
Time Travelling Animated Program Executions
Ken Kahn

Animated Programs and the London Knowledge Lab, The Institute of Education, University of London
kenkahn@toontalk.com

ABSTRACT
Visualizations of program executions are often generated
on the fly. This has many advantages relative to off-line
generation of animated video files. Video files, however,
trivially support flexible viewing via controls that include
reverse and fast forward. Here we report on an
implementation of time travel that combines the best of
both techniques.

In ToonTalk both the construction and execution of
programs are animated. Time travel enables the user to
move back in time and replay animated executions. The
replay can be paused and the user can skip forward or
further back in time. The implementation of time travel is
based records of every input event and periodic snapshots
of the state of the computation.

Keywords
Program visualization, time travel, programming languages
for children, ToonTalk

INTRODUCTION
An ideal interactive visualization of a program execution
allows the viewer to alter both viewing parameters and the
course of the computation being viewed. This paper is
about a technique we call time travel that records a
visualization of a computation in such a way that the viewer
can replay segments that need further attention and skip
over segments that are not of interest. Unlike a video, time
travel enables a viewer to resume control of the
computation at any point in time. Furthermore, it enables
the viewer to share with others such visualizations.

The implementation of time travel entails recording of
every input event including those from the keyboard, the
mouse, the clipboard, and network connections. It also
entails the saving of the entire state of a computation
periodically. Our experience with a non-optimized
implementation is that the overhead of doing this is small
enough for a large variety of uses.

A time travel archive is replayed by loading in the initial
state and recreating the recorded input event stream. The
input events were saved with time stamps so they are
replayed with the same timing as the original. If the replay
is occurring on a faster computer than the one used for
recording the system can idle to slow down to the original
timing. If the replay is on a slower computer then the
animation can be slowed down so that the replay is
reconstructed perfectly except that the playback is in slow
motion. This technique relies upon the underlying engine
being completely deterministic. If, for example, random

numbers are needed then input events should be recorded to
enable the reconstruction of an identical sequence of
random numbers.

If during replay the viewer wishes to skip ahead and replay
from an earlier time then the appropriate saved state is
loaded and the input event stream is replayed from the
timestamp of the saved state. In ToonTalk the state is
typically saved every 5 or 10 seconds so the viewer can
then jump to the playback point just prior to the desired
playback point. In the worst case they will need to view a
few seconds of playback prior to the desired point.

The interface to time travel can be very similar to that of a
VCR to enable the viewer to jump to the beginning, jump
back in time, resume playback, jump forward in time, jump
to the end, and resume recording. Unlike a VCR this
implementation scheme for time travel does not allow
animated playback in reverse or fast forward. Instead still
frames are displayed as the viewer jumps forward or
backwards in time. Each jump changes the time by the
period with which the entire state was saved (e.g. 5 or 10
seconds).

Figure 1: The time travel interface of ToonTalk

Various enhancements to the basic scheme have been
implemented. These include the ability to add subtitles,
recorded narration, or generated speech to the replay log so
viewers see subtitles and/or hears narration as they replay
time lines.

TOONTALK
ToonTalk has been described elsewhere [Kahn 1996a and
Kahn 2006] and here we focus on the program visualization
aspects. ToonTalk is unique in that programs are
constructed in the same way that their execution is
visualized. A user constructs a program fragment by
training a robot to manipulate a box of objects. For
example, if a robot is trained to remove the numbers in the
first two holes of its box, add them together, and give the
result to the bird in the third hole, then when that robot runs
it recreates those actions. The exact timing and geometry
may differ but otherwise program creation and program
execution appear the same to an observer. Typically a
ToonTalk programmer arranges for only those robots he or
she is interested in to be visible while other robots are
working unseen in other locations. Robots typically perform

their actions from inside of a house, when viewed from the
outside one sees only birds flying in and out of the house
delivering messages and trucks leaving houses to spawn
new computations. When a robot has completed a task it
typically blows up the house it is in in order to reclaim
resources. The spawning, communication, and termination
of independent processes can be viewed from the street or
at an adjustable coarser grain from a helicopter flying over
a city of ToonTalk computations. [Kahn 1996b]

Figure 2: Training a Sort robot to split the problem in half

RELATED WORK
[Atwood et al 1996] describes an implementation of a
related notion of time travel in a system called Forms/3. In
this system most of the variables are declarative (pure
functions of other variables). Those variables that are
updated maintain a history of their values. The system is
able to go back to previous states and replay an input log.
Here we present a time travel technique that is completely
general – ToonTalk is a programming language with
communication and coordination between dynamically
created processes. The technique works for languages with
destructive operations on data structures and dynamic
creation of objects and processes. Forms/3, in contrast, is
very similar to a spreadsheet.

zStep is a Lisp debugger that records state changes to
variables and data structures and is able to undo
computations to restore previous states [Lieberman and Fry
1995]. It has no replay ability.

Director and Flash provide time lines to organize programs.
They support a kind of time travel but only the movement
in time between statically organized program fragments.
State is not restored when one moves backwards in time.

DISCUSSION
While the implementation of time travel in ToonTalk
described here will be available only in the next product
release, it has been extensively used by both beta testers
and participants in a large-scale European research project
called WebLabs [WebLabs 2006]. It has been successfully
used to generate scores of demos some as long as 15
minutes. It has been used to replay simulations with
different initial parameters. To accomplish this a user runs
the simulation, rewinds, changes some parameters, and runs
it again. Some users used it as a flexible alternative to a
traditional undo facility. It was frequently used as a way of
reporting system bugs in a way that enabled the bug fixers
to readily reproduce the bug. We observed no problems
with children as young as ten with the functionality or
interface to time travel.

We can characterize the uses of time travel as

• Reflective. Enabling the recounting and refinement
of a programmer’s actions.

• Constructive. Supporting tinkering with code.
• Communicative. Examples are demos and bug

reports.

Various optimizations are possible to minimize the
overhead of recording a time travel archive. The ToonTalk
implementation periodically saves the entire state of a
computation by serializing every object. Typically many
objects will not have changed since the last time the state
was changed so they needn’t be serialized repeatedly.
Another unexplored optimization is to save the state of the
computation without temporarily freezing the computation.
In order to save a consistent snapshot, any portion of the

computation that attempts to make changes to an unsaved
portion of the state needs to suspend until the state is saved.

Even a well-optimized implementation will encounter
situations where the recording overhead causes
unacceptably long pauses. ToonTalk gracefully degrades in
this situation by repeatedly increasing the duration between
the pauses caused by state saving at the price of less
flexible temporal navigation on playback.

The ToonTalk implementation of time travel does not
permit changes in the viewing parameters during replay. It
would clearly be useful to be able to view the same
computation from different viewpoints or with different
display parameters. This would be consistent with a more
principled view of time travel in a computational universe
[Deutsch 1997]. Implementing this, however, may restrict
the user interface. A mouse click is typically interpreted
with respect to both the underlying model (here the
computation being observed) and the view of the model that
the user is interacting with. This problem could be resolved
by recording the high-level consequences of mouse clicks
rather the clicks themselves.

When a user travels back in time and clicks on the record
button, a branch point in the time line is introduced. In
ToonTalk this is implemented by creating a truncated copy
of the current time travel archive. A user can then continue
with the newly created branch or at any time revert back to
previous branches. ToonTalk does not provide an interface
to this functionality so a user must choose files in a folder
using the operating system interface to move between
branches. An interesting avenue for future research is to
design and build an interface to these time line branches.

If the original computation was recorded on a slow
computer (or a fast one that is slowed down by frequently
idling) then when replayed it could run at full speed to
implement a kind of “fast forward” capability. The
ToonTalk implementation of time travel is capable of doing
this but only a command-line interface to this functionality
is provided.

An alternative implementation of time travel is to build
upon a reversible computation engine [Wikipedia 2006a].
This would enable the viewing of a computation in reverse
as an animation rather than as a series of snapshots. In
theory it could eliminate the need to record input events or
computation states except to support jumping backwards or
forwards in time.

Time travel can be added to computer games but a general
implementation may make games too easy. A game like
Time Splitters [Wikipedia 2006b] is a time travel game but
is very limited relative to the time travel functionality
described here. A game with general time travel has the
problem that no game decisions have consequences since
they can be undone easily. Game designers generally prefer
to have special save points that can be returned to. Only the
game Braid [Experimental Game Play 2006] supports

replay. In Braid the ability to move back and forth in time is
essential to solve a series of puzzles.

The time travel technique described here does not apply
well to programs that are networked. A single node in a
network can be paused and moved back in time but it will
not be able to undo the effects of the messages it sent to
other nodes. It can however replay recorded incoming
messages. When a node is replaying a computation it
probably should not also resend outgoing network messages
unless the system is designed so that the receipt of
duplicates messages has no effect.

Adding the time travel facility to existing software requires
that the existing software’s handling of input and output
events be programmable either through edits of the source
code or an API. It also requires an ability to periodically
save the entire state of a computation and to load saved
states. Finally, the software must be deterministic so that
replay precisely recreates the recorded history.

This paper described a flexible way of viewing
computations based upon the concept of time travel. Time
travel can be added to any visualizer of computations. It has
proved useful within ToonTalk as a means to create demos,
run simulations, and debug one’s code. Perhaps it also
provides a virtual environment within which one gains a
deeper understanding of time and causality.

ACKNOWLEDGMENTS
I am grateful to Yishay Mor and Mikael Kindborg for their
comments on this paper.

REFERENCES
[Atwood et. al. 1996] J. W. Atwood, Jr., M. M. Burnett, R.
A. Walpole, E. M. Wilcox, and S. Yang, Steering Programs
via Time Travel, Proceedings of the IEEE Symposium on
Visual Languages, Boulder, Colorado, USA; Sept. 3-6,
1996

[Deutsch 1997] David Deutsch, The Fabric of Reality,
Allen Lane, The Penguin Press, March 1997.

[Experimental Game Play 2006] www.experimental-
gameplay.org/2006

[Kahn 1996a] Ken Kahn. ToonTalk -- An Animated
Programming Environment for Children, Journal of Visual
Languages and Computing, June 1996.

[Kahn 1996b] Ken Kahn. Seeing Systolic Computations in
a Video Game World, Proceedings of the IEEE Conference
on Visual Languages, Bolder, Colorado, September 1996.

[Kahn 2006] www.toontalk.com

[Lieberman and Fry 1995] Lieberman, H. and Fry, C.
Bridging the Gulf Between Code and Behavior in
Programming. Proceeding of CHI’95: Human Factors in
Computing Systems, Denver, CO, May 7-11, 1995, 480-
486.

[WebLabs 2006] www.lkl.ac.uk/kscope/weblabs/

[Wikipedia 2006a]
en.wikipedia.org/wiki/Reversible_computing

[Wikipedia 2006b] en.wikipedia.org/wiki/TimeSplitters

