
34 July/August 2006 ACM QUEUE rants: feedback@acmqueue.com

The Future
of HCIFO

CU
S

Social
Perception
Modeling human interaction for the next generation

of communication services

JAMES L. CROWLEY
INRIA RHÔNE-ALPES

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1147518.1147531&domain=pdf&date_stamp=2006-07-01

ACM QUEUE July/August 2006 35 more queue: www.acmqueue.com

A SCENARIO: BOB RUNS A MEETING
Bob manages a team that designs and builds widgets. Life
would be sweet, except that Bob’s team is distributed over
three sites, located in three different time zones. Bob used
to collect lots of frequent flyer miles traveling to attend
meetings. Lately, however, business travel has evolved
into a humanly degrading, wasteful ordeal. So Bob has
invested in a high-bandwidth video communications
system to cut down on business travel. Counting direct
costs, the system was supposed to pay for itself within
three months. There is a problem, however.

Bob’s videoconferencing system brings together the
views from up to 16 cameras to form a four-by-four
mosaic of images that can be displayed by up to 16 video
channels. The cameras are static, so meeting participants
have to position themselves in the center of an image.
Naturally, people are not careful, so often just a part
of a face appears on the edge of an image. One of the
cameras at each site is aimed at a whiteboard, but it is
never clear which whiteboard is where. Other cameras
present overhead views of individual sketchpads on
which participants can draw, but it is never clear who
is doing the drawing, or whether they are illustrating a
point or simply making notes for themselves. The audio
is a composition of up to 16 microphones, all transmit-
ting at the same time. The first half of most meetings is
spent “fooling around with the system.” Conversations
are frequently interrupted by statements such as “Hold on
while I adjust the camera to show you.” When you factor
in the loss in productivity, the system is not likely to pay
for itself this year.

36 July/August 2006 ACM QUEUE rants: feedback@acmqueue.com

INFORMATION TECHNOLOGY IS AUTISTIC
Continued exponential decline in the cost of both com-
munications and information technology would seem to
enable a large and diverse array of services for enhancing
human-to-human interaction. Examples of such services
include:
• Automated camera control for videoconferencing
• Communication tools for collaborative work
• Automated meeting recording
• Tools for automated recording of team sports
• Tools for managing communications to protect privacy

and avoid disruption
• Tools for organizing and conducting meetings

This is an open-ended set, limited only by our abil-
ity to imagine. Unfortunately, despite the presence of
enabling communications technology, none of these ser-
vices has entered a virtuous spiral of exponential growth.

The use of information technology to enhance
human-to-human interaction is currently impractical
because of the problem of disruption. Information and
communication technologies are autistic. They have no
sense of the social roles played by interacting humans,
no abilities to predict appropriate or inappropriate service
actions, and no sensitivity to the disruption to activity
caused by inappropriate service behavior. Disruption ren-
ders information and communications services impracti-
cal for many applications.

WHAT BOB WANTS: SITUATION-AWARE
MEETING TOOLS
When he bought his system, Bob imagined that he was
buying a tool that would know when to switch among
the cameras and microphones to present the video image
and sound of the current speaker. He expected that the
image would be perfectly centered on the face of each
speaker, and could be switched effortlessly between a
view of the whiteboard, a view of a drawing pad, and
the view of a group when several people were speaking
at once. He even imagined that he could use the video
record as minutes of the meeting.

Unfortunately, such automatic recording of audio and
video requires an understanding of the roles played by
participants in a meeting. For example, the meeting mod-

erator assures that the meeting follows the agenda and
stays focused on the meeting’s objectives. When the mod-
erator interrupts a speaker, it is important that partici-
pants turn their attention to the moderator, even if others
are speaking at the same time. The moderator gives the
floor to participants so that they may express information
to the others. The person in possession of the “floor” is
the speaker who should be presented to the others. When
he or she speaks directly to the meeting, other partici-
pants should see his or her face. When the speaker turns
his or her attention to the whiteboard or a sketchpad,
participants should see the sketchpad. When the speaker
is interrupted by a question, then participants should see
both the speaker’s view and that of the questioner. When
two listeners who do not have the floor exchange small
comments, the system should not disrupt the meeting
by transmitting their aside to all the other participants.
When properly functioning, the system should automati-
cally compose a sequence of video shots that can serve as
an audiovisual “record” of the meeting. Off-line speech
recognition could even be used to label these shots by
topic so that they can be individually recalled without
scrolling through the entire meeting record. All of this
should happen without any thought or intervention by
the meeting participants.

To give Bob his dream system and to save his company
money, Bob’s videoconferencing system needs to under-
stand what is going on during a meeting. Such under-
standing is called situation awareness. This article proposes
a conceptual framework and a software model for
situation-aware observation of human activity. The core
component of our framework developed at INRIA (French
National Institute for Research in Computer Science and
Control) Rhône-Alpes is a situation model, which acts as
a nonlinear script for interpreting the current actions of
humans and predicting the corresponding appropriate
and inappropriate actions for services. This framework
organizes the observation of interaction using a hierarchy
of concepts: scenario, situation, role, action, and entity.

The following section outlines the conceptual frame-
work for this theory. This is followed by a proposal for a
layered architecture for nondisruptive services. Within
this layer we present a component-based architectural
model that uses concepts from autonomic computing
to provide observation of human activity that robustly
adapts to changes in the environment.

SITUATED OBSERVATION OF HUMAN ACTIVITY
Most human societies have developed and refined an art
form for describing human action and social interaction:

The Future
of HCIFO

CU
S

Social
Perception

ACM QUEUE July/August 2006 37 more queue: www.acmqueue.com

the theater. Theater can be used as a rich source of con-
cepts for socially aware observation of human activity.

A theatrical production provides a model for social
interaction in the form of a script. The production orga-
nizes the actions of a set of actors in terms of roles, struc-
tured as a series of scenes composed, in turn, of a series of
situations. A role is more than a set of lines. A role defines
a space of allowed actions, including dialog, movement,
and emotional expressions. The audience understands the
production by recognizing the roles using social stereo-
types and relating these to individual social experiences.

In a similar manner, everyday human actions and
interactions can be observed and described in terms of
situations in which individuals play roles. Depending
on the activity, actions and interactions may be more or
less constrained and limited by implicit compliance with
a shared script. Deviating from the script is considered
impolite and can often provoke conflict or even termi-
nate the interaction. Some activities, such as classroom
teaching, formal meetings, shopping, or dining at a
restaurant, follow highly structured scripts that constrain
individual actions to highly predictable sequences. Other
human activities occur in the absence of well-defined
scripts and are thus less predictable. We propose that
when a stereotypical social script does exist, it can be
used to structure observation and guide the behavior of
services to avoid disruption.

One important difference exists between theater and
life. A theater script is composed of a fixed sequence
of situations. Real life is much less constrained. For
many activities, situations form a network rather than
a sequence and may often exhibit loops and nondeter-
ministic branching. The complexity and difficulty of
observing human activity are related to the degree of
interconnectivity of situations.

CONCEPTUAL FRAMEWORK FOR OBSERVING ACTIVITY
Translating theatrical concepts into software requires for-
mal expression. To be meaningful, this formal expression
must ultimately be grounded in procedures and actions
for real systems. In this section we propose a hierarchy
of definitions for concepts for observing human activ-
ity, sometimes called a context model.1 Context is a highly
overloaded term, however, meaning different things to
different people. To avoid confusion, this article refers to
models for observing activity as scenarios.

In common use, situation derives its meaning from
the way in which something is placed in relation to its
surroundings—for example, in terms of position and
action. In our case, the definition of situation requires

two aspects: perception and action. Perception refers to
the ability to sense and recognize situation; action refers
to the way in which the system reacts to the current
situation. Bob’s ideal videoconferencing system would
interpret the signals from cameras and microphones to
determine who is playing the role of moderator and who
is currently speaking or asking a question, then would
use this information to switch between possible views of
participants.

A situation is a form of state. Situation represents
the state of the activity as defined by relations between
the actors playing roles. Changes in the situation trig-
ger actions by the system, such as changing the current
camera or microphone or enabling face-tracking to keep
a camera centered on a meeting participant. When a

Glossary

Context: The situation within which something exists
or happens and that can help explain it;1 any informa-
tion that can be used to characterize situation.
Scenario: A description of possible actions or events in
the future; a written plan for the characters and events
in a play or movie;1 a network of situations for modeling
human activity expressed in terms of relations between
entities playing roles.2

Situation: The set of things that are happening and
the conditions that exist at a particular time and place;1
a predicate expression of a set of relations over entities
assigned to roles.3

Relation: A predicate test on properties of one or more
of the entities playing roles.
Role: A function that selects an entity from the set of
observed entities.
Actor: A role for entities that can spontaneously act to
change the current situation.
Prop: A role for entities that cannot spontaneously act
to change the current situation.

1. Cambridge online dictionary of the English Language;
http://dictionary.cambridge.org.

2. Coutaz, J., Crowley, J. L., Dobson, S., Garlan, D. 2005.
Context is key. Communications of the ACM (Special
issue on the Disappearing Computer) 48(3): 49-53.

3. Brdiczka, O., Maisonnasse, J., Reignier, P. 2005. Auto-
matic detection of interaction groups. International
Conference on Multimodal Interaction (ICMI ’05),
Trento, Italy (October).

38 July/August 2006 ACM QUEUE rants: feedback@acmqueue.com

speaker in Bob’s system points out information on a pro-
jected slide, the system should switch from presenting the
speaker to presenting the slide.

Relations are truth functions (predicates) with one
or more arguments. The truth of a relation depends on
properties that may be observed by a machine perception
system. Unary relations apply a test to some property
or set of properties of an individual entity. Binary and
higher-order relations test relative values of properties of
more than one entity. Examples would include spatial
and temporal relations (in front of, beside, higher than,
etc.), or other perceived properties (lighter, greener, big-
ger, etc.). Relations test the properties of entities that have
been assigned to roles.

A role is an abstract generalization for a class of enti-
ties. Role classes are typically defined based on the set of
actions that entities in the class can take (actors) or can
enable (props). A role is not an intrinsic property of an
entity, but rather an interpretation the system assigns to
an entity. So how can the role assignment process select
among the available entities? Some have proposed to
view this process as a filter.2 In this view, a filter acts as
a kind of sorting function for the suitability of entities
based on their properties. The most suitable entity wins
the role assignment.

The lowest-level concepts in this framework are entity
and property. A property refers to any value that can be
observed, or inferred from observations. An entity is a
correlated collection of properties. This solipsistic view-
point admits that the system can see only what it knows
how to see. At the same time, it sidesteps existential
dilemmas related to how to define notions of object and
class. In this view, a chair is anything that can be used as
a chair, regardless of its apparent form. More formal defi-
nitions for these two concepts are rooted in the software
architectural model described later. Operational defini-
tions for property and entity are grounded in the software
components for observation of activity.

A SOFTWARE ARCHITECTURE FOR OBSERVING ACTIVITY
We have constructed several examples of situation-aware
systems that provide information and communication
services for human-to-human interaction. Our systems

use a layered architectural model, as shown in figure 1.
At the lowest layer, the service’s view of the world is pro-
vided by a collection of physical sensors and actuators.
This corresponds to the sensor-actuator layer. This layer
depends on the technology and encapsulates the diversity
of sensors and actuators by which the system interacts
with the world. Information at this layer is expressed in
terms of sensor signals and device commands.

Hard-wiring the interconnection between sensor sig-
nals and actuators is possible and can provide simplistic
services that are hardware-dependent and have limited
utility. Separating services from their underlying hard-
ware requires that the sensor-actuator layer provide logi-
cal interfaces, or standard APIs, that are function-centered
and device-independent. Hardware independence and
generality require abstractions for perception and action.

Perception and action operate at a higher level of
abstraction than sensors and actuators. While sensors
and actuators operate on device-specific signals, percep-
tion and action operate in terms of environmental state.
Perception interprets sensor signals by recognizing and
observing entities. Abstract tasks are expressed in terms of
a desired result rather than actions to be blindly executed.

For most human activities, there are a potentially
infinite number of entities that could be observed and
an infinite number of possible relations for any set of
entities. The appropriate entities and relations must be
determined with respect to the service to be provided.
This is the role of the situation model, as described in the
previous section. The situation model allows the system
to focus perceptual attention and computing resources in

The Future
of HCIFO

CU
S

Layered Model for Situation-Aware User Services

services

federation

component

module

situation model

perception and action

sensors and actuators

FIG 1

Social
Perception

ACM QUEUE July/August 2006 39 more queue: www.acmqueue.com

order to associate the current state of the activity with the
appropriate system action.

Services specify a scenario composed of a situation
model, as just described. The scenario determines the
appropriate entities, roles, and relations to observe, acting
in a top-down manner to launch (or recruit) and to con-
figure a set of components in the perception-action layer.
Once configured, the situation model acts as a bottom-up
filter for events and data from perceptual components to
the service.

THE PERCEPTION-ACTION LAYER
At the perception-action layer, we propose a data-flow
process architecture for software components for percep-
tion and action.3,4,5 Component-based architectures con-
sist of auto-descriptive functional components joined by
connectors.6 Such architecture is well adapted to interop-
erability of components and thus provides a framework
by which multiple partners can explore design of specific
components without rebuilding the entire system.

Within the perception-action layer, we propose three
distinct sub-layers, as shown in figure 1: modules, com-
ponents, and federations. The components within each
layer are defined in terms of the components in the layer
below. Each layer provides the appropriate set of com-
munications protocol and configuration primitives. The
following describes the components within each layer.

MODULES
Modules are auto-descriptive components formally
defined as synchronous transformations applied to a
certain class of data or event, as illustrated in figure 2.
Modules generally have no state. They are executed by
a call to a method (or function or subroutine), accom-
panied by a vector of parameters that specifies the data
to be processed and describes how the transform is to be
applied. Output is also generally accomplished by writing
to a stream or by posting events to other modules or an
event dispatcher.

Modules return a result that includes a report of the
results of processing. Examples of information contained
in this report include elapsed execution time, confidence
in the result, and any exceptions that were encountered.

An example of a module is a procedure that transforms
RGB color pixels into a scalar value at each pixel that rep-
resents the probability that the pixel belongs to a target
region. Such a transformation may be defined using a
lookup table representing a ratio of color histograms.7 A
common use for such a module is to detect skin-colored
pixels within regions of an image, as shown in figure 3.

Such a module can be used to find faces in Bob’s system
in order to steer the camera to keep each face centered in
the image.

SOFTWARE COMPONENTS FOR
PERCEPTION AND ACTION
The second layer in the architecture concerns percep-
tion and action components, autonomous assemblies of
modules executed in a cyclic manner by a component
supervisor. Components communicate via synchronous
data streams and asynchronous events to provide soft-
ware services for action or perception.

As shown in figure 4, the component supervisor inter-
prets commands and parameters, supervises the execu-
tion of the transformation, and responds to queries with
a description of the current state and capabilities of the
component. The auto-critical report from modules allows
a component supervisor to monitor the execution time
and to adapt the schedule of modules for the next cycle
so as to maintain a specified quality of service, such as
execution time or number of targets tracked. Such moni-
toring can be used, for example, to reduce the resolution

Modules Transform Data and Events

module
events
data

events
data

auto-critical
report

FIG 2
 Module for Detecting Skin Pixels

skin color detectioncolor
image

skin
probability

ROI
look up
table

skin
detected?

FIG 3

40 July/August 2006 ACM QUEUE rants: feedback@acmqueue.com

of processing by selecting one pixel of N8 or to selectively
delete targets judged to be uninteresting.

A simple example of a perceptual component is shown
in figure 5. This component takes in color images and
produces the current position of a skin blob. The super-
visory controller, labeled “skin blob tracker,” invokes and
coordinates observational processes for skin detection,
pixel moment grouping, and tracking. This federation
provides the transformation component for a composite
observation process. The skin region tracker provides the
supervisory control for this federation.

A MODEL FOR PERCEPTUAL COMPONENTS.
A general architectural model (programming pattern)
for robust perceptual components is shown in figure 6.
Components constructed with this model implement
a recursive estimation
process to track entities.
A well-known framework
for such estimation is the
Kalman filter. An early
version of this architecture
used for tracking faces was
described in “Multi-modal
tracking of faces for video
communications,” deliv-
ered in June 1997 at CVPR
’97 (Computer Vision and
Pattern Recognition).9

Tracking is classi-
cally composed of three
phases: predict, detect, and
estimate. The prediction
phase projects the previ-
ously estimated attributes
for each of a set of targets
to a predicted value for the
current time. The pre-
dicted target state is used
by a detection process to
interpret the current data
to locate each target. The
estimation phase updates

the properties for tracked targets and edits the list to
account for new and lost targets.

In the model in figure 6, these three classical tracking
phases are completed by a recognition phase, an auto-
regulation phase, and a communication phase. In the
recognition phase, the component executes recognition
procedures to interpret the individual entity or groups
of entities. Recognition procedures are interpreted by a
lightweight language interpreter for the Lisp-like language
Scheme.10 In our implementation, such procedures may
be preprogrammed, or they may be downloaded to the
component during configuration as snippets of code.

In addition to recognition, the supervisory component
provides execution scheduling, self-monitoring, param-
eter regulation, and communications. The supervisor also
acts as a scheduler, invoking execution of modules in a
synchronous manner. For self-monitoring, a component
applies a model of its own behavior to estimate both
quality of service and confidence for its outputs. Monitor-
ing allows a process to detect and adapt to degradations
in performance resulting from changing operating condi-
tions. It does so by reconfiguring its component modules
and operating parameters. Monitoring also enables a

The Future
of HCIFO

CU
S

Perceptual Component Built from a Set of Modules

module
1

module
2

module
3

component supervisor

Perceptual Component for Observing Skin-Colored Entities

skin
detection

moment
estimation

robust
tracking

skin-blob tracker

FIG 4

FIG 5

Social
Perception

ACM QUEUE July/August 2006 41 more queue: www.acmqueue.com

process to provide a symbolic description of its capabili-
ties and state.

Homeostasis, or “autonomic regulation of internal
state,” is a fundamental property for robust operation in
an uncontrolled environment. A component is auto-
regulated when processing is monitored and controlled
so as to maintain a certain quality of service. The process
supervisor maintains homeostasis by adapting module
parameters to maximize estimated quality of service. For
example, processing time and precision are two impor-
tant state variables for a tracking process. Quality-of-ser-
vice measures such as cycle time, number of targets, or
precision can be maintained by dropping targets based
on a priority assignment or by changing resolution for
processing of some targets.

During the communication phase, the supervisor
may respond to requests from other components. These
requests may ask for descriptions of process state and
process capabilities, or they may provide specifications of
new recognition methods. The supervisor acts as a pro-
grammable interpreter, receiving snippets of code script
that determine the composition and nature of the process
execution cycle and the manner in which the process
reacts to events.

FEDERATIONS OF PERCEPTUAL COMPONENTS
A federation11 is a collection of independent components
that cooperate to perform a task. We have designed a
middleware environment that allows us to dynamically
launch and connect components on different machines.
This environment provides an XML-based interface that

allows components to declare input command messages
and output data structures, as well as current operational
state. Three classes of channels exist for communication
between components: events are asynchronous symbolic
messages that are communicated through a publish-and-
subscribe mechanism provided by the federation supervi-
sor; streams provide serial high-bandwidth data between
two components; requests are asynchronous messages that
ask for the current values of some process variables.

Bob’s ideal videoconferencing system is a good exam-
ple of a user service provided by a federation of percep-
tual components. Figure 7 shows the automatic recording
and communications system that we have constructed
for the European IST (Information Society Technologies)
FAME (Facilitating Agent for Multicultural Communica-
tion) project. Such a system could be used to provide the
automatic audiovisual composition for Bob’s ideal system.
At each site, a federation of components is assembled to
detect information about meeting participants, such as
their position, head orientation, speech events, and arm
movements, as well as changes in a slide that is being
discussed by a speaker. Events from this federation are
filtered through role-assignment components to inform a
situation model about the current configuration of actors
and props. The current situation dictates the selection
and composition of cameras to be transmitted, as well as
the accompanying audio composition.

DEFINING SITUATION MODELS
One of the challenges of specifying a scenario is avoiding
the natural tendency toward complexity. Over a series

image

Architectural Model for Perceptual Components for Entity Detection and Tracking

recognitionupdatevideo
demon

target
detection

target
prediction

recognition
processes

detection
regions

entitiestargets

process supervisor

detection modules
detection modules

detection modules
detection modules

detection modules

FIG 6

42 July/August 2006 ACM QUEUE rants: feedback@acmqueue.com

of experiments, we have evolved a method for defining
scenarios for services based on observing human activ-
ity. Our method is based on two principles and leads to a
design process composed of six phases.

Principle 1: Keep it simple. In real examples, there is
a natural tendency for designers to include entities and
relations in the situation model that are not really rel-
evant to the system task. It is important to define the situ-
ations in terms of a minimal set of relations to prevent
an explosion in the complexity of the system. This is best
obtained by first specifying the system behavior, then for
each action specifying the situations, and for each situa-
tion specifying the entities and relations. Finally for each
entity and relation, we determine the configuration of
perceptual components that may be used.

The idea behind this principle is to start with the
simplest possible network of situations and gradually add
new situations. This leads to avoiding the definition of
perceptual components for unnecessary entities.

Principle 2: Behavior drives design. The idea behind
this principle is to drive the design of the system from
a specification of the actions that the service is to take.
The first step in building a situation model is to specify

the desired service behavior. For ambient informatics,
this corresponds to specifying the set of actions that can
be taken and formally describing the conditions under
which such actions can or should be taken. For each
action, the service designer lists a set of possible situa-
tions, where each situation is a configuration of enti-
ties and relations to be observed in the environment.
Situations form a network, where the arcs correspond to
changes in the roles or relations between the entities that
define the situation. Arcs define the reaction to events.

These two principles are expressed in a design process
composed of six phases.

Phase 1: Map actions to situations. The actions to
be taken by the system provide the means to define a
minimal set of situations to be recognized. The mapping
from actions to situations need not be one-to-one. It is
perfectly reasonable that several situations will lead to
the same action. There can be only one action list for any
situation, however.

Phase 2: Identify the roles and relations required to
define each situation. A situation is defined by a set of
roles and a set of relations between entities playing roles.
A role acts as a kind of variable so that multiple versions
of a situation played by different entities are equivalent.
Determine a minimal set of roles and the required rela-
tions between entities for each situation.

Phase 3: Define filters for roles. Define the properties
that must be true for an entity or agent to be assigned to
a role, and design a similarity measure. Use this to sort
the entities and select the most appropriate for each role.

The Future
of HCIFO

CU
S

Component Federation for Automatic Audiovisual Recording and Communication of Meetings

situation modeling event bus

audience
camera

steerable
camera

camera

camera
audio-visual
compostion

face
detection

speaker
tracker

mic mic projector wide angle
camera

speech
activity

detection

new
slide

detection

new
person

detection

FIG 7

Social
Perception

ACM QUEUE July/August 2006 43 more queue: www.acmqueue.com

Phase 4: Define components for observation. Define
a set of perceptual components to observe the entities
required for the roles and to measure the properties
required for the relations. Define components to assign
entities to roles and to measure the required properties.

Phase 5: Define the events. Changes in situations
generate events. Events may be the result of changes in
the assignment of entities to roles or changes in relations
between the entities that play roles.

Phase 6: Implement, then refine. Given a first defi-
nition, implement the system. Extend the system by
seeking the minimal perceptual information required to
perform new actions appropriately.

A situation graph implements a finite-state machine.
Human behavior is, of course, drawn from an unbounded
set of actions, and therefore can never be entirely pre-
dicted by a finite-state machine. Thus, our model is most
appropriate for tasks in which human behavior is regu-
lated by a well-defined, commonly followed script. The
lecture scenario is such an activity.

CONCLUSIONS
A situation model is a network of situations concerning
a set of roles and relations. Roles are abstract classes for
actors or props. An entity may be interpreted as playing
a role, based on its current properties. Relations between
entities playing roles define situations. This conceptual
framework provides the basis for designing software
services that can offer nondisruptive information and
communication services.

Socially aware observation of activity and interaction
is a key requirement for development of nondisruptive
services. For this to come true, we need methods for
robust observation of activity, as well as methods to auto-
matically learn about activity without imposing disrup-
tions. The framework and techniques described here are
intended as a foundation for such observation. Q

REFERENCES
1. Dey, A. K. 2001. Understanding and using context.

Personal and Ubiquitous Computing 5(1): 4-7.
2. Brdiczka, O., Maisonnasse, J., Reignier, P. 2005. Auto-

matic detection of interaction groups. International
Conference on Multimodal Interaction, Trento, Italy.

3. Finkelstein, A., Kramer, J., Nuseibeh, B., eds. 1994.
Software Process Modeling and Technology. Research
Studies Press, John Wiley and Sons Inc.

4. Rasure, J., Kubica, S. 1994. The Khoros application
development environment. In Experimental Environ-
ments for Computer Vision and Image Processing, ed. H.

Christensen and J. L. Crowley, 1-32. World Scientific
Press.

5. Crowley, J. L. 1995. Integration and control of reac-
tive visual processes. Robotics and Autonomous Systems
15(1).

6. Shaw, M., Garlan, D. 1996. Software Architecture: Per-
spectives on an Emerging Discipline. Prentice Hall.

7. Schwerdt, K., Crowley, J. L. 2000. Robust face track-
ing using color. 4th IEEE International Conference on
Automatic Face and Gesture Recognition, France.

8. Piater, J., Crowley, J. L. 2002. Event-based activity
analysis in live video using a generic object tracker.
Performance Evaluation for Tracking and Surveillance
(PETS-2002), Copenhagen (June).

9. Crowley, J. L., Berard, F. 1997. Multi-modal tracking
of faces for video communications. In Proceedings of
Computer Vision and Pattern Recognition: 640-645.

10. Lux, A. 2003. The Imalab method for vision systems.
International Conference on Vision Systems (ICVS-
03), Graz.

11. Estublier, J., Cunin, P. Y., Belkhatir, N. 1997. Archi-
tectures for Process Support Interoperability (ICSP5),
Chicago.

ACKNOWLEDGMENTS
This work is supported by the EC IST projects, FAME and
IP CHIL, as well as French national project RNTL/ProAct
ContAct. This work has been performed in collaboration
with Joelle Coutaz, Gaetan Rey, Patrick Reignier, Dave
Snowdon, Jean-Luc Meunier, and Alban Caporossi.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JAMES L. CROWLEY directs the GRAVIR laboratory at the
INRIA Rhône-Alpes research center in Montbonnot, France.
He holds the post of professor at the Institut National Poly-
technique de Grenoble (INPG), where he teaches courses
in computer vision, signal processing, pattern recognition,
machine learning, and artificial intelligence at l’ENSIMAG
(Ecole National Superieure d’Informatique et de Mathema-
tiques Appliquées). Over the past 25 years, Crowley has
edited two books and five special issues of journals, and writ-
ten more than 180 articles on computer vision and mobile
robotics. He and his collaborators are developing techniques
for acoustic and visual perception of human activity, with
applications to interactive environments and new forms of
man-machine interaction. He has a Ph.D in electrical engi-
neering from Carnegie Mellon University.
© 2006 ACM 1542-7730/06/0700 $5.00

