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We compare the numerical performance of 6 explicit Runge-Kutta pairs of orders 4 through 8 on

problems with continuous solutions. As part of this work we demonstrate new ways of presenting

numerical comparisons. We first cc~mpare the efficiency of the pairs and the extent to which

tolerance proportionality holds. Then we compare the accuracy of the local error e:stimate and

stepsize prediction. Following this we compare the pairs on mildly stiff problems. Finally, we

illustrate how the performance of the pairs can be affected by the selection of the stepsize.
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tions— initial value problems; G.4 [Mathematics of Computing]: Mathematical Software—
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1. INTRODUCTION

The nonstiff first-order initial value problem

Y’ = f($>Y)> ~~[~o,~f]

y(%o) = y~ (1.1)

where fi R x R” ~ R” is often solved numerically using an explicit Runge –

Kutta pair. A pair generates approximations y,+ ~ and y,+ ~ to Y( xl + 1),
i=() 7...? according to

s

Y,+ I = Y, + h~ bJfJ
j=l

(1.2a)

(1.2b)
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where (1.2a) is order p, (1.2b) is order p – 1, s is the number of stages,

h = X,+l – x,, and

(
J–1

)
fJ=f x,+cJh, y,+h~a~~fk , j=l, . . ..s.

k=l

Many classes of pairs have been derived. Fehlberg [61 derived (5, 6), (6, 7),

(7, 8), and (8, 9) pairs of 8, 10, 13, and 17 stages, respectively. A German
summary of the derivation for the (5, 6) and (7, 8) classes is given in Fehlberg

[71. Verner [141 derived pairs of the same order and the same number of

stages as Fehlberg, except for his (8, 9) pairs which use only 16 stages.

Fehlberg [81 gave lower order pairs including the well-known RKF45 pair.

Dormand and Prince [11 derived classes of 6 and 7 stage (4,5) pairs. The pairs

in the latter class reuse the last stage as the first stage of the next step

(FSAL). Later, Prince and Dormand [111 derived 8-stage (5,6) and 13-stage

(7, 8) pairs. A 5-stage (3,4) pair due to Norsett is given in Enright et al. [41.

Other classes of pairs have been derived. However, we restrict our attention

to pairs from the cited classes because these pairs have been used more
widely, such as in numerical testing, or when investigating other properties

of Runge– Kutta methods.

Classes of pairs generally have two or more coefficients as free parameters.

Suitable values for these parameters are found by selecting sets of coeffi-

cients that satisfy one or more criteria. These criteria are intended to ensure

that the pairs have desirable properties such as an accurate local error

estimate. The selection of values for the free parameters is discussed in

several papers (see Verner [13] or Prince and Dormand [11], for example).

The existence of more than one pair naturally leads to the questions of

which pair to use, and whether this choice is affected by the type of problem

being solved or the accuracy required. These questions are answered using

two approaches. Numerical testing has shown that there is often a qualita-

tive agreement between how well a pair satisfies the above criteria and its

performance (see Prince and Dormand [11], for example). Hence, pairs can be

compared using these criteria. However, this approach has at least two

disadvantages. The effect of the higher order terms is generally not consid-

ered in these criteria. These terms may be significant at lax tolerances. Also,

it is difficult to state criteria that enable pairs of different orders to be

compared satisfactorily.

The second approach is to use numerical testing. A battery of test problems

is solved for a range of tolerances, and the performance of the pairs is
compared. This approach also has disadvantages. The performance of the

pairs depends on the test problems used, how the pairs are implemented, and

to a lesser extent, how the performance is evaluated. Despite these disadvan-

tages, useful information can be obtained, as several studies have shown.

Enright and Hull [3] compared Fehlberg’s (4, 5), (5, 6), (6, 7), (7, 8), and

(8, 9) pairs with rational extrapolation methods, variable-order variable-step

linear multistep methods, and Runge-Kutta methods that estimate the local
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error using step halving. They found a lax tolerances that low order pairs are

more efficient than high order pairs, while at severe tolerances the high

order pairs are more efficient. A third conclusion was that a Run ge –Kutta

pair of the appropriate order is the most efficient of the methods tested if the

derivative is inexpensive to evaluate. Verner [13] compared his (5, 6), (6, 7),

(7, 8), and (8, 9) pairs with those of Fehlberg using the same test set. Verner

found his pairs generally use more derivative evaluations, but they have a

smaller maximum global error. They also take fewer steps with the true local

error greater than the local error tolerance. Prince and Dormand [11], and

Dormand and Prince [2] compared their (4, 5), (5, 6), and (7,8) pairs with the

pairs of Fehlberg and Verner. They found on nonlinear problems that their

(7, 8) pair is often more efficl~ent than the other pairs, even at lax tolerances.

This appears to contradict the first conclusion of Enright and Hull. But both

test sets compare individual pairs of a class, and conclusions reaclhed about

the pairs are not necessarily applicable to the whole class. Prince and

Dormand also verified for mildly stiff problems that choosing formulas with

large stability regions leads to a reduction in the number of derivative

evaluations.

Although in the above numerical studies the quality of the local error

estimate for the pairs is considered, the emphasis is on the efficiency of the

pairs. In this paper we perform a more extensive numerical study of some

explicit Runge –Kutta pairs. We compare the efficiency of the paira, to what

extent tolerance proportionality holds, the accuracy of the local error esti-

mate and stepsize prediction, the performance on mildly stiff problems, and

the effect of varying the strategy for selecting the step size. For the tests we

used a modified version of DETEST (Enright and Pryce [5]). The modifica-

tions are described in Section 2.

Increasing the amount of testing naturally increases the amount of data

that must be analyzed and presented. To reduce this to an acceptable

amount, we limit our investigation to problems that have smooth solutions

and to tolerances no more severe than 10 – 10. We do not use CPU time to

compare the pairs, and not all of the above pairs are tested. The first two

restrictions mean we do not have to consider the effects of discontinuities,

singularities, and roundoff error (the tests are done in 16-digit arithmetic).

The third restriction means the results will not be influenced by our pro-

gramming style.

We select pairs that use local extrapolation, because this is used in most

integrators, and that are known from previous studies to be efficient or

reliable among pairs of the same order. Also, we select more than one pair at

some orders so that the effect of order can be eliminated. We test the (3,4)

pair of N@-sett, the (4,5) pairs of Fehlberg [8] and Dormand and Prince [1],

RK5(4)7FM], the (5,6) pairs of Prince and Dormand [11] and Verner [14], and

the [7, 8] pair of Prince and Dormand [11]. These pairs are denoted by N34,

F45, DP45, V56, PD56, and PD78, respectively. Fehlberg gives several (4,5)

pairs in [8]. To avoid possible confusion we give the tableau of the pair we use
in the appendix.
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Despite the above limitations on the scope of our investigation, a consider-

able amount of data is generated. The second purpose of this paper is to show

how this data can be presented in a concise form.

In Section 2, we discuss our testing procedure, and in Section 3 and 4, we

compare the efficiency and to what extent tolerance proportionality holds.

Then in Section 5, we compare the accuracy of the local error estimate and

stepsize prediction. Following this, in Sections 6 and 7, we illustrate the

effects of mild stiffness and of varying the scheme for selecting the stepsize.

Finally, in Section 8 we summarize our conclusions and discuss their

implications.

2. IMPLEMENTATION AND TESTING PROCEDURE

The pairs are implemented in a simple integrator consisting of a supervisor

routine (RKDE) and a step integrator (RKSTP). On each accepted step,

RKDE calculates the weights for the local error test and calls RKSTP. This

routine attempts steps, until either the local error test is passed or the

minimum step size is reached. On each attempted step the stages and the

error estimate are calculated. If the step is accepted, x and y are updated and

a new stepsize is selected according to the formula

{
max h~,n, rein{ ahOl~, (3(TOL/est)l’Phold, h~.~ }}

where h~,n is the minimum stepsize allowed, a > 1, 0 < fl < 1 is a safety

factor, TOL is the local error tolerance, est is the weighted norm of the local

error estimate, hmaX is the maximum stepsize allowed, and hOl~ is the

previous stepsize. The value of h~,~ is calculated on each step as in DVERK

[101 (the formula for h~l~ is given in the appendix). The weighted norm of a

vector is obtained by multiplying each component of the vector by the weight

for the component and then calculating the norm of the resulting vector. The

value of a is the maximum permissible ratio of consecutive attempted

stepsizes. If the step is rejected, a new stepsize is calculated in one of two

ways, depending on the number of consecutive rejected steps (denoted by n,)

at a point. If n, < mOPt, where m ~Pt > 0, the new stepsize is selected as

max{ .jO~d/cY, 13(TOL/est)l’PhOl~, h~ln}.

For n, > mOPt, the new stepsize is max{ h~,~, a- lhOl~}. We refer to the parts

of the above formulas that depend on the ratio TOL/est as the locally optimal

formula. The type of weights and norm in the local error test and the values
of a, @, h~~X, and mOPLare specified by the user. Unless stated otherwise, we

use absolute weights (i. e., the weights in the weighted norm are all one), the

maximum norm, a = 2, (3 = 0.9, h~,X = 20, and mOPt = 1. Note that the

stepsize is selected solely according to the above formulas. There is no

explicit detection and handing of stiffness. The integrator is written so that

the user can test a new pair merely by supplying the coefficients. Writing the

integrator this way means the overhead is greater. But since we do not use

the overhead to compare the pairs, our conclusions are unaffected.
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The extensions to DETEST are of four types. We add an outer shell to

enable us to test several pairs in one execution of the package. The output

form DETEST is reformatted so it is easily used as input to programs that

perform the comparisons. The number of rejected steps and mom detailed

information about the size of the error estimate relative to TOL is provided.

Finally, we replace the (5,6) pair of the integrator in DETEST that finds the

true solution by the (7,8) pair of Prince and Dormand. Preliminary testing

showed the (7, 8) pair failed less often and gave more accurate global error

estimates than the (5, 6) pair.

In our analysis, we use the normalized efficiency statistics for the number

of derivative evaluations reqpired to complete the integration. The statistics

for a given problem are obtained as follows. It is assumed that the global

error (either endpoint or maximum) satisfies the relationship

global error = C TOLE

where the exponent E and the constant of proportionality C depend on the

method and the problem. After the global error is found for several toler-

ances, values for E and C are found in a least squares sense. The values of C

and E are then used to estimate the number of derivative evaluations

required to achieve a prescribed global error. The number of derivative

evaluations is found for a range of global errors to give the normalized

efficiency statistics. Since the statistics are obtained from a least squares fit,

it is important to know how reliable the fit is. This can be measured using

the root mean square (rms) error of the fit, with a smaller value generally

indicating the fit is more reliable.

To illustrate the behavior of the rms error, we solve problems A 1, ..., A5,

B1,. ... B5, D1,. ... D5, El ,. ... E5 (all scaled) of DETEST for tolerance

ranges of 10–2/2, i = 6,. . .,:12,10’/2, i = 12,...,20, and 10– L, i = 3,...,10.

The C set of problems is omitted from these results because some problems in

the set are mildly stiff (in this case we cannot expect tolerance proportional-

ity because the stepsize is being limited by stability requirements and not

accuracy requirements). The three tolerance ranges are used throughout the

testing and are denoted by RL, RS, and RA, respectively. The R is a

mnemonic for range while the L, S and A are mnemonics for lax, severe, and

all tolerances.

The least squares fit assumes the principal term in the glc~bal error

expansion dominates the higher order terms. The higher order terms will

generally have less effect as the tolerance is made more severe and as the
order is decreased (with the tolerance held constant), because the stepsize

will generally be smaller in both cases. Hence we can expect the rms error to

be smaller for RS than for RL and RA and the rms error to increase with the

order. We find the rms error for RS is usually smaller than the rm~s error for

RL and RA, and therms error for N34 is generally smaller than for the other

pairs. Also, for RS the rms error of the two (5,6) pairs is generally smaller

than for the (7, 8) pair. Each of these observations suggests the required
behavior of the principal term and that our analysis will be more reliable for

low orders and severe tolerances.
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3. EFFICIENCY

To compare the efficiency of the pairs on nonstiff problems, we first solve

problems Al, . . . . A5, Bl, ,B5, Dl, . ,D5, El,. . . ,E5 of DETEST (all

scaled) for RA. We refer to these problems as problems 1, . ...20. Next, we

take the pairs two at a time and form the intersection of the values of the

expected accuracy (from the normalized efficiency statistics) for each prob-

lem. For these values, we take the estimated number of derivative evalua-

tions and divide the larger value by the smaller value. We then subtract one

from this number to give the efficiency gain. If the second pair in the set uses

more evaluations, we multiply the gain by negative one. Finally, we multiply

the gains by a suitable scaling factor, round the result to the nearest integer,

and enter the numbers on a graph of the expected accuracy against the

problem number.

To illustrate the calculation of efficiency gains, suppose problem 10 is

solved for RL using N34 and F45. The table of normalized efficiency statistics

(formed from the endpoint global error) for N34 has entries for expected

accuracies of 10 – 3, 10 – 4, 10 – 5, 10 –‘, while the table for F45 has entries for

10-3 and 10”. The intersection of the values is therefore {10 -3, 10-4}. For

these values, N34 uses 352 and 529 evaluations, respectively, while F45 uses

274 and 433 evaluations. This gives efficiency gains of 0.28 and 0.22.

Since we are testing 6 pairs, 15 sets of efficiency gains are possible. This

can be reduced to 5 if the second pair in each set is the same. If this pair is

one of the (5, 6) pairs, we find that our conclusions about the relative

efficiency of the pairs are similar to those obtained using all 15 sets.

Figures l(a)- (e) contain the efficiency gains of the pairs relative to the

Prince and Dormand (5,6) pair for RA using the endpoint global error. In the

gains, unity represents a 10-percent difference in efficiency. Since all the

entries in Figure l(a) are nonnegative, PD56 is at least as efficient as N34 at

all accuracy requirements. With few exceptions, the same result holds for the

(4, 5) pairs. However, for PD78 many of the entries at the lax accuracy

requirements are zero or negative. Hence, PD78 is often more efficient than

PD56 at lax accuracy requirements, although the gain is small. At severe

accuracy requirements, we see that a higher order pair is generally more

efficient, and it becomes increasingly more efficient as the accuracy require-

ment becomes more severe. For the (4, 5) and (5, 6) pairs, the Dormand and

Prince pair at each order is generally more efficient. The results for PD78 at

lax accuracy requirements are similar to those of Prince and Dormand [11].

They found PD78 was generally more efficient than the other pairs tested,
including the (8, 9) pairs of Fehlberg [6] and Verner [13].

We initially attempted to find the efficiency gains using TOL = 10-‘,
i=z ,. ... 10. However, the two (4, 5) pairs perform poorly for TOL = 10-2 on

some of the orbit problems. On problem D1 with TOL = 10-2, F45 uses 1000

steps without completing the integration. From approximately x = 17 on-

wards, the stepsize for accepted steps slowly approaches zero. A similar

difficulty occurs on problems D2, D3, and D5. For TOL <10-22, all five orbit

problems are integrated using considerably fewer steps, although the number
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Fig. 1. (a) The efficiency gains for N34 relative to P56 on problems one to twenty. Unity

represents ten percent. (b) The efficiency gains for F45 relative to PD56 on problems one to

twenty. Unity represents ten percent. (c) The efficiency gains for DP45 relative to PD56 on

problems one to twenty. Unity represents ten percent. (d) The efficiency gains for V56 relative to

PD56 on problems one to twenty. Unity represents ten percent. (e) The efficiency gains for PD78

relative to PD56 for problems one to twenty. Unity represents ten percent.
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Fig. l–Continued

of steps does not increase monotonically as the tolerance becomes more

severe. The Dormand and Prince (4, 5) pair does not fare as badly. On D1

with TOL = 10 – 2 the pair takes 606 steps, while for TOL = 10 – 22, 32 steps

are taken. DP45 has little difficulty integrating the remaining D problems

for TOL <10-2.
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Fig. 1– Continued

4. TOLERANCE PROPORTIONALITY

One desirable property of arl integrator is that the global error satisfy

global error = C TOLE

where E is close to one (ideally equal to one) and C is a constant. This is

commonly referred to as tolerance proportionality. In Figures 2( a)– (d) we

give I E – 1 I for problems 1, . . . . 20 on RS, where E is that used in the

normalized efficiency statist its. Figure 2(a) contains the values for N34 (solid

line), F45 (dashed), and DP45 (dotted) using the endpoint global error. Figure

2(b) contains the values for V56 (solid line), PD56 (dashed), and PD78

(dotted) using the endpoint global error. Figures 2(c) and (d) ccmtain the

values for the maximum global error.

For N34, E – 1. is significantly closer to zero than for the other pairs. We

attribute this to the low order (hence smaller stepsize) of the pair and the fact

that N@sett (private communication) chose the coefficients of the pair so it

had an accurate error estimate. The (5,6) and (7,8) pairs do not differ greatly

on most problems. For all pairs there is generally little difference between

the results for the endpoint and maximum global error, except for problem 1.

To quantify some of the differences in the values for E, we give

=~ [x(E~’)21-1’2 ‘ax{E-”}

XIE–11

in Table I.
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Fig. 2, I El I for problems 1,, ,20 on RS (a) Endpoint error. Solid curve: N34; dashed curve:
F45; dotted curve: DP45. (b) Endpoint error. Solid curve: V56; dashed curve: PD56; dotted curve:

PD78, (c) and (d) Maximum error.
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Table I. A Summary of I E – 1 I for Problems One to Twenty on RS

Endpoint Error Maximum Error

‘air“:;”[x(i~1)211’:ax’’E-1° “:;” [x(Ei1)211’:ax’’E-’”

N34 0.0388 0.0749 0.2990 0.0200 0.0250 0.0520
F45 0.0800 0.1244 0.3880 0.0536 0.0793 0.2460
DP45 0.0784 0.0976 0.2070 0.0693 0.0912 0.1810

V56 0.1280 0.1579 0.3460 0.1107 0.1406 0.3570
PD56 0.1176 0.1419 0.3760 0.1085 0.1396 0.3440
PD78 0.1112 0.1418 0.3200 0.0987 0.1468 0.4230

Table II. Results for the Linear Regression of I E – 1 I Against therms Error for Problems

One to Twenty on RS

EndpDint Maximum

Pair aO al r aO al r

N34 0.145 0.054 0.575 0.061 0.018 0.788
F45 0.249 0.117 0.584 0.134 0.048 0.437
DP45 0.105 0. OX) 0.165 0.111 0.026 0.242
V56 0.161 0.023 0.135 0.188 0.049 0.285
PD56 0.259 0.1”12 0.654 0.238 0.088 0.611
PD78 0.163 0.058 0.310 0.208 0.105 0.437

The first two quantities measure the average deviation from tolerance

proportionality while the third quantity measures the maximum deviation.

The average deviations for N34 are significantly smaller than for the other

pairs. However, because of its poor performance on problem 1 the maximum

deviation for the endpoint error is greater than that of DP45. F45 has 4

deviations (in Table I) that are greater than those for DP45, while the

average deviations for the (5, 6) and (7, 8) pairs are similar to one ,another.

We end this section by examining whether there is any correlation between

I E – 1 I and the rms error (from the normalized efficiency statistics), and

whether larger values of the rms error are associated with larger values of

I E – 1 I.Table II contains a. and al in the linear regression a. + al (rms

error), along with the coefficient of correlation (r).

We see that I E – 1 I depends weakly on the rms error, and that al for the

maximum global error increases with the order. The best correlation occurs

for N34 and PD56, while fen- DP45 and V56 there is little correlation. For

N34, the coefficient of correlation is smaller for the endpoint global error

than the maximum global en-or primarily because of problem one.

5. LOCAL ERROFI ESTIMATE=

Irrespective of whether local extrapolation is used, most embeddecl pairs are

derived and implemented so that the local error in the lower order formula is
controlled directly. Hence, it is important to measure the accuracy of this
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estimate. Related to this is how well the locally optimal formula (see Section

2) predicts the stepsize.

For an embedded pair using formulas of orders p – 1 and p, the local error

estimate for the lower order formula is

‘p ~ ‘p, fzDp, h + hP+l ~ (TP+l, k – ‘p+l, k )Dp+l,k + 0(h~+2)
k k

and the true local error in the lower order formula is

hp~ Tp,/zDp,k+ hP+l ~ ~p+l, kDP+l, k + 0(hP+2)

k k

where the T~,k and T~, k(q=p, p+ l,... ) are the truncation coefficients of

order q, and the Dg, k are the corresponding elementary differentials.

If the I T~, k I are not sufficiently small relative to the I ~~, k 1, especially for

q = p + 1,the estimated and true local errors can differ significantly, partic-

ularly for large stepsizes. This can lead to erratic behavior of the global error

as a function of TOL, making it difficult to estimate the global error reliably

using tolerance proportionally. The need for an accurate error estimate is

recognized by Verner [13] and Prince and Dormand [2] as an important

criteria to satisfy when selecting the values of the free parameters.

To test the accuracy of the local error estimate, we solve problems 11,...,15

(the orbit problems) using TOL = 10-3, 10-‘, 10-‘. These problems are

chosen because as a group they provide a severe test of the accuracy of the

local error estimate (see Prince and Dormand [5], for example). For each

problem and tolerance, we count the number of accepted steps for which

LE LE LE
~ s 2–5, 2J-l<_ < 2J,

TOL
j=–4, ...,5, 25<————

TOL

where LE is the weighted norm of the true local error in the lower order

formula. This data can be arranged in a histogram of 12 intervals. If LE is

generally close to (but less than) TOL and (3 = 1, the histogram will have a

narrow peak centered on the sixth interval ([1/2, l]). If /3 is 0.9, as we have in

most of our tests, the peak will shift to the left, and the shift will increase

with the order. But even for the (7, 8) pair, the shift will be only one interval

since 0.98 is approximately 1/2. If LE is often significantly smaller or larger

than TOL, the peak will be less prominent.

In Figures 3(a)-(f) we give the cumulative percentage (CP) for each his-

togram. To form this, we calculate the number of steps with LE/TOL s 2 J,
j=–s >. ... 5 (if the twelfth interval is not empty, the CP is taken as 100).

Then we place the value of j on the graph of the CP against the problem

number and tolerance as follows. If an interval is empty, the value of J“ is

placed immediately above the previous one. If two values in a column

overlap, we move the one with the higher value of CP immediately above the

other. These two conventions mean some of the points are not correctly

placed on the graphs. This discrepancy has little effect on our conclusions,

To illustrate how the graphs are formed, consider solving N34 on problem

11 for TOL = 10-3 using N34 (the first column in Figure 3(a)). The number
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Fig. 3. (a), (b) A summary of LE/TOL for N34 and F45 applied to problems eleven to fifteen

with TOL = 10-3, 10-6, and 10-”. See the text for an explanation of the entries. (c), (d) A

summary of LE /TOL for DP45 and V56 applied to problems eleven to fifteen with TOL = 10-3,

10-6, 10-9. See the text for an explanation of the entries. (e), (f) A summary of LE/TOL for
PD56 and PD78 pairs applied to problems eleven to fifteen with TOL = 10-3, 10-6, 10-9. See

the text for an explanation of the entries.
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of steps in the 12 intervals of the histogram are O, 0,0,2,5,57,0,0,0,0, 0,0,

respectively. The CP for the first 3 intervals is O and we place the numbers

– 5, – 4, – 3 immediately above one another. The CP for the fourth and fifth

intervals is 3.1 and 10.9, respectively. If – 2, – 1 are placed correctly, they

overlap with – 5, – 4, and – 3. Instead, we place – 2 and – 1 immediately

above the – 3. The CP for the sixth interval is 100 and we place O at the top

of the graph.

With the data graphed in this way, several properties of the local error

estimate are readily discerned. If LE/TOL is generally close to (but less than)

1, the O entries will occur near the top of the graph. N34 achieves this

extremely well with all but one O occurring at 100 percent. Then in order of

decreasing accuracy, we have PD78, V56, DP45, and PD56 of similar accu-

racy, and finally F45. We also see fewer positive integers occur at 100

percent as the tolerance decreases. This is because the principal term in the

error estimate is more dominant, which makes the estimate more accurate.

If LE/TOL is less but not significantly less than 1, the negative entries will

occur near the bottom, although – 1 and possibly – 2 for the higher order

pairs are not required to. Once again N34 achieves this well. We also see two

interesting patterns with the – 1‘s for N34. As the eccentricity of the orbits

increases (i. e., going from problem 11 to 15) or the tolerance increases, the

– 1’s move up the graph. One reason for the former is that as the eccentricity

increases the fraction of rejected steps increases (see below). Hence, because

of the conservative nature of the stepsize selection, the stepsize is smaller

than it need be. The latter effect follows from the dominance of the principal

term in the error estimate. For the other pairs, the – 1’s move up the graphs

as the order increases. This is partly due to ~ being smaller than 1. Finally,

the other negative values show the same general dependence on the eccen-

tricity as – 1.

As well as having an accurate error estimate, we would like the locally

optimal formula to predict stepsizes that lead to few rejected steps to avoid

possible inefficiencies. Table III below contains a summary of the number of

rejected steps for problems 11 to 15 with TOL = 10-3, 10-6, 10-9. For each

pair, problem, and tolerance, we give the number of times exactly one and

two consecutive rejected steps occur at the same point (i.e., n, = 1 and 2), as

a percentage of the number of steps.

As might be anticipated from its low order and the results obtained so far,

N34 generally has the smallest fraction of rejected steps. There are no

rejected steps for TOL = 10 – 6, 10 – 9, and nr is never 2. The (4, 5) pairs have

no rejected steps for TOL = 10 –‘. But for TOL = 10 – 3 on problems 14 and
15, both pairs have steps with n, = 2. Otherwise, F45 generally has a

smaller fraction of rejected steps than DP45. The remaining pairs have

rejected steps at all tolerances. If we count n, = 2 as two rejected steP5, V5G

generally has a smaller fraction of rejected steps than PD56. This is espe-

cially true for TOL = 10 –‘. PD78 generally has a greater fraction of rejected

steps than the two (5, 6) pairs.

Clearly the efficiency of the pairs can be improved, especially for the high
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Table III. The Number of Steps with n, = 1,2 as a Percentage of the Number of Accepted Steps
for F4-oblemsSixteen to Twenty

Pair TOL 11 12 13 14 15

N34 10-3 00
IO-6 00
10-9 00

F45 ~o-3 11 0
IO-6 00
IO-9 00

DP45 IO-3
34 0

IO-6 00
IO-9 00

V56 ~o-3
80

IO-6 00
IO-9 00

PD56 ~o-3 20 0
IO-6 00
10-9 00

PD78 ~o-3 20 0
IO-6

27 0
IO-9 00

28 0

00
00

26 0

80

00

27 0

14 0
00

20 6

19 0
00

37 0

26 0

00
33 0
33 0

23 0

32 0

00
00

35 0

21 0

00

35 0

24 0

00

34 2

30 0

00

31 6

28 0

20

28 12

40 0

34 0

31 0 34 0

00 00
00 00

21 7 28 10
28 0 32 0

00 00

32 4 22 11

30 0 34 0

00 00
29 9 21 12

33 0 35 0
70 16 0

25 13 14 25

36 0 37 0
15 0 28 0
21 15 16 22
37 0 39 0

35 0 36 0

order pairs, if the number of rejected steps can be decreased. We discuss this

in Section 7.

6. STABILITY

On problem Cl of DETEST at lax tolerances, if the stepsize is selected using

the formulas of Section 2, the stepsize will be limited by stability require-

ments. This means a similar number of steps is used for all lax tolerances.

For more severe tolerances the accuracy requirement controls the stepsize,

and the number of integration steps increases as the tolerance decreases.

Problems of this type are referred to as mildly stiff.

When the stepsize is limited by stability requirements, the efficiency of

pairs can be ranked by the size of their scaled stability region. This is the size

of the stability region dividedl by the number of stages. In general, the larger

the scaled region the more efficient the pair.

The size of a stability region can be measured in several ways. These

include the magnitude of the intercepts of the stability boundary with the

negative real and imaginary axes. The former is frequently used. The second

and third columns of Table IV below contain the size of the unscaled and

scaled stability region along the negative real axis. The scaled stability size

for DP45 is one-sixth and not one-seventh of the unscaled size because the

pair uses FSAL.

If the pairs are ranked using their scaled stability region, F45 should be

the most efficient. Then in order of decreasing efficiency, we have N34 and
DP45 of similar performance, V56 and PD56 of similar performance, and
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Table IV. The Size of the Unscaled and Scaled Stability Region

along the Negative Real Axis, as well as the Spectral Radius (p)

of the Equilibrium Matrix

Pair Unscaled Scaled P

N34 2.8 0.56 1.02
F45 37 062 0.99
DP45 3.3 0.55 1.02
V56 3,9 0.49 111

PD56 4.0 0.50 109
PD78 52 040 1.06

finally PD78. To test the accuracy of this ranking, problem C3 is solved using

TOL = 10-‘, i = 2, . . . . 10. The results for the endpoint global error are

given below in Figure 4(a). For global errors greater than 10-3, the problem

is mildly stiff for all pairs, and the pairs rank in efficiency as stated above.

For global errors less than 10- 3, the stepsize for N34 is not limited by the

stability requirement and the number of evaluations increases as the toler-

ance decreases. A similar dependence starts for the remaining pairs at

decreasingly smaller global errors as the order increases. It is not until the

global error is approximately 10-8 that the (7,8) pair is the most efficient.

This last result is similar to that obtained by Dormand and Prince [2]. The

final observation we make is for the (5,6) pairs. The size of the stability

region for the (5, 6) pairs differ little, and in Figure 4(a) the curves for the

pairs are nearly coincident.

The behavior of a pair on a mildly stiff problem is not always as simple as

in Figure 4(a). Figure 4(b) below contains the results for problem C4. A

noticeable transition occurs between the region of mild stiffness and the

asymptotic region. In the transition region, the global error changes little but

the number of evaluations increases significantly.

For mildly stiff problems, explicit Runge-Kutta pairs can also be compared

using the equilibrium theory developed by Higham and Hall (see [9], for

example). They observed that the sequence of stepsizes can be one of two

types. Either the stepsizes remain close to the boundary of the stability

region, or they fluctuate about the boundary in a erratic manner. In the

latter case, a significant fraction of the steps can be rejected, making the pair

less efficient. For problems where the dominant eigenvalue of the Jacobian is

real, the type of behavior which arises is independent of TOL and the type of

norm used for the local error estimate. The desirable smooth step size se-

quence occurs if and only if p < 1, where p is the spectral radius of the
corresponding equilibrium matrix. This condition can be tested a priori and

gives an additional criterion for comparing Runge-Kutta. An ideal pair will

have p <1 and possess a large stability radius. In the last column of Table

III we give p. Only F45 has p < 1, but the value of p for the other pairs is not

significantly greater than 1, and all pairs should have few rejected steps.

This behavior is observed.
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7. VARYING THE STEPSIZE SELECTION

In the previous sections we used the default values for 6 and mOPt. We now

summarize the effect of changing (3 and mopt.

All pairs have a significant fraction of rejected steps on the orbit problems,

particularly on D5. A possible explanation for this is that the solution of the

problems changes rapidly at some points and the locally optimal formula is

unable to accurately predict stepsizes. One way to reduce the number of

rejected steps is to make the stepsize prediction more conservative by reduc-

ing ~. To test the effect of this, we reduce ~ to 0.7 and solve D5 on RA. With

P = 0.9, IN34 has rejected steps for only TOL = 10-3, while F45 and DP45

have rejected steps for TOL = 10-’, i = 3,4,5,6, and V56, DP56, and

PD78 have rejected steps for all of RA. When we reduce (3 to 0.7, all pairs

have fewer rejected steps. If we use the number of function evaluations for a

given global error as the measure of efficiency, the gain in efficiency with

P = 0.7 ranges from approximately 5 to 30 percent.

Our default value of mOPt is 1,which is the same as in DVERK (Hull et al.

[10]). This means that on the first rejected step the locally optimal formula is

used, and on subsequent rejections (at the same point) the stepsize is reduced

by a factor of a 1. Other values for mOPt are also commonly used. For

example, in DESTEP (Shampine and Gordon [121) the stepsize is halved after

the first rejected step ( mOPt = O). To illustrate some of the effects of having

.Pt # 1, we solve the orbit problems with mOPt = O and 2 for tolerances of

?OL = 10-3, 10-6, and 10-9.

Decreasing moPt from 1 to O decreases the fraction of steps with n, = 2.
But the fraction of steps with n, = 1 increases for all pairs at TOL = 10-3,

10-6 and for PD’78 at TOL = 10-9. The first result follows from the more
conservative nature of the step size selection. The reason for the second result

is not as obvious. When a step is accepted after a rejected step, the predicted

stepsize for the next step is often too large. This leads to sequences of

alternating rejected and accepted steps which increase the fraction of steps

with nr = 1. Increasing mOPt from one to two decreases the fraction of steps

with n, = 1,but increases the fraction with nr = 2.

8. DISCUSSION

We performed numerical testing of six explicit Runge-Kutta pairs ranging in

order from a (3,4) pair to a (7, 8) pair. All the test problems had smooth

solutions and we assumed dense output was not required. The pairs were
implemented in a uniform way. In particular, the stepsize selection for all

pairs was based on the locally optimal formula. We tested the efficiency of

the pairs, to what extent tolerance proportionality held, the accuracy of the
local error estimate and stepsize prediction, and the performance on mildly

stiff problems. We also showed, for these pairs, how the performance could be

altered noticeably by making simple changes to the stepsize selection strat-

egy. As part of the work, we demonstrated new ways of presenting numerical

comparisons.
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Although we tested individual pairs of a class and not classes, we think

some general conclusions can be made about the classes. The first concerns

the efficiency of the pairs on truly nonstiff problems for which th(e solution

does not change rapidly. The (7, 8) pair of Prince and Dormand generally uses

fewer derivative evaluations than the (5, 6) pairs. Since the work of Verner

[131 suggests existing (5, 6) pairs are close to the most efficient possible, we
think (7, 8) pairs will generally be more efficient than (5,6) pairs, provided

the coefficients are chosen suitably.

We also found that the (7,8) pair was more efficient than the lower order

pairs on problems whose solution changes rapidly (the orbit problems).

However, this conclusion may not hold in general, since our results suggest

the percentage of rejected steps will usually increase with the order. In this

case, the efficiency of a high order pair relative to a low order one will be

reduced, and it may be possible on some problems for the low order pair to be

more efficient. We intend investigating ways of ensuring that high order

pairs retain most or all of their efficiency. We anticipate this will involve

modifying the scheme for selecting the stepsize, as well as the criteria used to

select the coefficients of a pair.

A (7,8) pair may also not be more efficient than a lower order pair when

dense output is required. The output can be obtained by either hitting the

output point exactly or by using interpolants. In the former case, the step size

will be the same for all pairs. Hence, the cost of advancing a step using a

(7, 8) pair will be greater than that for a (5,6) pair, and the (7,8) pair will

generally be less efficient. If interpolants are used, the (5,6) and (’7,8) pairs

will require evaluations in i~ddition to those of the underlying palir. If the

(7, 8) pair requires more such evaluations than the (5,6) pair, the I(7, 8) pair

will be less efficient relative to the (5, 6) pair. We are investigating this

issue.

Our testing showed that the (3, 4) pair of N@sett generally has a more

accurate local error estimate at lax tolerances than the other pairs and

displays better tolerance proportionality. Hence the (3, 4) pair would be

useful at lax tolerances on problems for which accurate error estimates were

required.

On mildly stiff problems with real eigenvalues, high order pairs are less

efficient than low order pairs at lax tolerances. Dormand and Prince [21
showed their (4, 5) and (5, 6) pairs could be made more efficient by extending

the stability region along the negative real axis. Although the efficiency is

improved, this approach has the foIlowing disadvantage. Choosing the coeffi-

cients of the pair so that the stability region is extended will generally make

the pair less efficient on nonstiff problems (see the numerical results of

Dormand and Prince [2], for example). We think mildly stiff problems can be

handled more effectively by detecting the stiffness and switching to a low

order pair.

APPENDIX

We give the tableau of the Fehlberg (4,5) pair and the formuli~ for the

minimum stepsize used in the testing (see Figure 5).

ACM Transact ions on Mathematical Software, Vol 17, No 3, September 1991



408 . P. W. Sharp

o

i

1 1

7 i

1~

Figure 5
13

1

I

1932 –7200 7296

2197 2197 2197

439 _8 3680 –845

216 513 4104

~ –8 z –3544 1859 –11

2 % x— 4104 40

1408 2197 –1 o
4’h250— —

m 2565 4104 5
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The minimum stepsize (h ~,~) is intended to prevent the integrator from

using a step size for which the roundoff errors are significant. We calculate

h nun as

Clmax{C,, umax{ I yJ/TOL, I xl}}

where Cl, Cz are constants that do not depend on the pair and problem, u is

the unit roundoff, and I y, I is the weighted norm of y, (the weights are the

same as in the local error test. ) The constant Cl is a safety factor and Cz is a

very small positive machine number. Throughout the testing we use Cl = 10

and Cp = 10-20
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