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Methods for fast and accurate evaluation of the elementary mathematical functions (sin, COS,

exp, log, etc ) are needed in order to program elementary function routines Such routines are

widely used m every floating-point computation envu-onment. This 1s true for small scientific

calculators as well as for the largest existing supercomputers, The art of performing this type of

evaluation has already reached a point where fast computation M possible with accuracy that is

very close to the theoretical limit, namely, the accuracy reached by correctly rounding to nearest

the exact value of the function evaluated to fit into the data format reserved for the output The

accuracy of the results produced by these routines is quite satisfactory There is one important

aspect, though, in which they are not sufficiently perfect: Any changes, even slight, m the

algorithm may produce changes m the output. For this reason it is vmtually impossible to

achieve full compatibility among different routines with the known fast evaluation techniques

Such compatibility is valuable for several reasons (e g., portability of software, standardization),

In this paper a general methodology m suggested that is expected to produce the “ultimate”

type of elementary function routines: fast routines that produce results which are always

identical to the machine numbers, obtained by correctly rounding the exact values of the

function evaluated. The rounding rule need not be “round to nearest “ C)ther rounding rules can

be implemented also

Actually, the method is expected to work for all transcendental elementary functions, for all

possible floating point data formats, and for all reasonable rounding rules.

With this type of routine, full cornpatibihty M achievable in a most natural way,

Categories and Subject Descriptors: G. 1.0 [Numerical Analysis]: General– numerical atgo -

rtth ms; G. 1.2 [Numerical Analysis]: Approximation— elementary functzon approxl m atzon;

G 4 [Mathematics of Computing]: Mathematical Software–efficiency

General Terms: Algorithms, Standardization

Additional Key Words and Phrases: Compatibility, correct rounding, mathematical library

1. INTRODUCTION

The art of producing elementary mathematical function routines (sin, COS,

exp, log, etc.), has already reached a point where routines can be produced

which are very fast and are accurate almost to the last bit (see Gal [6] and

Gal and Bachelis [7]). There is a problem, though, if one wants to achieve
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compatibility to the last bit, between routines that compute the same func-

tion by different algorithms. Usually, even a slight change in the algorithm

changes the values of one or more bits of the output for some of the possible

inputs. In the past the differences in the outputs of different algorithms

delayed improvement of ol,d versions of commercial elementary function

routines because of fear of the consequences of incompatibility of new ver-

sions with the old ones.

Compatibility to the last bit of one algorithm with another would be easy

to achieve had there existed a method to control the value of the last bits of

the output of an elementary function routine in such a way that a simple

rounding rule, independent of the details of the algorithm, could be agreed

upon and followed exactly by a fast routine. All versions of routines for the

same function, which follow the same rounding rule, will produce exactly the

same outputs.

A closely related subject is that of defining an industry standard for the

outputs of elementary function routines. The need for such a standard is

discussed by Black et al. [1].

No doubt sin, COS,log, etc., could fit quite naturally in the IEEE standards

[10, 111, alongside the four arithmetic operations and the square root, had
there existed a practical fast method to evaluate these functions with the

same accuracy.

In what follows the term “ultimate” will be used to describe a routine

whose output is controlled to the last bit to conform to some prespecified

simple rounding rule. The four rounding rules mentioned in the IEEE

standards [10, 11] are examples of what is meant by a “simple rounding

rule. ” Fast ultimate routines seem to provide the best possible solution to the

problems mentioned above. Such routines have several advantages: full

compatibility is achievable, mathematics can be built around them (see

computer arithmetic analog in Kulisch and Miranker [12]), they can be

applied in interval arithmetic software, etc.

Some fast, commercial, ultimate elementary function routines have al-

ready existed for some time (see, e.g., the routines EXP, SQRT, and DSQRT

of IBM’s Elementary Math I.ibrary [9]). The problem with the methodologies

which were used to produce them is that they are limited and can be applied

only to some of the routines in a complete elementary function routines

package.

Gal’s accurate tables method [6, 7] is quite general and enablles one to

produce fast routines which are almost ultimate in the sense that, if applied
many times, only a small fraction of their output is incorrectly rounded. In

fact, Gal claims that about !39.8 percent of the output of his routines equals

the correctly rounded value to the last bit (the percentage varies slightly

from routine to routine).

In principle it is not difficult to produce a correctly rounded value of a real

number, provided it is known how to compute it to an arbitrary precision.

One must only compute the number to a precision somewhat higher than the
target precision and then round the result. Sometimes, however, the approxi-

mation obtained is too close to a value where the direction of rounding
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changes. For example, if the combination of bits of the approximation,

beyond the required precision, is either 10000 . . . or 01111 . . . and one wants

to compute the number obtained by rounding the exact value to nearest,

there might remain a doubt as to the correct direction of rounding. One

arrives at a basic problem to which no solution is yet known: Given input and

output data formats for an elementary mathematical function routine, what

precision should the routine compute in the function values, before they are

rounded to the output format, so as to ensure that the routine is ultimate.

The lack of a satisfactory general solution to this basic problem is perhaps

the main reason for the delay in the appearance of complete ultimate routine

packages.

Gal and Bachelis tried a probabilistic approach to the problem. They

argued [’7] that, for an output data format equivalent to the IEEE standard’s

“double” (see [10]), if the number of correct bits in the approximation is 137

or more, then the rounded result is most likely to be ultimate. Unfortunately

nobody knows how to prove such a thing rigorously, and the task of finding a

proof seems to be difficult.

If the input data format is not too long, 4-bytes long, say, then the problem

can be solved by an exhaustive testing of all of the possible inputs to see what

is the worst case that needs the highest precision computations. However, if

the input data format is longer, 8-bytes long say, (e.g., IBM S/370 long

precision), such a testing requires too much CPU time, and is therefore

impractical to perform.

In addition to the question of what precision an ultimate routine should

work in, internally, there is the problem of how to make the routine fast.

Higher precision computations usually require more CPU time.

The abovementioned IBM ultimate EXP routine performs the computation

in two stages. The first stage uses a fast “short” precision EXP algorithm,

which works in Gal’s accurate tables method. In this method the last

arithmetic operation of the computation is usually an addition: f, + b. f, is

an accurate table value, which is specially chosen to be more accurate than

the number of digits in a machine number usually permitted, and b is few

orders of magnitude smaller then fL, with only a few of its last bits being

inaccurate. As a result of this special situation the exact sum f, + b has

significantly more accurate bits than a machine number can hold. So round-

ing the exact sum, the result usually equals, exactly, the correctly rounded

value of the exact exponent.

Only in the small fraction of “dangerous” cases, where the configuration of

bits of f, + b beyond the “short” precision is close to either 10000, . . . or

01111, . . . . is a second stage activated by the routine, after a test is made

first, to identify dangerous configurations. The second stage uses a “long”

precision algorithm whose result is rounded to the target short precision. The

fact that it is sufficiently precise to ensure that the routine is ultimate was

proved by an exhaustive testing. Since a dangerous configuration is rare, the

fact that the computation is slower in cases where it is found has only small

effect on the average CPU time requirement of the subroutine.

This discussion makes it clear that there are still some difficulties in

producing complete packages of ultimate elementary function routines. It is
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the purpose of this paper to suggest a few simple ideas that solve the

technical problems that remain.

2. POSSIBLE MODELS OF FAST ULTIMATE ELEMENTARY FUNCTIONS

ROUTINES

The IBM short precision EXl> routine, described in the introduction, seems to

provide a general two-stage model for fast ultimate routines. However, as

already mentioned, there is no known sufficiently general methocl to prove

that some accuracy, chosen for its second stage, is sufficient in order to

ensure that the routine is really ultimate.

The first idea that is considered here is increasing, without a limit, the

number of stages of the subroutine. According to such a model an algorithm

of an ultimate routine to evaduate ~(x) would look as followsl:

1. Set i = 1.

2. Invoke PROC,.

3. If I Y, – J(Y,) I > E,, set Y = rozmd(YL) and return.
Note: If I Y, – y I < EL and I Y, – J(Y,) I > E,, then round( Y,) = round(y).

Else, set i = i + 1 and go back to Step 2.

Such an algorithm produces roznzd( y) exactly, to the last bit in finite time,

provided J(y) # y # O.

Since almost all of the elementary functions are transcendental and all of

the possible input machine numbers are rational, y is usually irrational. For

all of the principal rounding rules, J(. ) assumes only rational values. Hence,

with the exception of very few cases, which can be easily taken care of, the

condition J(y) # y # O is satisfied. Therefore, this type of an algorithm is

potentially a good general model for an ultimate elementary mathematical

function routine.

This scheme permits an unbounded number of stages and, as a result, an

unbounded number of bits in the numerical data formats used by the higher

PROCS. So, in principle, although it is extremely unlikely (see Section 4), the

memory requirements might grow to a very large size. A routine which is

programmed by this scheme must include, therefore, a mechanism to deal

with growth of the required memory size, and this complicates matters.

Unboundedness also prevents the use of some convenient algorithms. For

instance, one cannot use stored values of helpful constants that can be

exactly expressed only by infinitely many bits. In order to simplify the

implementation process, the following is suggested: permit only a bounded

number of stages. If the last stage is reached and a dangerous configuration

is still encountered, signal an exception.

In Section 4, a probabilistic model is used in order to predict the number of

inputs that cause an exception to be signaled by an ultimate routine of this

type. The resulting figures indicate that exception-causing input is practi-

cally impossible. The built-in exception-signaling mechanism is meant only

to be a safeguard against the improbable possibility that such an input does

1 Notation and its meaning can be found at the end of this paper, in Section 6.
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exist for some exceptional routine, which, extremely rarely, might produce an

unnoticed output whose last bit is erroneous.

The set of exception-causing inputs of a given routine of this type is most

likely to be empty. In a bad case it might include at most a small number of

machine numbers. Anyway, an exception is expected to be so extremely rare

that it is worthwhile, upon its occurrence, to stop the program and take

measures in order to find the input that gave rise to it. Knowledge of such an

input can be used to give it a special treatment in later versions of the

routine so that it will no longer cause an exception. (The manufacturer may

offer a price—that he will most likely never have to pay —to the first

discoverer of every exception-causing input.

It should be emphasized that the similarity in appearance between the

random nature of the rare occurrence of the exception and the random nature

of the rare occurrence of an incorrectly rounded result in Gal’s type routine is

misleading. In Gal’s approach there is no indication as to which of the

outputs is correctly rounded and which is not. There is only a general

knowledge that the percentage of incorrectly rounded results is small. In the

exception approach, on the other hand, outputs, which are given with no

exception signaled, are guaranteed to be correctly rounded. An exception is

usually impossible, and even with routines for which it is theoretically

possible, it is extremely rare and can easily be detected.

The discussion above raises a few questions:

(1) Is there a simple way to program PROC, for large values of i?

(2) Will the resulting routines really be as fast as one would like them to be?

(3) What about other factors of importance: size of storage needed, number of

lines of program code needed, technical difficulties in imbedding such

routines in existing software (e. g., compilers), etc.

The first two questions are discussed in Section 3. The last one will

probably have to wait until a sufficiently large number of routines of this

type exist (it does not seem to pose serious problems, though).

3. IMPLEMENTATION PROBLEMS AND THEIR SOLUTIONS

Two issues are discussed in this section:

(1) making an ultimate subroutine fast;

(2) implementation of the infinite sequence of algorithms PROC, by a finite

code of a reasonable size.

Assume that the subroutine is invoked many times, the way it is done in

benchmarks. The average CPU time required per one value of x is

–tl+(l– p1)t2+(l–pl–p2)t3 +“””.—
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If one is able to produce a situation in which each of the terms clf the last

series is much smaller than its predecessor, one will have approximately

~ = tl. The practical meaning of this observation is that PROCI must be as

fast as possible and that pl must be as close as possible to 1. If one succeeds

in achieving a value of pl that is sufficiently close to 1, one wins great

freedom in the programmirlg of PROC,, i = 2,3,. ..: Up to quite a high

limit, their CPU time requirements have almost no effect on the value of i.

The value of pl is close to 1 if :1 is small. This is because the smaller El is,

the larger the chances are that the condition I YI – J( Yl) I > c1 is satisfied.

And this is exactly the condition for i(%) to equal 1.

In fact, if one achieves a value close to 1 for PI, the mechanism of infinitely

many PROCS becomes only a safeguard against the rare possibility that the

algorithm will not terminate at the end of the execution of PROCI. Because

this mechanism is activated very rarely, the size of its CPU time require-

ments is of minor importance.

One might fear that, since i is the sum of an infinite series, its value might

be infinite even if the sum of the few first terms is not large. This is not the

case, though. The reason is that the sequence t~ rises much slower than the

sequence (1 – X~l ~pL)- 1. The complexity of computation of an elementary

mathematical function with unbounded precision was investigated by Brent

[4]. From his results it is cleaw that if k~, the number of digits of the mantissa

in the floating-point arithmetic used to compute the function, rises linearly

with j, then tj rises in a polynomial rate (somewhat faster then k; if the

arithmetic is programmed in the simplest possible way and even slower if an

effort is made to make the arithmetic faster).

On the other hand, probabilistic arguments of the type discussed in Section

4 indicate that (1 – ~{~ ~p,) -1 rises at an exponential rate (somewhat slower

than r ~~, where r is the radix of the arithmetic).

As a result, the series for t behaves much like a geometrical progression

with a very small ratio. Actually the main difficulty in achieving low,

average CPU time requirements lies in the production of a good PROCI.

Since the CPU time requirements of PROCI are crucial for the perform-

ance of the complete algorithm, it must be implemented in an especially fast

method which is principally different from the one in which PROC,, with

i =2,3,..., is implemented. As was previously described, Gal’s method

seems to be appropriate for this purpose. A preliminary, careful, and rigorous

analytical error analysis of PROCI, which produces an appropriate small

value for El, is essential to the success of the implementation (see [13, 15916,

181 for techniques of rigorous a priori error analysis).

PROCI may be considerably simplified if an appropriate hardware support

exists. Thus, if a fast floating-point arithmetic, somewhat more precise than

the target precision (15 additional bits, say), is available, then the task of

designing PROCI is made much easier. The use of a carefully designed

algorithm like Gal’s and thle relatively large tables it uses are then not

necessary. One can even imagine a special elementary function coprocessor
which uses somewhat higher precision arithmetic internally to produce a

longer precision elementary function output for which an a priori error bound
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is known. This will make the implementation of PROCI almost trivial. It

seems that such hardware support is likely in the near future to exist on, at

most, a limited number of systems, and even then not for all precision of

interest. Appropriate hardware support, though, seems to provide a promis-

ing solution for the future.

PROCZ, i =2,3,..., can be implemented in the following way: A small

package of programmed floating-point arithmetic is made available in which

the radix as well as the number of digits of the mantissa are easily control-

lable variables. It should be such that bounds for the roundoff errors pro-

duced by its operators are known so that numerical algorithms which use it

can be rigorously analyzed a priori for bounds of the accumulated roundoff

errors. A set of routines for the basic arithmetic operations and a small

number of auxiliary routines, such as format conversion and size comparison,

are sufficient.

The published literature includes many examples of packages of multiple

precision subroutines. Brent [2, 31, Hill [81, Wyatt et al. [17] are just a few.

Such packages usually include many routines, only a small number of which

are necessary here. The papers mentioned, however, as well as others, pay

little attention to rigorous error bounds, which are a necessity in our case.

Applying the package, one can program PROC,, i = 2,3, . . . . using some

algorithm with potentially unbounded precision (Taylor expansion-based, for

instance). Brent [41 describes a number of such algorithms. Unfortunately he

does not discuss roundoff errors. Perhaps a better example of the necessary

type of an algorithm is the one discussed by Clenshaw and Olver [51 (see also

[14]). Clenshaw and Olver go into a detailed theoretical discussion of the

tuning of their algorithm to make it optimally fast. For our purposes such a

tuning is necessary only for the first few PROCS, and this can be efficiently

achieved by inspection and experimentation. A significant theoretical effort

is unnecessary.

It may happen, depending on the details of the implementation, that a

PROCZ which was programmed in this way will not be sufficiently fast to

make its contribution small enough for the average CPU time requirements

of the routine. For this reason an effort to find ways to reduce the contribu-

tion of PROCZ to the average CPU time requirements is worthwhile.

An obvious method would be to program PROCZ by an ordinary, fast

algorithm of a precision sufficiently higher than the precision of the output of

the routine. For example, a double-precision EXP ultimate routine may use

an ordinary fast, extended precision EXP algorithm for PROCZ. Such a

solution, however, is problematic in cases where the precision of the output of

the ultimate routine is the highest for which floating-point hardware support

exists.

Another way would be to reduce the percentage of cases in which the

activation of PROCZ is needed. PROCI, from the example of an EXP routine

described in Section 5.1, is designed by a new method that makes it possible

to reduce the percentage of cases in which PROCZ is activated to a signifi-

cantly lower level than Gal’s method.
To summarize the discussion in the section: It is possible to implement
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ultimate elementary function routine packages which are almost as fast as

routines designed by Gal’s method (and Gal’s is one of the fastest methods

known).

4. ESTIMATIONS BASED ON A PROBABILISTIC MODEL

A basic assumption on which Gal [6] and Gal and Bachelis [7] rely is that bits

of low significance of value of elementary functions behave as if they were

independent, binary, random variables, taking the values 1 and O with equal

probability. In this section a similar probabilistic model is used in order to

draw conclusions regarding the probabilities of some events of interest re-

lated to the performance of routines of the type discussed here.

All of the estimates below follow from the relation:

Probability of{l Y, – J( Y,) I < E,} = 2 x SZ/ulp( Y,),

This relation is an immediate consequence of the Uniformity assumption: The

ratio (Y, – J( Y,))/ ulp( Y,) is a random variable which is uniformly dis-

tributed in the interval [– ~, ~].

One should realize that Y, is a discrete variable. So this uniformity

assumption cannot possibly be exactly true. What is claimed, though, is that

it is approximately true to the extent that the abovementioned p~obability

estimation is sufficiently realistic for our purposes.

This uniformity assumption is not equivalent to Gal’s assumption, which is

more closely related to the slightly different assumption, as follows:

The ratio (y – J(y))/ ulp( y) is a random variable which is uniformly

distributed in the interval [ -- ~, $].

Let us now consider, for example, an elementary function routine with its

output being of data format “long” of an IBM S/370, like the EXP routine

described below. If Yz is accurate to 28 hexadecimal digits (like the IBM

S/370 extended precision), then the probability of PROC~ being activated

does not exceed

2 X s2/ulp(Yz) = 2 x 16e(yzJ-28/16’( yzJ-14 s 3 x 1o-17

or, equivalently, the expected fraction of cases in which PROC~ is activated

is less then 3 x 10 – 15 percent.

Suppose, now, that the rou~tine signals an exception in case PROCl~,t does

not terminate the computation and assume that the precision of Yl,,t is of 56

hexadecimal digits. The probability of an exception being signaled, does not

exceed

2 X 16e(y’~’)-5G/16 e(y’=’)-14 = 2 X 16-42 = 5 X 10-51.

In order to make the meaning of this extremely small probability more

intuitively clear, assume that the routine is run nonstop for n years on a

computer that is dedicated for this purpose and that invokes the routine

repeatedly in 1 ~s (10 – G s) time intervals. The probability that no exception
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will occur, even once, during these n years is

(1 -2 X 16-42)
365x24 x60x60 x106xn

>l– 2X16-42X365X24X 60x60 x10Gxn

=1 – 1.7 x 10-37 x n.

The total number of normalized floating-point “long” IBM S/370 numbers

is 256 x 15 x 1613 = 1.7 x 10 lg. Hence the expected number of inputs which

cause an exception is no more than 1.7 x 1019 x 5 x 10-51 = 8.5 x 10-32.

This means, of course, that the set of exception-causing inputs is most likely

to be empty, or, in bad cases, will include very few possible input numbers.

The use made in this section of the uniformity assumption is quite ex-

treme, so the conclusions should be considered with care. There is no doubt,

however, that they give a realistic indication of the situation.

Note. The validity of the uniformity assumption must be carefully exam-

ined near points where the mantissa of y is extremely insensitive to small

changes in the mantissa of x (e. g., near x = O, for the exponential function).

5. EXAMPLE OF AN ULTIMATE EXP ROUTINE

The description below is not meant to give full detailed structure of a

working algorithm. Details are given only as long as they are necessary in

order to clarify the main points.

5.1 PROC1 for exp(x)

The exp(.) routine described below is a modification of an exp(.) routine

designed by Gal and Bachelis [7], to which the test, mentioned in Step 3 of

the algorithm (see Section 2), is added. The tables used by the algorithm are

constructed in a new way which has two advantages: Their preparation is

simple and straightforward, and they are so constructed that two consecutive

range reductions (and possibly more) can be performed with them. This

enables one to achieve a higher degree of range reduction using tables

similar in size to Gal’s. Such a higher degree of range reduction makes it

easier to achieve a value of pl which is closer to 1 (see discussion in Section

3). The method by which the routine works is referred to as the repeated

reduction method.

The algorithm is designed for IBM S/370 architecture. The data formats of

both the input and output are long, that is, both are 8-byte, floating-point
numbers with radix 16, a fraction of 14 hexadecimal digits, and an exponent

between – 64 and 63. The routine’s rounding rule is “round toward O.”

The first stage of the algorithm includes three consecutive range reduc-

tions (as opposed to two in Gal and Bachelis), each of which significantly

reduces the possible size of I x I:

1. xl=x–nln2

2.X2=X1–U;

3. X3 = X2 – u;.
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The integer n is so chosen that – ~ in 2< xl <$ in 2. During the execution

of the algorithm, u;, u; are extracted from fixed tables that are kept in
I _ 1 + ~;, ~Z = ~lz + Wlz (the reason for expressing ul, u? in twomemory: u, – U,

pieces each is the need f~r increased accuracy of their values).

The table { u:} “covers” ithe interval ( – j in 2, ~ in 2) with more or less

equally spaced numbers: u; = iA1.

Given xl, i is chosen so that – ~~ 1< X2 < ~~ 1, where ~ 1 is slightly

larger than Al.

The table { u;) covers the interval (– $x 1, ~~ 1) with more or less equally

spaced numbers: u; = jA2.
Given X2, j is chosen so that – ~~z < X3 < ~~z, where ~z is slightly larger

than AZ.

Together with the four tables {u;}, { w}}, { u;}, { w:}, two additional tables

are kept, { y:}, { y~z}, where Y$ = exp(u~), y~2 = exp(u~).

The special property of the tables, in which they differ from Gal’s, is that

the points u:, u: are so chosen that the table entries y}, y~z have very short

mantissas.

To prepare such tables, construct triplets (u, w, y) such that y = exp(v + w),

the value of u + w is approximately known, and y is expressible exactly by a

floating-point number whose mantissa is of a prescribed short length. This

may be done as follows, starting from the known approximation of u + w:

Compute the exponential of the approximation u + w, round the result to

the required number of bits, assign the outcome toy, compute logy to a

sufficiently high precision (a good, standard, extended precision routine

will do), cut the mantissa of the result into two pieces, and assign the more

significant piece to u and the less significant piece to w.

Obviously,

exp(x) = z + z x (exp(x3) – 1),

where z = 2 n x y: x y~2. Since z is the product of floating-point numbers

with very short mantissa, it is a machine number and can be computed

exactly, with no roundoff errors at all.

The expression exp( X3) – 1 is computed by an approximation polynomial

P(.) which is sufficiently accurate in the interval (– 2A1–2, *X2).

In addition to the six tables { v~}, { w;}, { y:}, { v~}, { w~}, { y:}, one should

prepare and keep in memory six constants: LN1, LN2, LN3, 61, 62, E. They

satisfy approximately (in the sense of relative error) the following:

LN1 = ln2, LN2 = LN1 -- ln2, LN3 = l/ln2, 61 = l/Al, 6Z = l/A2.

The last three hexadecimal digits of LN1 must be zero in order to ensure

that the product n x LN1 is always an exact machine number. E is an error

estimate produced by error analysis of the algorithm. It satisfies

Iexp(x) - (z+c)I <.x ulp(Y)

where exp( x) is exact, c is the approximation computed for z x (exp( x 3, – 1),

(z + c) denotes the exact sum of z and c, and Y = round( z + c).
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Other constants computed in advance include the coefficients of the mini-

max polynomial P(.).

The values xl, X2, obtained from x by first and second reductions, are

expressed as sums of two variables each: xl = al + bl, X2 = a2 + b2.

We denote by IN?’(A) the integer closest to the real number A. Here is a

complete scheme of PROCI for exp( x):

1. Compute n: n = IIW’(x X LIV3).

2. Compute X1 = al + bl: al=x–nx LNl, bl=nx LN2.

3. Compute i: i = lNT(al x 61).

4. Load u:, w:, y: from tables.

5. Compute X2 = a2 + b2: a2 = al – v:, b2 = bl – wt.

6. Compute j j = HW’(a2 x 62).

7. Load v;, w;, y; from tables.

8. Compute X3: X3 = (a’ - u;) + (b2 - w:).

9. Compute an approximation P( X3) to exp( X3) – 1.

10. Compute z: z = 2n X y: X y:.

11. Compute c: c = z x P(x3).

12. Compute Y: Y = r-owzd( z + c) (round(.) denotes round toward O).

13. Check for termination of the algorithm: Let do = (z + c – Y)/ ulp( Y),
d = min {do, 1 – do}, where, ulp(Y) = 16e(y)-14.

If d > e, let Y be the final result and return.

Else, transfer control to PROC2.

5.1.1 Remarks Related to Accuracy. Some of the intermediate results of

the algorithm are decomposed into sums of two terms: a major one and a

minor one. An example is x’ = a2 + b2. The major part of such a number

must be computed with absolute accuracy. The computation of the minor

part, on the other hand, may involve some roundoff errors.

The following two useful theoretical results speci& cases where error-free

subtraction is possible within a given set of floating-point numbers. This

possibility is realized only if the computer arithmetic provides the exact

outcome of an operation whenever this exact outcome is within the set of

machine numbers.

The machine arithmetic of IBM S/370, which is relevant to the present

example, as well as that of any arithmetic with a strictly less than one ulp

rounding error rule (e. g., any of the rounding rules of the IEEE Standards

[10, 11]) do provide this exact outcome, and therefore the results below are

relevant for them.

(1) If CY,~ are two floating-point numbers of like signs that satisfy O < I a I s

I D \ ~ I a I + r’(a), then a e 6 = a – & provided no underflow occurs.

(2) If a, fl are two floating-point numbers that satisfy ~s a/p s 2, then

a e b = a — /3, provided no underflow occurs.

Apparently the first of these results has not been published yet, in this

general form. Its proof is simple and will be published elsewhere. The second

result follows from the first. Its formulation, as well as a proof for the case of

FP(r, p, clq), appears in Sterbenz [15, Sec. 4.3]. Both are true for any
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integral radix. They might be useful in performing a few of the steps of the

algorithm, including in particular the reduction steps.

5.2 The higher PROCS for exp( x)

The basis is an algorithm of Clenshaw and Olver [5] (see also [14]).

Denote

Ixl =2mxt, fo=l+t/l/ +t’/21+-.. n! ’/n!.

m, n should be chosen to be large enough so that f. is a sufficiently good

approximation of exp( t). From ~0, an approximation F to exp( x) can be

produced by recursion:

~+,=fixfi, j= 0,1, . . ..1. l,

With F = either fm or 1/fin, depending on the sign of x.

With a package of programmed floating-point arithmetic at hand, such as

described in Section 3, it is possible to implement Clenshaw and Olver’s

algorithm. First, the free parameters of the algorithm, m, n, and those of the

floating-point arithmetic, radix r, and the number of digits in the mantissa,

k, must be chosen. Then the implementation of the algorithm is straightfor-

ward. In addition, an errolr estimate EL based on a theoretical, rigorous

analysis must be prepared and used to perform the final test.

A possible scheme for PROC,, i = 2,3,. ... is as follows.

1. Set i = 2.

2. Choose m, n, r, k, c, (depending on the value of i).

3. Compute t= 2-m x x.

4. Compute fo: a. = l,a~_l= l+(txa~)/j, j=n, n–l, . . ..l. fO=aO.

5. Compute f~:~+l=fi>(~, j=0, 1,. ... rl -l.

6. Set Y, = f~.

7. Perform the final test: If I Y, – J( Y,) I > EL, convert Y, into a REAL*8 number
(round toward O, if necessary), set Y to this number, and return.

Else, set i = i + 1 and go back to Step 2.

6. NOTATION

Included in this section are definitions and notation used throughout the

paper. It is assumed that the real valued function f(x) is to be evaluated, for

some given value of x, by an ultimate routine. x may be scalar, vector, real,

complex, or anything else, and of any precision.

e(q), m(q) The exponent and mantissa of the normalized

floating-point number q = r e(q) x ~(q). e(q) is an

integer and l/r < I m(q) I < 1.

i(x) The index i of the last PROC activated in the

prc~cess of evaluation of y = f(x).

J(q) The jump point of the step function round(.) which

is nearest to q.
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m(q)

P,

PROC, (i=l,2, ...)

r

round(q)

t

t,

Ulp(q)

Y

Y

Y,

E,

e

See e(q).

Probability of the event i(x) = i.

An infinite sequence of procedures, of increasing

precision, to evaluate f( x).

Radix of the floating-point data format of the output

of the routine.

The correctly rounded value of q. It is a t-digit,

normalized, floating-point number and may be de-

fined according to any of the principal, simple,

rounding rules (round to nearest, round toward O,

etc.).

The number of digits in base r of the output of the

routine.

CPU time required in order to execute PROC,.

Unit in the last place of q, that is, ulp( q) = r ‘(’)-’.

The exact value of ~(x).

Output of a routine which is meant to compute y. It

is a t-digit, normalized, floating-point number.

The approximation to y produced by PROCZ.

An error bound for Y, produced by a theoretical

error analysis of PROC,. It satisfies I Y, – y I < Et.

The approximate machine “minus.” It is assumed

that its operands and its output are all of the same

precision.
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