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ABSTRACT
Text clustering is most commonly treated as a fully auto-
mated task without user feedback. However, a variety of re-
searchers have explored mixed-initiative clustering methods
which allow a user to interact with and advise the clustering
algorithm. This mixed-initiative approach is especially at-
tractive for text clustering tasks where the user is trying to
organize a corpus of documents into clusters for some par-
ticular purpose (e.g., clustering their email into folders that
reflect various activities in which they are involved). This
paper introduces a new approach to mixed-initiative clus-
tering that handles several natural types of user feedback.
We first introduce a new probabilistic generative model for
text clustering (the SpeClustering model) and show that
it outperforms the commonly used mixture of multinomi-
als clustering model, even when used in fully autonomous
mode with no user input. We then describe how to incor-
porate four distinct types of user feedback into the cluster-
ing algorithm, and provide experimental evidence showing
substantial improvements in text clustering when this user
feedback is incorporated.
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1. INTRODUCTION
We as human beings are quite familiar with clustering

objects into categories based on features of these objects.
For example, a computer user may sort her emails into fold-
ers that are personally meaningful because each one rep-
resents a particular activity she is involved in, or because
they are emails from a particular group of people, etc. For
each folder, or cluster, the user may have in mind a rich
category description, but assigns objects to these categories
based on their surface features (e.g., the words in the email,
or recipients in the header). There are many other exam-
ples: we may informally cluster news stories into categories
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such as sports, politics, etc., or we may easily recognize in
a supermarket what type of products a corridor belongs to.

Computer algorithms for clustering are typically cast as
fully automated, unsupervised learning algorithms; that is,
the algorithm is given only the collection of instances and
the surface features that describe each, without any infor-
mation about the nature of the clusters. Recently, however,
a variety of researchers have studied ways of allowing a user
to provide limited information to improve clustering quality.
One approach is to allow the user to provide cluster labels
for some of the instances, indicating which cluster that in-
stance belongs to. For example, [11][2][8] use labels of this
type to form initial cluster descriptions, which are then re-
fined using both the unlabeled and labeled instances. A
second type of input information consists of pair-wise con-
straints among instances [13]. These constraints may assert
that two documents must belong to the same cluster without
indicating which one it is, or may assert that two documents
must belong to different clusters. Various constraint-based
methods and distance-based methods have been proposed
to use this type of information. See [1] for a short survey on
different approaches and also for an approach to integrat-
ing distance-based and constraint-based approaches into a
probabilistic framework. A third type of additional input
involves background knowledge to enrich the set of features
that describe each instance. For example, [6] enriches their
document representation by using an ontology (WordNet)
as background knowledge. A fourth type of extra informa-
tion, which we are primarily interested in, is information
about the key surface features for a particular class, or clus-
ter. For example, [9] uses a few user-supplied keywords per
class and a class hierarchy to generate preliminary labels to
build an initial text classifier for the class. [10] proposes an
interesting technique in which they ask a user to identify
interesting words among automatically selected representa-
tive words for each class of documents, and then use these
user-identified words to re-train the classifier as in [9].

Researchers working on active learning have also studied
using feedback about key features. For example, [5] converts
a user-recommended feature into a mini-document which is
used to help train an SVM classifier. An altenative approach
to using this information is proposed by [12] who adjust the
SVM weights associated with these key features to a pre-
defined value in binary classification tasks.

We are interested in how to best incorporate user input
into automated clustering algorithms, and more generally
into mixed-initiative clustering approaches that allow the
user and computer to jointly arrive at coherent clusters that



capture the categories of interest to the user. Note this goal
of discovering clusters of interest to the user is somewhat dif-
ferent from the objective optimized in totally unsupervised
clustering algorithms that attempt to maximize some sta-
tistical property of the clusters (such as data likelihood, or
inter-cluster distance). We are specifically interested in how
to incorporate into clustering algorithms the user’s emerg-
ing understanding about a category1, stimulated by seeing
the instances that are clustered together, and by seeing (and
editing) summaries of these emerging clusters. A user’s un-
derstanding about a category may be expressed in a variety
of forms, such as by keywords, important person names,
other types of entities, and relationships among entities. It
may encapsulate a variety of types of information, and it
may be difficult for a user to articulate fully their notion of
the cluster.

The chief contribution of this paper is to introduce a new
probabilistic model for clustering that outperforms standard
unsupervised clustering in our experiments, and that also
can accomodate a variety of types of user feedback to iter-
atively refine the clusters. We present experiments in both
an email clustering domain, and in a second document clus-
tering domain (20 Newsgroups) showing the performance of
this clustering approach.

The research we report here is part of our larger research
effort to build computer algorithms to automatically infer
the key activities, or projects, a user is involved in, given
the contents of their workstation (e.g., their emails, files,
directories, calendar entries, personal contacts lists, etc.).
For example, a user may be involved in activities such as
teaching a particular course, participating in a particular
committee, hanging out with a particular group of friends,
etc. In our previous work[7], we have shown that unsuper-
vised clustering of emails can result in useful descriptions of
user activities, such as the one shown in Figure 1. The work
we report in this paper is motivated in part by our interest
in developing a more mixed-initiative approach to inferring
such activity clusters, using both computer analysis of work-
station data and user feedback based on examining proposed
clusters.

 

ActivityCluster4 (105 emails) 

• Keywords: CALO, TFC, SRI, examples, heads, labeled, Leslie, HMM, 
contacts, email, task, estimates, zero, reschedule, baseline, Rebecca 

• PrimarySenders: Mitchell(39), Kaelbling(7), McCallum(6), Perrault(4), 

• UserActivityFraction: 105/1448=.072 of total emails 

• IntensityOfUserInvolvement: created 37% of traffic 

• ExtractedNames: Leslie(23), Rebecca(21), Carlos(12),  
Ray(10), Stuart(9), William(9), April(9), … 

Figure 1: An example output of activity extractor,

which is extracted statistically from unsupervised clus-

tering results.

We will describe our probabilistic model and the associ-
ated clustering algorithm in the next section. Section 3 then

1We use the word ”cluster” to indicate a set of similar in-
stances grouped together by a clustering algorithm, and the
word ”category” to indicate a concept in a user’s mind which
may or may not be reflected by some cluster of instances.

discusses how several types of user feedback can be incorpo-
rated into the clustering algorithm. The experimental setup
and evaluation are described in section 4 and conclusions
are presented in section 5.

2. SPECLUSTERING MODEL

2.1 Separating specific from general topics
We present here a clustering algorithm based on a novel

probabilistic model. One commonly used probabilistic model
for text clustering is the multinomial naive Bayes model de-
scribed in [11], which models a document as a vector of
words with each word generated independently by a multino-
mial probability distribution conditioned on the document’s
class (i.e., conditioned on which cluster it belongs to). Our
SpeClustering model also assumes words are generated prob-
abilistically, but differs in an important way from this stan-
dard model. In particular, the SpeClustering model assumes
that only some of the words in the document are conditioned
on the document’s cluster, and that other words follow a
more general word distribution that is independent of which
cluster the document belongs to. To see the intuition behind
this model, consider a cluster of emails about skiing. There
will be some words (e.g., “snow”) that appear in this cluster
of emails because the topic is skiing, and there will be other
words (e.g., “contact”) that appear for reasons independent
of the cluster topic. The key difference between the stan-
dard model and our SpeClustering model is that our model
assumes each document is generated by a mixture of two
multinomials – one associated with the document’s cluster,
and the other shared across all clusters. As we show below,
our more elaborate SpeClustering model can lead to im-
proved accuracy when used for automatic clustering, and it
also provides a formalism that can easily accomodate several
important types of user feedback to support mixed-initiative
clustering.

To construct this SpeClustering model, we extend the
standard multinomial model in two ways. The first mod-
ification is to add a G topic variable that is intended to
capture general topics not related to the cluster. The sec-
ond modification is to introduce a hidden boolean variable,
X, associated with each word O in each document. If X = 1,
the observation O is generated by the cluster-specific topic
S, and if X = 0, the observation O is generated by a general
topic G. Throughout this paper we simplify the model by
assuming there is only one general topic instead of multiple
topics, so the value of G is fixed at G = g. Figure 2 shows
the graphical model representation of the model. Here the
outer rectangle (or plate) is duplicated for each of the D doc-
uments, and the inner plate is duplicated for each of the N
observations O and associated variables X. Note the general
topic G is constant across all documents and words, whereas
the cluster topic S is different for each document.

The Speclustering model θ has four sets of parameters:

πc = P (S = c)

ξc = P (X = 1|S = c)

βcf = P (O = f |S = c)

βgf = P (O = f |G = g)



�

� �

�

�

�

�

�

�

 

Figure 2: Graphical representation of SpeClustering

model. S is a variable representing the cluster associ-

ated with a document, O represents an observed word in

a document, and X is a boolean variable that indicates

whether word O is generated conditioned on the clus-

ter S or whether it is generated according to a cluster-

independent general distribution of words G.

where c ∈ {1, 2, ..., |S|}, g ∈ {1} for the simplified case and
f ∈ {1, 2, ..., |O|}.

Given a corpus C that contains D instances C = {d1, d2, ..., dD},
and di is represented as a vector of observations {oij ; j ∈
{1, 2, ..., ni}}, we use the notation si to indicate the value of
the hidden S variable for instance di and xij to indicate the
value of the hidden X variable associated with observation
oij . The corpus likelihood of C given θ is defined as follows:

P (C|θ) =

DY
i=1

|S|X
si=1

P (si)

niY
j=1

[P (xij = 1|si)P (oij |si) + P (xij = 0|si)P (oij |g)]

which can be written in terms of the model parameters as
follows:

P (C|θ) =

DY
i=1

|S|X
si=1

πsi

niY
j=1

[ξsiβsioij + (1− ξsi)βgoij ]

Note the probability P (X = 1|S = c, O = f ; θ), which
can be derived from the model parameters, describes the
probability that any particular feature f is generated by a
particular cluster c, as opposed to the general topic g.

2.2 Learning Clusters with the SpeClustering
Model

In the most general case we are interested in unsuper-
vised clustering of documents given just the observed fea-
tures O of a set of documents, where the values for the S
and X variables are unobserved. Because of the existence
of unobserved variables, we use an EM process [3] for pa-
rameter estimation. The EM algorithm is commonly ap-
plied to find a (local) maximum-likelihood estimate of the
parameters in situations when the observable data is incom-
plete and the model depends on unobserved latent variables.

Given X and Y as the incomplete and complete data, the
algorithm iterates through two steps: in the E step, we eval-
uate Q(θ|θt) = E[log P (Y|θ)|X , θt)], and in M step, we ob-
tain new estimation of parameters θt+1 = arg maxθ Q(θ|θt).
In our SpeClustering model, the incomplete data is X =
{oij ∀i ∈ {1, ..., D} j ∈ {1, ..., ni}} and complete data is
Y = {si, xij , oij ∀i ∈ {1, ..., D} j ∈ {1, ..., ni}}. The exact
estimation for each parameter in M step is listed below.

πt+1
c =

PD
i=1 φt

i(c)

D

ξt+1
c =

PD
i=1 φt

i(c)
Pni

j=1 ψt
ij(c)PD

i=1 φt
i(c) · ni

βt+1
cv =

PD
i=1 φt

i(c)
Pni

j=1 δ(oij = v)ψt
ij(c)PD

i=1 φt
i(c)

Pni
j=1 ψt

ij(c)

βt+1
gv =

PD
i=1

P|S|
k=1 φt

i(k)
Pni

j=1 δ(oij = v)ψt
ij(k)PD

i=1

P|S|
k=1 φt

i(k)
Pni

j=1 ψt
ij(k)

where the following quantities are computed in the E step:

φt
i(c) ≡ P (si = c|di; θ

t)

=
πt

c

Qni
j=1[ξ

t
cβt

coij
+ (1− ξt

c)β
t
goij

]P|S|
k=1 πt

k

Qni
j=1[ξ

t
kβt

koij
+ (1− ξt

k)βt
goij

]
(1)

ψt
ij(c) ≡ P (xij = 1|si = c, oij ; θ

t)

=
ξt
cβt

coij

ξt
cβt

coij
+ (1− ξt

c)β
t
goij

(2)

By iterating through E step and M step, the likelihood will
converge to a (local) maximum and values of parameters will
be stabilized.

2.3 Extension to multiple types of features
In some cases instances may be described by multiple

types of features. For example, when clustering emails we
might describe each email by the set of words in its body,
plus the set of email addresses the email is sent to. If there
are multiple types of features in an instance, we can ex-
tend the SpeClustering model. Figure 3 shows the extended
model with two feature types. The model adds one new
block {Y, Q} for the introduction of a new feature type.
{Y, Q} is identical and parallel to {X, O}. In the activity-
discovery-via-emails task, we can apply this model to rep-
resent an activity in terms of both its key words and the
primary participants of the activity.

Parameter estimation in the extended SpeClustering model
is nearly identical to that described in section 2.2. The
only exception is a change to the posterior probability esti-
mate in Eq 1. The new posterior probability estimate in
the extended model combines generative probabilities from
multiple feature types. Eq 3 shows the estimate from two
different feature types.

φt
i(c) ≡ P (si = c|di; θ

t)

=
πt

c

Qni
j=1[ξt

cβt
coij

+(1−ξt
c)βt

goij
]
Qmi

h=1[ηt
cγt

cqih
+(1−ηt

c)γt
gqih

]P|S|
k=1 πt

k

Qnk
j=1[ξt

k
βt

kokj
+(1−ξt

k
)βt

gokj
]
Qmk

h=1[ηt
cγt

cqkh
+(1−ηt

c)γt
gqkh

]

(3)
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Figure 3: Graphical representation of the SpeCluster-

ing model with two feature types, where O and Q are

observations with different feature types and X and Y

are boolean variables deciding whether their respective

observation is generated from the specific topic S or the

general topic G

3. MODEL ADAPTATION ACCORDING TO
USER’S FEEDBACK

As discussed earlier, we are particularly interested in al-
lowing extended forms of user feedback to help direct the
clustering process. In this section we discuss how several
types of user feedback are incorporated to guide the clus-
tering algorithm. We describe each feedback type in terms
of the task of clustering emails to discover descriptions of a
user’s activities. The types of user feedback allowed are:

1. Remove an activity cluster

2. An email belongs (or does not) to its assigned cluster

3. A keyword belongs (or does not) to its assigned cluster

4. A person belongs (or does not) to its assigned cluster

5. A short text description T for an activity cluster

The posterior probabilities in the SpeClustering model
turn out to be highly related to the above types of feed-
back. To be more specific, type 1 and 2 feedback are related
to Eq. 3 and type 3, 4, and 5 feedback are related to Eq. 2.

There are two methods to initialize the SpeClustering
model with user feedback. The simple method inherits pre-
vious clustering results for which the user gives her feedback.
When feedback includes removing a cluster S = c, we reset
the initial value of P (si|di; θ

t) for each di with si = c by
distributing the probability mass uniformly among all clus-
ters but halving the probability to cluster c. Alternatively,
the joint method uses multiple feedback types to initialize
the model. We first select several documents that have the
highest cosine similarity with confirmed documents and key-
words (where we treat keywords as a mini-document) and
associate them with current clusters. We then search for a
small set of similar documents that maximize inter-cluster
distances and replace any cluster that is removed in the feed-
back.

During each EM iteration while training the SpeCluster-
ing model, we perform type 2 to 4 adjustments. For type
2 feedback, we adjust the value of P (si = c|di; θ

t) to be
one if the email-to-cluster bound is confirmed by the user
or set it to zero if the bound is disapproved by the user.
Proper adjustment to normalize posterior probabilities of
{P (si = c′|di; θ

t) ∀c′ 6= c} is also required in this case. For
type 3 and 4 feedback, we adjust the value of P (xij = 1|si =
c, oij = v; θt) to be one if the keyword/person-to-activity
bound is confirmed by the user or set it to zero if the bound
is disapproved by the user. For type 5 feedback, we tokenize
the description T and make each token of T a confirmed
keyword as in type 3 feedback.

Figure 4 summarizes this Mixed-Initiative-Clustering process
which integrates user feedback into the clustering process.

Algorithm: Mixed-Initiative-Clustering
Input: Corpus C with D instances.
Output: A list of activity clusters A, where each activity
cluster is described by its top K features for each feature
type.
Method:

1. Generate initial model θini and summarization of
clusters Aini with top K features of each feature
type. θt = θini, At = Aini, F = {}.

2. Add user’s feedback regarding At into F .

3. (θt+1,At+1) =SpeClustering-with-Feedback(C, θt,F).

4. θt = θt+1, At = At+1

5. repeat step 2 to 4 until user’s satisfaction.

Algorithm: SpeClustering-with-Feedback
Input: Corpus C with D instances. θt as the current
model. F as the collection of user’s feedback.
Output: θt+1 as the model after adaption according to
user’s feedback. At+1 as the new summarization of clusters
according to θt+1.
Method:

1. Estimate posterior probabilities Pt of Eq 3 and Eq 2
given C and θt.

2. Adjust Pt according to F to obtain Pt
adj .

3. Re-estimate model parameters using Pt
adj to obtain

θt
adj .

4. θt = θt
adj ; repeat step 1 to 3 until the model

converges.

5. θt+1 = θt
adj . Generate At+1 according to θt+1 and F .

Figure 4: The algorithm for mixed-initiative clustering.

3.1 Connection to Supervised Classification
We have described details of the SpeClustering model.

However, the model is not restricted to clustering; it can
also be applied to supervised classification tasks. The dif-



ference in classification is that the topic variable S is no
longer a hidden variable. We can treat the classification
tasks as knowing all the type 2 user feedback and replace
the estimate of posterior probabilities P (si = c|di; θ

t) with
the true value specified by the instance label.

4. EXPERIMENTS

4.1 Datasets
To test the SpeClustering algorithm we used two data

sets. The first is an email dataset (EmailYH ) from one of
the authors that contains 623 emails. This dataset had pre-
viously been sorted into 11 folders according to the user’s
activities. It contains 6684 unique words and 135 individ-
ual people after pre-processing2. The second data set is the
publicly available 20-Newsgroups collection. This data set
contains text messages from 20 different Usenet newsgroups,
with 1000 messages harvested from each newsgroup. We
derived three datasets according to [1]. The first, News-
Similar-3, consists of messages from 3 similar newsgroups
(comp.graphics, comp.os.ms-windows.misc, comp.windows.x)
where cross-posting occurs often between these three news-
groups. News-Related-3 consists of messages from 3 re-
lated newsgroups (talk.politics.misc, talk.poli-tics.guns and
talk.politics.mideast). News-Different-3 contains 3 news-
groups of quite different topics (alt.atheism, rec.sport.baseball,
and sci.space).

We only use the text part of messages in the three news-
group datasets because a reviewer won’t have the knowledge
needed to decide which author is the key-person with re-
gard to which newsgroup. For the text part, we applied the
same pre-processing we used in (EmailYH ). There are 3000
messages in these datasets. News-Different-3 contains 8465
unique words, News-Related-3 contains 9998 unique words
and News-Similar-3 has 10037 unique words.

4.2 Measurement for Cluster Evaluation
We use two measurements to estimate cluster quality:

folder-reconstruction accuracy, and normalized mutual in-
formation (NMI) [4].

In order to calculate the folder-reconstruction accuracy,
we search through all possible alignments of cluster indices
Ic, to folder indices If in order to find the alignment result-
ing in optimal accuracy, then report the accuracy under this
optimal alignment:

Acc = maxA

PD
i=1 δ(A(si) = fi)

D
A ∈ {Map(Ic)

1−to−1−→ If}
(4)

The normalized mutual information measurement is de-
fined as Eq. 5, where I(S; F ) is the mutual information be-
tween cluster assignment S and folder labels F, H(S) is the
entropy of S and H(F ) is the entropy of F. It measures the
shared information between S and F.

NMI =
I(S; F )

(H(S) + H(F ))/2
(5)

These two measurements are correlated but show differ-
ent aspects of clustering performance. Accuracy calculates

2The pre-processing for words includes stemming, stop word
removal and removal of words that appear only once in the
dataset. The pre-processing for people contains reference-
reconciliation over email senders and recipients, and removal
of people that are involved in only one email.

the ratio between major chunks of clusters to its reference.
NMI measures the similarity between cluster partitions and
reference partitions.

4.3 Results and Discussion
To experimentally study the SpeClustering model and al-

gorithms, we consider three distinct algorithms. First, we
consider the standard multinomial naive Bayes text clus-
tering[11] algorithm as a baseline approach representing a
typical probabilistic approach to text clustering. We mod-
ified this baseline approach by allowing it to search for a
good cluster initialization and to avoid situations in which
one cluster gets eliminated during the EM iterations[7]. Two
versions of SpeClustering algorithm are tested. The fist ver-
sion is the original SpeClustering algorithm as described in
Section 2. The second version, SpeClustering-bound, adds
range constraints on parameter values ξ: for word features,
the range is [0.1, 0.4] and for person features, the range is
[0.6, 0.9]. The reason for introducing these range constraints
is to avoid situations where some values of ξ converge to 1
or 0. This is undesirable because the value of ξ reflects the
percentage of specific features (X = 1) occuring over all
observations. Both SpeClustering algorithms are initialized
using the output from the baseline naive Bayes clustering.

4.3.1 Autonomous Clustering
First we compared our SpeClustering approach to the

Naive Bayes baseline in fully autonomous clustering with-
out user feedback. We made 50 individual runs on EmailYH
dataset and 20 runs each on News-Similar-3, News-Related-
3, and News-Different-3. Table 1 shows the average accuracy
and NMI results of different datasets and the three cluster-
ing algorithms. Notice in all datasets, the SpeClustering
algorithm performs better than the naive Bayes algorithm,
and the SpeClustering-bound model performs better than
SpeClustering. The naive Bayes clustering results are used
to initialize its associated SpeClustering and SpeClustering-
bound runs, so the performance gain are directly due to
the difference between the SpeClustering probabilistic model
and naive Bayes model. When we examined the details of
individual runs, we found that every one of the runs re-
sulted in SpeClustering-bound outperforming Naive Bayes
in terms of the NMI measure, and that in the vast majority
of these runs it also outperformed Naive Bayes in terms of
the accuracy measure.

4.3.2 Clustering with User Feedback
We next studied the impact of user feedback on the bounded

SpeClustering model. In particular, we chose 5 clustering
results using the multinomial naive Bayes model with the
best log-likelihood among 50 runs on EmailYH and pre-
sented each of these to the user. We also chose one best
run from 20 runs on News-Different-3, News-Related-3, and
News-Similar-3. The user gave feedback using the interface
shown in Fig 5. The top left panel shows a list of docu-
ments that are clustered into the selected cluster label, the
top right panel shows 5 key-persons of the cluster and the
bottom right panel shows 20 keywords of the cluster. The
keywords and key-persons of the cluster are selected using
a Chi-squared measurement [14]. When a user clicks on a
document in the document list, the content of the document
shows in the bottom left panel. The user can give various
types of feedback described in Section 3 and the interface



dateset method Accuracy (%) NMI (%)

Email- naive Bayes 48.44± 7.01 48.02± 3.93
YH SpeCluster 52.28± 8.61 53.25± 5.65

SpeC-bound 53.98± 8.04 56.25± 4.90

News- naive Bayes 46.31± 7.21 9.86± 7.34
Sim-3 SpeCluster 51.38± 6.33 15.80± 6.82

SpeC-bound 51.98± 5.91 16.46± 6.27

News- naive Bayes 60.18± 10.64 34.36± 10.58
Rel-3 SpeCluster 60.61± 11.08 36.06± 10.71

SpeC-bound 61.14± 11.41 36.92± 11.04

News- naive Bayes 91.24± 13.45 79.76± 14.56
Diff-3 SpeCluster 93.80± 11.49 83.57± 14.27

SpeC-bound 96.52± 6.47 87.79± 11.56

Table 1: Clustering results of different datasets and

different clustering algorithms. SpeCluster and Spec-

bound are short-hands of the SpeClustering model

with unbounded and bounded parameter values. Both

versions of the SpeClustering model out-perform the

multinomial naive Bayes model and the bounded

SpeClustering model achieves the best performance.

displays feedback the user has entered so far. The user can
also go back and forth to correct conflict assumptions she
has made to achieve consistent cluster interpretations.

An interesting observation we found is that displaying key-
words and key-persons tremendously helps the user make
judgements about a cluster. In fact, to decide the meaning
of a large cluster based only on examining the documents is
extremely difficult. A reviewer would tend to decide based
on the first several documents she goes through even when
the cluster contains more than hundreds of documents, and
the biased decision often causes conflicts with later clusters.
The reviewer usually chooses to remove a cluster, if the key-
words and key-persons don’t show any consistency and are
not meaningful to the user, or if documents in the cluster
are a hodgepodge from several categories. If the keywords
or key-persons make sense to the user, the user gives feed-
back about document-cluster associations according to these
meanings. We don’t put constraints on how the reviewer
does the feedback, so the reviewer can make decisions freely
based on how she perceives the clustering results, and gives
feedback using her own interpretation of the results.

This way of collecting feedback may result in a situation
where the meaning in the reviewer’s mind doesn’t match the
majority of documents associated with the cluster because
the reviewer rationalizes clusters mostly according to key
features. Keyword selection favors words that occur in the
cluster and don’t appear in other clusters, so if a category
contains many documents and gets spread out to several
clusters, even the majority of documents in the cluster be-
long to that category, the keyword selection may give low
scores to words belong to that category because those words
appear in other clusters.

We use the following notation to indicate various feedback
types:

• CR: cluster removal

• PP: document-to-cluster association

• WX: keyword-to-cluster association

• HX: keyperson-to-cluster association

run doc # CR PP WX HX

Email1 623 3 99 37 30
Email2 623 3 73 35 31
Email3 623 4 92 48 26
Email4 623 7 32 28 15
Email5 623 4 91 43 28

Sim1 3000 2 39 9 -
Rel1 3000 1 29 20 -
Diff1 3000 0 16 39 -

Table 2: Entry numbers of different feedback types for

5 selected naive Bayes runs.
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Figure 6: Performance of using single feedback types

(CR, PP, WX and HX) on the EmailYH dataset. SpeC-

bound is the SpeClustering-bound model without feed-

back. The SpeClustering-bound model with one type of

feedback out-performs naive Bayes and SpeClustering-

bound without feedback in 17 out of 20 runs.

Table 2 shows how many entries of different feedback
types the reviewer enters for each selected run. The re-
viewer spends about 15 mins to finish one run from Emai-
lYH dataset and 5-10 mins to finish one run from newsgroup
datasets.

We ran the SpeClustering-bound algorithm with user feed-
back and compared the results to the naive Bayes base-
line and the SpeClustering-bound algorithm without feed-
back. The difference between SpeClustering with and with-
out feedback is the parameter adjustment described in Sec-
tion 3.

We used the simple initialization method on EmailYH
dataset in order to break down feedback to single types.
Figure 6 shows the results using just one type of feed-
back on 5 selected runs from EmailYH dataset. The CR
feedback is independent from other types of feedback and
all other types involve feedback only from clusters that are
not removed. All 5 runs with CR or PP feedback, 4 runs
with WX feedback and 3 runs with HX feedback outperform
both naive Bayes baseline and SpeClustering-bound with-
out feedback. Figure 7 shows the results using combina-
tion of feedback types. User’s feedback gives huge improve-
ments in all runs (19.55% average accuracy improvements
from naive Bayes results to SpeClustering-bound with full
feedback). SpeClustering-bound with full feedback performs



Figure 5: The user interface for feedback gathering. It displays a list of documents, keywords and key-persons for a

selected cluster. A reviewer can decide (1) to keep the cluster or not, (2) confirm or remove keywords or key-persons

(3) confirm or remove documents, (4) give a short description about the cluster. The reviewer can also go back and

forth between clusters to make her feedback consistent.

best in 4 out of 5 runs. In the remaining one run, CR+PP
feedback performs best. The quantity of PP feedback is
about 1/7th to 1/9th to the whole dataset and even higher
if we exclude documents in removed clusters. The number of
WX+HX feedback are fewer than PP feedback in these runs.
However, CR+WX+HX performs better than CR+PP in 2
runs, which shows that meanings of clusters gives compa-
rable information like document-cluster association. More
compellingly, it is also much easier to get CR+WX+HX
feedback than CR+PP in terms of time efficiency. In [12],
they measure the time spend on labeling a document or a
feature, and they find a person only need 1/5th of time to
label a feature compared to the time to label a document.

For the 3 newsgroup datasets, the ratio of the amount
of feedback to the corpus size is very small. In this case,
the inheritance of old results which is noisy in the simple
initialization overwhelms the training process so we used
the joint initialization method to remedy the problem.

The user feedback is quite different across these three
runs. For the selected run of news-similar-3, the naive
Bayes results are extremely noisy and the cluster summa-
rization is hardly recognizable by the reviewer. It turns
out the feedback contains the removal of two out of three
clusters and the reason that one is kept is because some
keywords weakly indicates the meaning of one newsgroup,
but the documents in the remaining cluster contain huge

chunks from each newsgroup. For the selected run of news-
related-3, talk.politics.guns and talk.politics.mideast are re-
ferred to two remaining clusters while talk.politics.misc has
no reference due to the removal of the last cluster, which
the reviewer cannot figure out its meaning. The cluster
summarization is noisy but comprehensible, so the reviewer
can make positive and negative feedback easily. For news-
different-3, the baseline accuracy is very high so most feed-
back is positive about the automatically generated summa-
rization.

Figure 8 shows experimental results from user feedback
on one selected run from each newsgroup dataset. It is dif-
ficult to improve on the already accurate news-different-3
run. Incorporating feedback gives no significant improve-
ment on the selected news-similar-3 runs whose feedback is
based on extremely noisy clusters and a user is barely able to
associate meaningful criterion to any cluster. However, one
sees huge improvement from using feedback on the noisy but
still meaningful cluster results. The accuracy of the selected
news-related-3 run jumps from 63.23% to 81.07%.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we focus on the problem of how to cluster

text documents based on the meanings of categories a user
understands or wants. Often the meanings of clusters be-
come clear to a user only after examining their descriptions
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Figure 7: Performance of using combination of feed-

back types on the EmailYH dataset. SpeC-bound is

the SpeClustering-bound model without feedback. User

feedback gives huge improvements in all runs.

and providing feedback to explore the space of possible clus-
ters.

Our solution to this problem involves three components.
First, we propose a new SpeClustering model that separates
the features of a document that are specific to a cluster from
other general features that are unrelated to the cluster’s se-
mantics. The second component is a method to collect user
feedback about the meanings of the clusters. We present
an interface that enables a user to browse through cluster
results and provide several types of feedback. The process
requires the user’s understanding of desired categories, and
her judgement about which cluster is associated with the
meaning of which category. The third component is an al-
gorithm for integrating user feedback with the SpeClustering
model. The structure of the SpeClustering model provides
a natural way to adjust parameters according to a variety
of types of user feedback.

Our experimental results show our unsupervised SpeClus-
tering algorithm outperforms the commonly used multino-
mial naive Bayes clustering algorithm for both of the text
datasets we considered. Furthermore, when provided with
user feedback, the SpeClustering model gains significant im-
provement in a personal email dataset and in the newsgroup
dataset when the clustering results is noisy but meaningful.
Our approach combines the advantage of the machine’s com-
putational power to analyze huge amount of data, with the
advantages of a human’s understanding of categories of in-
terest. The results indicate that cooperation between com-
puters and human beings is a promising direction for future
work. There are many future challenges, such as using active
learning principles to optimize the summarization of a clus-
ter, and building more sophisticated models to allow more
natural types of user feedback.
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Figure 8: Experiments results of SpeClustering with

user feedback on the newsgroup datasets. SpeCluster-

bound is the model without feedback and CR+PP+WX

is the SpeClustering-bound model with full user feed-

back. Incorporating feedback gives significant improve-

ment on the selected news-related-3 run, whose feedback

is harvested from noisy but still meaningful clustering

results.
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