

derivative of the second-degree polynomial fitted to a set of three data points,

,_l, P,, and P,+l.P

In the original A method, the first derivative at P, is estimated with a set

of five data points, P,_ ~, P,_ ~, P,, P,+ 1, and P,+ 2. TWO line-segment slopes,

m ,_ ~ and m,, are used as the primary estimates of the first derivative, and

the final estimate is calculated as the weighted mean of the primary esti-

mates, i.e.,

(6)

The weight for m,_ ~ is the reciprocal of the absolute value of the difference

between m,_ ~ and m,_ a, and the weight for m, is the reciprocal of the

absolute value of the difference between m, ~ ~ and m,, i.e.,

w = l/abs{m, -l – m,.a},L7?7

w = l/abs{m, +l – m,},
2P (7)

where abs { } stands for “the absolute value of. ” The basic concept behind the

selection of the weight is that the primary estimate based on the data points

on the left (or right) side of the point in question should be given a small

weight if the data points on the left (or right) side are “volatile” (or far from

being collinear).

The above review suggests that the interpolation method that meets our

goals have: (1) a primary estimate of the first derivative at P, calculated as

the first derivative of the third-degree polynomial fitted to every set of four

consecutive data points that include P,; (2) the final estimate of the first

derivative at P, calculated as the weighted mean of the primary estimates;

and (3) the weights inversely proportional to the volatility factor of the data

point set. In addition to the volatility factor, we include the distance factor in

the weight; we consider that the primary estimate should be given a small

weight if the data point set includes one or more data points far distant from

the data point in question.

The first derivative, at data point P,, of a third-degree polynomial fitted to

a set of four data points, P,, P], P~, and Pl, is represented by

F(i, j,k, l) = [(y,– y,)(xk – LrJ2(x1–XL)2(X1XJ

+ (h – Yz)(~f– XJ2(X,– X,)2(X,– xl)

+(3’1–Yt)(~, – %)z(~k– ~t)2(~k– %)]
/[(x, -xt)( x/z- x,)(x,- x,)(x, - XJ)(X~-x~)(xz -x,)]. (8)

The first index in F( i, j, k, 1) must be i, which is the point number of the

point in question, and the remaining indices can be given in any order.

For simplicity, we take the sum of squares of deviations from a straight

line of the least-square fit as the volatility factor. The volatility factor is

represented by
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V(i,.j, k!,l) = -qy - (/).+ b,%)]’, (9)

where b. and bl are the coefficients of the first-degree (linear) polynomial of

the least-square fit to the data points, and are represented by

b, = [xx’xy - zxLxy]/[4_D2 - (x-x)’],

b, = [4xxy - xxxy]/[4Ex’ - (xx)’]. (lo)

In (9) and (10), x represents a summation over four data points, P,, PJ, Pk,

and Pi. The four indices in the expression of V( i, j, k, 1) in (9) can be given

in any order.

For simplicity, we also take the sum of the squares of the distance from P,

to the other three data points as the distance factor. It is represented by

D(i, j,k, l) = (x, – X,)2+ (Xk– xl)’ + (X1–%,)2. (11)

The first index in II( i, j, k, 1) must be i, and the remaining indices can be

given in any order.

There are four sets of four consecutive data points that include P,, i.e., P,_ ~

through P,, P,_ ~ through P,+ ~, P,_ ~, through P,+2, and P, through P, +3.

The method uses four primary estimates, each calculated as the first deriva-

tive of a third-degree polynomial fitted to each set. They are represented by

y~~~==F(i, i–3, i–2, i– 1),

y:n==F(i, i–2, i–l, i+ l),

y:P==F(i, i–l, i+l, i+ 2),

Y~PP==F(i, i+l, i+2, i+ 3). (12)

Since the method uses the reciprocal of the product of the volatility and

distance factor, the four weights corresponding to the four primary estimates

(12) are represented by

w zmm=1/[ V(i, i-3, i-2, i-l) D(i, i-3, i- 2,i -1)],

w Lm =1/[ V(i, i-2, i-l, i+l)D(i, i-2, i- l,i+ l)],

w ,P=l/[V(i, i-l, i+l, i+2)D(i, i-1, i+l, i+ 2)],

w ,PP=l/[ V(i, i+l, i+2, i+3)D(i, i+l, i +2, i+ 3)]. (13)

The method uses the weighted mean, that is,

Y: = (Y;mm%mm + Y:mwLm + Y;PWLP + Y&pwLPP )/(w ,mm + W,m )+ Wzp + W,pp ,

(14)

as the final estimate of the first derivative of the interpolating function.

Since the four primary estimates are all accurate when all data points are on

a curve of a third-degree polynomial, use of a weighted mean of these
primary estimates is consistent with the requirement for the accuracy of a

third-degree polynomial.
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When a set of four data points is collinear, the V value equals zero, and the

corresponding weight becomes infinite. When any weight becomes infinite,

we reset infinite weights to unity and finite weights to zero before using (14)

to calculate the final estimate of the first derivative.

Because of the use of the weights in (13), the method developed here has

the property that, when a set of four data points P, through P,+~ is collinear,

the method produces a line segment across the set of data points, unless

another set of four data points P,. ~ through P, or P,+ ~ through P, +G is also

collinear.

Since the method produces a line segment for four collinear data points, the

curve resulting from the method changes abruptly when four data points

P 2—3 through P, are collinear and four data points P, through P,+a are

changed from almost collinear to exactly collinear. However, such discontinu-

ous behavior occurs much less frequently for the above method than for the

original A method, since the probability of having four collinear data points

by chance is much less than the probability of having three collinear data

points by chance.

Since the method for estimating the first derivative of the interpolating

function at P, treats the data points on both sides of P, equally, it is

consistent with the requirement for symmetry.

When the data point in question is one of the first or last three data points,

all four sets of four data points are not available, and all four primary

estimates cannot be calculated. In such a case, the method uses only the

available primary estimate or estimates for calculating the final estimate.

Like the osculatory and original A methods, the method also uses a

third-de~ee polynomial for the interval between each pair of successive data

points. This method interpolates the y value with (3), (4), and (5). Obviously,

use of a third-degree polynomial in each interval is consistent with the

requirement for accuracy of a third-degree polynomial. It is also consistent

with the requirement for symmetry (see Section 4).

Since the method is expected to retain the desired properties of the original

A method and have the additional desired property of the accuracy of a

third-de~ee polynomial, we call this method the improved A method.

4. USE OF A HIGHER-DEGREE POLYNOMIAL (A VARIATION)

So far we have assumed a third-degree polynomial for an interval between

each pair of successive data points. A third-degree polynomial is not, how-

ever, the only function that can be used for this purpose. A higher degree
polynomial and a combination of two exponential functions are some of the
examples of such functions. Another example is a combination of two second-

degree polynomials, which is used by the M-R method [17, 18]. The study of

these functions in the Appendix indicates that the use of a higher degree

polynomial or a combination of two exponential functions reduces undula-

tions. The study also indicates that a combination of two second-degree

polynomials enhances undulations and sometimes produces unnatural-

looking curves. As a way of reducing undulations, we present in this section
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an interpolating function based on an nth-degree polynomial, with n being

equal to three or greater. (Although a higher degree polynomial and a

combination of exponential functions are equally effective in reducing undu-

lations, we prefer the former because of shorter calculation tilmes.)

We consider an interpolate ng function y = y(x) in the interval between P,

and Pi+ ~ in a new coordinate system, called the u – v coordinate system, in

which u equals O and 1 at P, and P,+ ~, respectively, and u equals O at the

two points. The linear coordinate transformation between the u – u and

x – y coordinate systems is represented by

X–XL=(XL+l– X1)U,

Y–YL=(YL+l– YJ~+u. (15)

The first derivatives in the two coordinate systems are related by

y’ -- m, = u’/(xt+, - XL), (16)

where

~, = (YL+l – Y, )/(xL+l - ~,). (17)

It is clear from (15) through (17) that

u = 0,7)= O,u: = (y; - ml)(%+, -%) at P,,

u= l,u = O,u~ = (y;+, - T72t)(x,+l -XL) at JDZ+l. (18)

where v: and U~ are the U’ values at u = O and u = 1.

As the V(u) function, we present an nth-degree polynomial in u, repre-

sented by

t)(u) =AOIU” – u] +Al[(l – u)” – (1 – u)]. (19)

The coefficients A. and Al /are calculated by

A,= [u:+ (n- l)rJ:]/[72(n -2)],

Al = -[((n- l)u~+ u;]/[n(n - 2)]. (20)

For a given x value, we can calculate the corresponding u value with the

first equation in (15), the V(u) value with (19), and the y value with the

second equation in (15). Use of the linear combination of ~(u) and ~(1 – u) in

(19) meets the requirement for symmetry in the method. When n = 3, the

nth-degree polynomial Y(x) determined in this section reduces to (3) with (4)

and (5).

Although use of a higher clegree polynomial has an advantage in reducing

undulations in the curve fitted with the interpolation method, it has a

disadvantage, also. The resultant curve is sometimes too “tight,” i.e., the

portion of the curve between a pair of successive data points is so close to the

line segment connecting the pair of data points that the whole curve looks as

if it were deflected. Use of a higher degree polynomial has another disadvan-
tage. The interpolation method does not have the accuracy of a third-degee

polynomial.
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We have implemented, as a user option, the use of higher degree polynomi-

als in the accompanying algorithm [4]. Depending on the user’s situation, the

user can use higher degree polynomials to reduce undulations while giving

up the accuracy of a third-degree polynomial. It is expected that the user will

develop a general idea on the selection of the degree of the polynomial from

the examples presented in Section 5.

5. EXAMPLES

This section illustrates performance of the developed methods with examples

in Figures 1 through 11. In each figure, curves resulting from two existing

methods are also plotted for comparison. Five curves in each figure are, from

the top to bottom:

(1) the osculatory method (developed by Ackland [1]),

(2) the original A method (developed by Akima [2, 31),

(3) the improved A method with n = 3 (or the improved A method without

the variation described in Section 4),

(4) the improved A method with n = 6 (or the improved A method with the

variation described in Section 4 with n = 6),

(5) the improved A method with n = 10 (or the improved A method with the

variation described in Section 4 with n = 10).

Each data point is plotted with an “x” symbol. The x and y coordinate

values of the data points are tabulated above the caption of each figure.

In Figure 1, data points are taken from a deflected line. The top curve

(resulting from the osculatory method) exhibits overshoots in the horizontal

portions of the curve, while the overshoots are nonexistent in other curves.

The bottom three curves (from the improved A method) illustrate the effect of

the degree of polynomials, n = 3 versus n = 6 or 10.
In Figure 2, data points are also taken from a deflected line; they consist of

all data points in Figure 1 plus a data point at the center of the sloping

region. The top two curves (from the osculatory method and original A

method) exhibit overshoots, while the overshoots are nonexistent in the

bottom three curves (from the improved A method). The bottom three curves

again illustrate the effect of the degree of polynomials.

In Figure 3, the first four data points are on a horizontal straight line and

the last six data points are on a curve of a third-degree polynomial, with the

third and fourth points overlapping on both lines. The top curve (from the

osculatory method) exhibits an overshoot, while the overshoots are nonexist-
ent in other curves.

In Figure 4, the data points are on a cubic curve at unequal intervals. As is

expected, the third curve (from the improved A method with n = 3) looks

good, while all other curves exhibit irregularities. In the two intervals

around the center point, the portion of the first curve (from the osculatory

method) has inflection points. In the same intervals, the portions of the

second curve (from the original A method) are line segments. Disadvantages

ACM TransactIons on Mathematical Software, Vol 17, No 3, September 1991
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Fig. 2 Deflected-line data. Case 2.
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of the use of higher degree polynomials are demonstrated in the bottom two

curves (from the improved A method with n = 6 and 10).

In Figure 5, the data points are on a sine curve at unequal intervals. In

this rather contrived example, the general trends of the curves in Figure 4

are even more pronounced. Figures 4 and 5 indicate that higher degree

polynomials should be used sparingly.
The data points for Figure 6 are taken from Akima [2]. The top curve (from

the osculatory method) exhibits an undulation in the interval between x = 6

and 8, while all other curves look good. We will modify this data point set in

several ways and see how the curves behave for each of the modified data

point sets in the figures that follow.

The data point set for Figure 7 is Modification A. Two leftmost data points

for Figure 6 (original data point set) are removed, and the remaining data

points are moved horizontally. As expected, removal of the two points has no

effect. The undulation in the top curve (from the osculatory method), now in

the interval between x = 8 and 10, is more pronounced. The second curve

(from the original A method) looks good. The third curve (from the improved

A method with n = 3) exhibits a small undulation in the interval between

x = 8 and 10, while the bottom two curves (from the improved A method with

n = 6 and 10) do not. In the bottom three curves, the negative slopes at

x = 13 may look a little strange, but the third curve looks good as a whole if
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monotonicity of the curve is not required. The bottom two curves change

their directions so fast around x = 13 that they look as if they were deflected

at this point.

The data point set for Figure 8 is Modification B. It consists of the data

points for Figure 7 (Modification A) and an additional data point at the

center of the line segment thlat has the steepest slope. With this addition, the

top curve (from the osculatory method) remains unacceptable. The second

curve (from the original A method) exhibits a large undulation in the

interval between x = 8 and 10. In the same interval, the undulation in the

third curve (from the improved A method with n = 3) is a little more

pronounced than in Figure 7, and a small undulation emerges even in the

fourth curve (from the improved A method with n = 6). The behaviors of all

curves around x = 13 remain almost unchanged from Figure 7.

The data point set for Figure 9 is Modification C. It consists of the data

points for Figure 8 (Modification B) and an additional data point at x = 9.

With this additional point,, the top two curves (from the osculatory and

original A methods) remain unacceptable. The third and fourth curves (from

the improved A method with n = 3 and 6) are improved considerably; undu-

lations that existed in the interval between x = 8 and 10 in Figure 8 are
nonexistent in Figure 9. Th~e slopes of all curves at x = 13 are unaffected by

the additional data point.
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Fig, 5. Sine curve, y = sin(~ x).

The data point set for Figure 10 is Modification D. It consists of the data

points for Figure 9 (Modification C) and an additional data point at x = 12.

With this additional data point, the first and second curves (from the oscula-

tory and original A methods) are degraded; an inflection point emerges in

each side of the newly added data point in the first curve, and a straight line

segment is embedded in a generally curved portion of the second curve. The

bottom three curves (from the improved A method) are improved; the slopes

of the curves at x = 13 look more natural than the same slopes in Figure 9.

In Figure 10, the second curve from the bottom (from the improved A method

with n = 6) is better than the third curve from the bottom (with n = 3);

higher degree polynomials work well, without adverse side effects in this

example. The bottom curve (with n = 10), however, is not as good as the
second curve from the bottom (with n = 6); polynomials with an excessively

high degree do not always work favorably.
The data point set for Figure 11 is Modification E, which is another

modification of Modification C (but not a modification of D). It consists of the

data points for Figure 9 (Modification C) and an additional data point at

x = 13.5. With this additional data point, the first and second curves (from

the osculatory and original A methods) are almost unchanged from Figure 9.

The bottom three curves (from the improved A method) in this figure are
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better than thesame curves in Figure 9;theslopes of these curvesat x= 13

look more natural than the same slopes in Figure 9.

6. CONCLUSIONS

We have identified requiredl or desired properties for a univariate interpola-

tion method, discussed their mutual compatibility, and established our goals

for developing a method that produces a natural-looking curve when the

method is used for smooth curve fitting. We have realized that one of our

goals is to develop a method that has the accuracy of a third-degree (cubic)

polynomial, i.e., a method that interpolates accurately when the given data

points lie on a cubic curve. We have also realized that the original A method

[2, 31 has some of the desired properties. We have improved the original A
method in such a way that the improved method, called the improved A

method, has the accuracy a,f a third-degree polynomial while retaining the

desired properties of the original A method. As demonstrated in the exam-

ples, the improved A method generally yields a curve that looks mmuch more

natural than what results from the original A method. We propose the

improved A method as a replacement for the original A method when the

natural appearance of the resultant curve is important.
Improvement has been made in the procedure of estimating the first

derivative of the interpolating function at each data point. ‘1’he improved A
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method calculates four primary estimates for the first derivative, each as the

first derivative of a third-degree polynomial fitted to a set of four consecutive

data points. It calculates the final estimate of the first derivative as the

weighted mean of the four primary estimates. The weight for each primary

estimate is the reciprocal of the product of the volatility factor and the

distance factor of the set of four data points. The sum of squares of the

deviations of the ordinate values of the four data points from the straight line

of least-square fit is used as the volatility factor. The sum of squares of the

distances in the abscissa from the data point in question to the remaining

three data points is used as the distance factor.

Like the original A method, the improved A method uses a third-degee

polynomial in an interval between each pair of data points as a default. In

addition, we have also implemented possible use of a higher degree polyno-

mial for an interval as an option. Although the use of a higher degree

polynomial generally reduces undulations, it sometimes distorts curves that
would look good otherwise. It inevitably voids the accuracy of a third-degree

polynomial of the method. A higher-degree polynomial option should there-

fore be exercised prudently and sparingly when naturalness of the resultant

curve is important.
Like the original A method, the improved A method does not always

preserve monotonicity or convexity. We did not intend to preserve it in

developing the improved A method. We do not propose the improved A
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method as a replacement for the F- C-B method [9-11] or the M–R method

[17- 191 when monotonicity cw convexity must be preserved.
The improved A method can easily be implemented in a computer program.

A FORTRAN subroutine subprogram that implements the improved A method

is presented in the accompanying algorithm [4].

Since the original A method has been improved without changing its basic

concept, most remarks about the original A method apply to the improved A

method as well. Some remarks pertinent to proper application of the im-

proved A method follow.

(1)

(2)

(3)

The method does not smcloth the data. In other words, the resultant curve

passes through all the given data points if the method is applied to

smooth curve fitting. Therefore, the method is applicable only when the

precise y values are given or where the errors are negligible.

As is true for any interpolation method, the accuracy of the improved A

method cannot be guaranteed, unless it is known that the given data

points lie on a curve of a third-degree polynomial.

Unless the option for a higher degree polynomial is exercised, the method

has the accuracy of a third-degree polynomial, i.e., the method gives

exact results when y is a third-degree polynomial in x even when the

data points are given at unequal intervals.
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Fig 9, Akimadataj modification C.

(4) Themethod yields asmooth, natural-looking curve andis therefore useful
in cases where manual curve fitting will do in principle.

(5) The method is nonlinear. In other words, if y,= f’(x,)+g(x,) for all i,

the interpolated values do not, in general, satisfy y(x) = f(x) + g( z).

(6) The method produces a periodic curve from a set of periodic data points
that covers a complete cycle if three additional data points corresponding

to the preceding or following cycle are supplied on each side of the given

data point set.

(7) The method requires only straightforward procedures. No problem con-

cerning computational stability or convergence exists in the application

of the method.

APPENDIX: INTERPOLATING FUNCTIONS IN A UNIT INTERVAL

In this appendix we examine the behavior of some interpolating functions in

a unit interval between x = O and x = 1. For simplicity, we examine the

behavior of an interpolating function, y( x), under the following conditions:

x = o: y(o) = o,

x= I:y(l) =0. (A-1)
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Fig. 10. Akima data, modification D.

We consider an interpolating function that meets the symmetry requirement

and has only one inflection point, at most, in the interval.

To construct an interpolating function, we first consider a basis function,

f(x), that satisfies the following conditions:

X=o:f(o)=o, f’(o) =-t, O<t <l,

x= I: f(l) = 0, f’(1) = 1,

Osxsl:fl(x)>o, p(x) 20. (A-2)

Next, we consider, as an interpolating function, a linear combination of ~(x)

and ~(1 – x), represented by

y(x) = Cof(z) + Clf(l –x), (A-3)

where

co = [ty’(o) + y’(1)] /(1 - t’),

c1 = --[ y’(o) + ty’(l)] /(1 – tz). (A-4)

The interpolating function thus constructed satisfies (A-l). The condition on

the third derivative of f(x) set in (A-2) guarantees that the second derivative
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of y(x) can be zero at only one point at most, and therefore y(x) can have

only one inflection point at most in the interval. Equation (A-3) guarantees

that y(x) meets the symmetry requirement.

Although we can consider an infinite number of functions as the basis

functions that satisfy (A-2), we consider only two functions here. Each

function is listed with its first derivative and the t value.

(a) nth-degree polynomial

f(x) = (x”- x)/(n - 1),

f’(x)= (nx’-’ - I)/(n - 1),

t=l/(n– 1). (A-5)

(b) Exponential function

f(x) = {[exp(ax) - 1] - [exp(a) - I] x}/b,

f’(x) = [aexp(ax) - exp(a) + 1]/b,

t = [exp(a) – (1 + a)]/b,

b= (a– l)exp(a) + 1. (A-6)

Perhaps the function in (a) is the simplest form we can consider as the basis
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function. Because of the condition on the third derivative of f( x), n must be

equal to 3 or greater. When n = 3, it reduces to a third-degee polynomial:

y(x) = (X3 – 2x2+ x)y’(o) + ($3 –Xz)y’(1). (A-7)

This is commonly referred to as the cubic Hermite interpolant.

Before we proceed, we int reduce the third interpolating function that does

not fall in the same category as (a) and (b), but yet satisfies (A-1). It is a

piecewise function composed of two second-degree polynomials joined to-

gether smoothly at x = 0.5, i.e., the center of the interval. It is represented

as follows:

(c) Piecewise second-degree polynomials

o s x= ().5: y(x) = a1x+a2x2,

0.5 <X5: 1: y(x) = /31(1 – x) + b2(l – X)2, (A-8)

where

a!, = y’(o),

c12= - [3y’(o) + y’(1)] /2,

b, = -y’(l),

6, = [y ’(()) + 3y’(1)] /2. (A-9)

This function (A-8) has an advantage over the third-degree polynomial (A-7)

with respect to convexity, i.e., the property that y“( x) does not change its

sign in the whole interval. Curves of the former are convex when y’(0)/ y’(1)

lies between – 3 and – 1/3, while curves of the latter are convex only when

y’(0) /y’(1) lies – 2 and – 1/2. The interpolating function in (c) is used by

McAllister and Roulier [18] and by others mainly because of this advantage.

We now present, in Figures 12-19, the behavior of these three functions

graphically in a normalized form. In each figure, we plot 21 curves that

correspond to the y’(0) values from – 1.0 to + 1.0, with a 0.1 step from the

bottom to the top. The y’(l) value is set to unity for all curves. The center

curve that corresponds to y’(0) = O is plotted in a heavy line. (Note that the

actual scaling of the y axis is double that of the x axis.)

Curves for the function y(x) based on an nth-degree polynomial (a) are

plotted for the n values equal to 3, 4, 6, and 10 in Figures 12-15. These

figures indicate that undulations are reduced by increasing n, but each curve

approaches a straight line at the same time.

Curves for the function y(x) based on an exponential function (b) are

plotted for the a value equal to 1, 5, and 10 in Figures 16-18. These figures

indicate that a curve of this function for an a value is very close to the curve

of the nth-degree polynomial (a) for some n value. Note, however, that

calculation time required for the exponential function is longer than that for

the nth-degree polynomial,
Curves for the piecewise second-degree polynomials (c) are plotted in

Figure 19. We notice that the curves for y’(0) = – 0.2 and – 0.3 look unnatu-

ral. Perhaps this behavior is related to the fact that, as is clear from (A-9),
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the portion of the curve for O < x s 0.5 is a line segment when y’(0) = – 1/3.

Also, the “amplitude” of the top curve for y’(0) = + 1 is too large in compari-

son with the top curve for the third-degree polynomial in Figure 12. For these

reasons, use of this piecewise function is not advisable, regardless of the

advantage with respect to convexity.
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