
An Efficient Retargetable Framework for Instruction-Set
Simulation

Mehrdad Reshadi, Nikhil Bansal, Prabhat Mishra, Nikil Dutt
Center for Embedded Computer Systems, University of California, Irvine.

{reshadi, nbansal, pmishra, dutt}@cecs.uci.edu

ABSTRACT
Instruction-set architecture (ISA) simulators are an integral part of
today’s processor and software design process. While increasing
complexity of the architectures demands high performance
simulation, the increasing variety of available architectures makes
retargetability a critical feature of an instruction-set simulator.
Retargetability requires generic models while high performance
demands target specific customizations. To address these
contradictory requirements, we have developed a generic
instruction model and a generic decode algorithm that facilitates
easy and efficient retargetability of the ISA-simulator for a wide
range of processor architectures such as RISC, CISC, VLIW and
variable length instruction set processors. The instruction model is
used to generate compact and easy to debug instruction
descriptions that are very similar to that of architecture manual.
These descriptions are used to generate high performance
simulators. The generation of the simulator is completely separate
from the simulation engine. Hence, we can incorporate any fast
simulation technique in our retargetable framework without
loosing performance. We illustrate the retargetability of our
approach using two popular, yet different realistic architectures:
the Sparc and the ARM.
Categories and Subject Descriptors
I.6.5 [Simulation And Modeling]: Model Development;
I.6.7 [Simulation And Modeling]: Simulation Support Systems
General Terms: Design, Language, Performance
Keywords: Retargetable Instruction-Set Simulation, Generic
Instruction Model, Instruction Binary Encoding, Decode
Algorithm, Architecture Description Language.

1. INTRODUCTION
Instruction-set architecture (ISA) simulators are indispensable
tools in the development of new architectures. They are used to
validate an architecture design, a compiler design as well as to
evaluate architectural design decisions during design space
exploration. Running on a host machine, these tools mimic the
behavior of an application program on a target machine. These
simulators should be fast to handle the increasing complexity of
processors, flexible to handle all features of applications and
processors, e.g. runtime self modifying codes, multi mode
processors; and retargetable to support a wide spectrum of
architectures. Although in the past years, performance has been
the most important quality measure for the ISA simulators,

retargetability is now an important concern, particularly in the
area of the embedded systems and SoC design.
A retargetable ISA simulator requires a generic model, supported
by a language, to describe the architecture and its instruction set.
The simulator uses the architecture description to decode
instructions of the input program and execute them. The challenge
is to have a model that is efficient in terms of both quality of the
description and performance of the simulator. To have a high
quality description, the model must easily capture the architectural
information in a natural, compact and manageable form for a wide
range of architectures. On the other hand, to generate a high
performance simulator and to reduce the operations that the
simulator must do dynamically at run time, the model should
provide as much static information as possible about the
architecture and its instruction set.
Designing an efficient model that captures a wide range of
architectures is a hard problem because such architectures have
different instruction-set format complexities. There is a tradeoff
between speed and retargetability in ISA simulators. Some of the
retargetable simulators use a very general processor model and
support a wide range of architectures but are slow, while others
use some architectural or domain specific performance
improvements but support only a limited range of processors.
Also in some description languages, deriving a fast simulator
requires lengthy descriptions of all possible formats of
instructions.
In this paper, we present a retargetable simulation framework that
supports many variations of architectures with any instruction-set
complexity while generating high performance ISA simulators.
To achieve maximum retargetability, we have developed a generic
instruction model coupled with a decoding technique that flexibly
supports variations of instruction formats for widely differing
contemporary processors. This model can also be used to exploit
all possible instruction formats to generate optimized code for
them. We use this generic model to capture the behavior and
binary encoding of the instructions. The EXPRESSION
Architecture Description Language (ADL) [1] is used to capture
the structure of the architecture. The instruction descriptions,
based on our generic model, are very compact and easy to debug
and verify. In our framework, we have used the Instruction-Set
Compiled Simulation (IS-CS) technique [2] to generate fast and
flexible simulators by automatically generating the instruction
templates from the descriptions. Our retargetable framework is
generic enough to incorporate any other simulation optimization
technique as well.
The rest of the paper is organized as follows. Section 2 presents
related work addressing ISA simulator generation techniques and
distinguishes our approach. Section 3 outlines the retargetable
simulation framework. It describes three key components of the
framework: a generic instruction model, a decoding algorithm,
and the simulation code generation. Section 0 compares the
efficiency of the instruction model with other architecture
description languages and presents simulation performance results

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010…$5.00.

13

Structure
Generator

gcc

Static
instruction

decoder

H
ost C

++
C

om
piler

Target Application ADL Specification

Target Binary
Structural Info.

Library

Decoded Instructions

Sim
ulator

using two contemporary processor architectures: ARM7 and
SPARC. Section 5 concludes the paper.

2. RELATED WORK
An extensive body of recent work has addressed instruction-set
architecture simulation. A fast and retargetable simulation
technique is presented in [3]. It improves traditional static
compiled simulation by mapping the target machine registers to
the host machine registers through a low level code generation
interface. Retargetable simulators based on an ADL have been
proposed within the framework of FACILE [4], Sim-nML [5],
ISDL [6], and MIMOLA [7]. The proposed ADL in ISDL is
mainly suitable for assembly/binary code generation. FACILE is
optimized for out-of-order processor simulation; Sim-nML only
supports DSP processors. FLEXWARE Simulator [8] uses a
VHDL model of a generic parameterizable model. SimC [9] is
based on a machine description in ANSI C. It uses compiled
simulation and has limited retargetability. Babel [10] was
originally designed for retargeting the binary tools and has been
recently used for retargeting the SimpleScalar simulator [11].
The just-in-time cache compiled simulation (JIT-CCS) [12]
technique, the closest to our approach, combines some
retargetability, flexibility and high simulation performance. It uses
the LISA machine description and its performance improvement
is gained by caching the decoded instruction information. LISA
supports simple RISC like instruction formats and efficient
support of complex instruction formats requires extensive coding
in this language.
In contrast, our simulation framework efficiently supports a wide
variety of instruction formats supported by contemporary
processor architectures as well as architectures with complex
hybrid instruction sets. Our generic instruction model results in
very compact and easy to debug descriptions and the proposed
decode algorithm can extract the required information for any
simulator generation technique.

3. RETARGETABLE SIMULATION FRAMEWORK
In a retargetable ISA simulation framework, the range of
architectures that can be captured and the performance of the
generated simulators depend on three issues: first, the model
based on which the instructions are described; second, the
decoding algorithm that uses the instruction model to decode the
input binary program; and third, the execution method of decoded
instructions. These issues are equally important and ignoring any
of them results in a simulator that is either very general but slow
or very fast but restricted to some architecture domain. However,
the instruction model significantly affects the complexity of
decode and the quality of execution. We have developed a generic
instruction model coupled with a simple decoding algorithm that
lead to an efficient and flexible execution of decoded instructions.

Figure 1- Generating the simulator from ADL

Figure 1 shows our retargetable simulation framework that uses
the ADL specification of the architecture and the application
program binary (compiled by gcc) to generate the simulator. The
ADL captures behavior and structure of the target architecture.
We describe the binary encoding and behavior of instructions,
based on our generic instruction model, as described in Section
3.1. Using the instruction specifications from ADL, the Static
Instruction Decoder decodes the target program one instruction at
a time, as described in Section 3.2. It then generates the optimized
source code of the decoded instructions (Section 3.3), that is
loaded in the instruction memory.

Figure 2- Simulation Engine Flow

The Structure Generator compiles the structural information of
the ADL into components and objects that keep track of the state
of the simulated processor. It generates proper source code for
instantiating these components at run time.
The target independent components are described in the Library.
This library is finally combined with the Structural Information
and the Decoded Instructions and is compiled on the host machine
to get the final ISA simulator. Figure 2 shows the flow of the
simulation engine. This engine fetches the decoded instructions
from the instruction memory and executes them. If the simulator
detects that the program code of a previously executed address
has changed it initiates a re-decoding and then updates the
instruction memory. The simulation engine is specified by the
Library component. Therefore, by modifying this component, we
can integrate other simulation techniques and optimizations in our
retargetable framework.
In the remainder of this section, we describe the generic
instruction model used in the ADL for capturing the binary
encoding and behavior of instruction set. Then, we explain how
the decoding algorithm decodes the program binary using the
description of instructions in the ADL. Finally, we show how we
can generate fast and optimized code for simulation.

3.1 Generic Instruction Model
A major challenge in retargetable simulation is the ability to
capture a wide variety of instructions. We propose an instruction
model that is generic enough to capture variations of instruction
formats of contemporary processors. The focus of this model is on
the complexities of different instruction binary formats in
different architectures. As an illustrative example, we model the
integer arithmetic instructions of the Sparc V7 processor. The
completer description is shown in Figure 3.
Example 1: Sparc V7 [15] is a single-issue processor with 32-bit

instruction. The integer-arithmetic instructions, IntegerOps (as
shown below), perform certain arithmetic operation on two
source operands and write the result to the destination operand.
This subset of instructions is distinguished from the others by
the following bit mask:

Bitmask: 10xxxxx0 xxxxxxxx xxxxxxxx xxxxxxxx
IntergerOps: <opcode dest src1 src2>

A bit mask is a string of ‘1’, ‘0’ and ‘x’ symbols and it matches
the bit pattern of a binary instruction if and only if for each ‘1’ or

14

‘0’ in the mask, the binary instruction has a 1 or a 0 value in the
corresponding position respectively. The ‘x’ symbol matches with
both 1 and 0 values.
In this model, an instruction of a processor is composed of a
series of slots, I=<sl0, sl1,…>, and each slot contains only one
operation from a subset of operations. All the operations in an
instruction execute in parallel. Each operation is distinguished by
a mask pattern. Therefore, each slot (sli) contains a set of
operation-mask pairs (opi, mi) and is defined in the following
format. The length of an operation is equal to the length of mask
pattern.

sli=<(opi
0, mi

0) | (opi
1, mi

1) | …>
An operation class refers to a set of similar operations in the
instruction set that can appear in the same instruction slot and
have similar format. The previous slot description can be
rewritten using an operation class clops: sli=<(clOpsi, mi)>. For
example, integer arithmetic instructions in Sparc V7 can be
grouped in a class (IntegerOps) as shown below:

ISPARC = <(IntegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx)| … >

An operation class is composed of a set of symbols and an
expression that describes the behavior of the operation class in
terms of the values of its symbols. For example, the operation
class in Example 1 has four symbols: opcode, dest, src1 and src2.
The expression for this example will be: dest = fopcode(src1, src2).
Each symbol may have a different type depending on the bit
pattern of the operation instance in the program. For example, the
possible types for src2 symbol in Example 1 are register and
immediate integer. The value of a symbol depends on its type and
can be static or dynamic. For example, the value of a register
symbol is dynamic and is known only at run time, whereas the
value of an immediate integer symbol is static and is known at
compile time. Each symbol in an operation has a possible set of
types. A general operation class is then defined as:

clOps=<(s0, T0), (s1, T1), … | exp(s0, s1, …)>
where (si, Ti) are (symbol, type) pairs and exp(s0,s1,…) is the
behavior of the operations based on the values of the symbols.
The type of a symbol can be defined as a register (∈ Registers) or
an immediate constant (∈ Constants) or can be based on certain
micro-operations (∈ Operations). For example, a data processing
instruction in ARM (e.g., add) uses shift (micro-operation) to
compute the second source operand, known as ShifterOperand.
Each possible type of a symbol is coupled with a mask pattern
that determines what bits in that operation must be checked to find
out the actual type of the corresponding symbol. Possible types of
a symbol are defined as:

x)*}|0|(1m Constants,RegistersOperationst|m){(t,T ∈∪∪∈=
For example, the opcode symbol in Example 1 can be any of valid
integer arithmetic operations and can be described as:

 OpTypes = {
 (Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),
 (Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx),
 … }

Note that this provides more freedom for describing the
operations because here the symbols are not directly mapped to
some contiguous bits in the instruction and a symbol can
correspond to multiple bit positions in the instruction binary.
The actual register in a processor is defined by its class and its
index. The index of a register in an instruction is defined by
extracting a slice of the instruction bit pattern and interpreting it
as an unsigned integer. An instruction can also use a specific

register with a fixed index, as in a branch instruction that update
the program counter. A register is defined by:

r= [regClass, i, j] | [regClass, index]
where i and j define the boundary of index bit slice in the
instruction. For example, the dest symbol (in Example 1) is from
25th to 29th bits in the instruction, and is an integer register. Its
type can be described as:

DestType = [IntegerRegClass, 29, 25].
Similarly a portion of an instruction may be considered as a
constant. For example, one bit in an instruction can be equivalent
to a Boolean type or a set of bits can make an integer immediate.
It is also possible to have constants with fixed values in the
instructions. A constant type is defined by

value#type,# | j#i,type,#c = where i and j show the bit positions
of the constant and type is a scalar type such as integer, Boolean,
float, etc.

SPARCInst = $
 (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) | …
$;
IntegerOp = <
 (opcode, OpTypes), (dest, DestType), (src1, Src1Type), (src2, Src2Type)
 | { dest = opcode(src1, src2); }
>;
OpTypes = {
 (Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),
 (Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx),
 (Or , xxxx-xxxx 0010-xxxx xxxx-xxxx xxxx-xxxx),
 (And, xxxx-xxxx 0001-xxxx xxxx-xxxx xxxx-xxxx),
 (Xor, xxxx-xxxx 0011-xxxx xxxx-xxxx xxxx-xxxx),
 …
};
DestType = [IntegerRegClass, 29, 25];
Src1Type = [IntegerRegClass, 18, 14];
Src2Type = {
 ([IntegerRegClass,4,0], xxxx-xxxx xxxx-xxxx xx0x-xxxx xxxx-xxxx),
 (#int,12,0#, xxxx-xxxx xxxx-xxxx xx1x-xxxx xxxx-xxxx)
};

Figure 3- Integer arithmetic instcutions in SPARC
Figure 3 shows the complete description of integer-arithmetic
instructions in SPARC processor (Example 1). Figure 4 describes
how to capture data-processing instructions of the ARM processor
using our instruction model. ARM has complex 32-bit instruction
formats that are all conditional. In data-processing operations
(DPOperation), if the condition (16 possibilities) is true, some
arithmetic operation (16 possibilities) is performed on the two
source operands and the result is written in the destination
operand. The destination and the first source operand are always
registers. The second source operand, called ShifterOperand, has
three fields: shift operand (register/immediate), shift operation (5
types) and shift value (register/immediate). The shift value shows
the number of shifts that must be performed on the shift operand
by the specified shift operation. For example, the “ADD r1, r2, r3
sl #10” is equivalent to “r1=r2+(r3 << 10)” expression. If
indicated in the instruction opcode, the flag bits (Z, N, C, and V)
are updated. Therefore, 16x16x(2x5x2)x2=10240 formats of
instructions binaries are possible in this class of instructions. All
these formats are covered by the description of Figure 4. In the
next sections, we show how all these possibilities are explored for
generating an optimized code for each type of instruction.
We defined a set of macros that can be used for compact
description. For example mask(8, 2,“10”) macro generates an 8
bit mask that has a ‘10’ at position 2 i.e. xxxx-x10x.
In this model, instructions that have similar format are grouped
together into one class. Most of the time this information is
readily available from the instruction set architecture manual. For

15

example, we defined six instruction classes for the ARM
processor viz., Data Processing, Branch, LoadStore, Multiply,
Multiple LoadStore, Software Interrupt, and Swap.
In this section, we have demonstrated two key features of our
instruction model: first, it is generic enough to capture
architectures with complex instruction sets; second, it captures the
instructions efficiently by allowing instruction grouping.

ARMInst = $
 (DPOperation, xxxx-001x xxxx-xxxx xxxx-xxxx xxxx-xxxx) |
 (DPOperation, xxxx-000x xxxx-xxxx xxxx-xxxx xxx0-xxxx) |
 (DPOperation, xxxx-000x xxxx-xxxx xxxx-xxxx 0xx1-xxxx) |
 …
$;
DPOperation = <
 (cond, Conditions), (opcode, Operations), (dest, [intReg,15,12]),
 (src1, [intReg,19,16]), (src2, ShifterOperand),
 (updateFlag, {(true, mask(32, 20, “1”), (false, mask(32, 20, “0”)})
 | {
 if (cond()) {
 dest = opcode(src1, src2);
 if (updateFlags) {/*Update flags*/}
 }
 }
>;
Conditions = {
 (Equal, mask(32, 31, “0000”), (NotEqual, mask(32, 31, “0001”),
 (CarrySet, mask(32, 31, “0010”), (CarryClear, mask(32, 31, “0011”),
 …, (Always, mask(32, 31, “1110”), (Never, mask(32, 31, “1111”)
};
Operations = {
 (And, mask(32, 24, “0000”), (XOr, mask(32, 24, “0001”),
 (Sub, mask(32, 24, “0010”), (Add, mask(32, 24, “0100”), …
};
ShifterOperand = <
 (op, {([intReg,11,8], mask(32,4,“0”)), (#int,11,7#, mask(32,7,“0xx1”))}),
 (sh, {(ShiftLeft, mask(32,6,”00)), (ShiftRight, mask(32,6,”01)), …}),
 (val, {([intReg,3,0], mask(32,25,“0”)), (#int,7,0#, mask(32,25,“1”))})
 | { sh(op, val) }
>;

Figure 4- Data processing instructions in ARM

3.2 Generic Instruction Decoder
A key requirement in a retargetable simulation framework is the
ability to automatically decode application binaries of different
processors architectures. This necessitates a generic decoding
technique that can decode the application binaries based on
instruction specifications. In this section we propose a generic
instruction decoding technique that is customizable depending on
the instruction specifications captured through our generic
instruction model.

Algorithm 1: StaticInstructionDecoder
Input: Target Program Binary Appl, Instruction Specifications InstSpec;
Output: Decoded Program DecodedOperations;
Begin
 Addr = Address of first instruction in App; DecodedOperations={};
 While (Appl not processed completely)
 BinStream = Binary stream in Appl starting at Addr;
 (Exp, AddrIncrement) = DecodeOperation (BinStream, InstSpec);
 DecodedOperations = DecodedOperations U <Exp, Addr>;
 Addr = Addr + AddrIncrement;
 EndWhile;
 return DecodedOperations ;
End;

Algorithm 1 describes how Static Instruction Decoder of Figure 1
works. This algorithm accepts the target program binary and the
instruction specification as inputs and generates a source file
containing decoded instructions as output. Iterating on the input
binary stream, it finds an operation, decodes it using Algorithm 2,
and adds the decoded operation to the output source file.
Algorithm 2 also returns the length of the current operation that is
used to determine the beginning of the next operation.

Algorithm 2 gets a binary stream and a set of specifications
containing operation or micro-operation classes. The binary
stream is compared with the elements of the specification to find
the specification-mask pair that matches with the beginning of the
stream. The length of the matched mask defines the length of the
operation that must be decoded. The types of symbols are
determined by comparing their masks with the binary stream.
Finally, using the symbol types, all symbols are replaced with
their values in the expression part of the corresponding
specification. The resulting expression is the behavior of the
operation. This behavior and the length of the decoded operation
are produced as outputs.

Algorithm 2: DecodeOperation
Input: Binary Stream BinStream, Specifications Spec;
Output: Decoded Expression Exp, Integer DecodedStreamSize;
Begin
 (OpDesc, OpMask) = findMatchingPair(Spec, BinStream);
 OpBinary = initial part of BinStream whose length is equal to OpMask;
 Exp = the expression part of OpDesc;
 ForEach pair of (s, T) in the OpDesc
 Find t in T whose mask matches the OpBinary;
 v = ValueOf(t, OpBinary);
 Replace s with v in Exp;
 EndFor
 return (Exp , size(OpBinary));
End;

Consider the following SPARC Add operation example and its
binary pattern:

31 23 15 7
Add g1, #10, g2 1000-0100 0000-0000 0110-0000 0000-1010

Using the specifications of Figure 3, in the first line of Algorithm
2, the (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx)
pair matches with the instruction binary. This means that the
IntegerOps operation class matches this operation. It calls
Algorithm 3 to decode the symbols of IntegerOps viz. opcode,
dest, src1, src2.

Algorithm 3: ValueOf
Input: Type t, Operation Binary OpBinary;
Output: Extracted Value extValue;
Begin
 Switch (t)
 case #type, value#: extValue = (type) value; endcase
 case #type, i, j#: extValue = (type) OpBinary[i:j]; endcase
 case [regClass, index]: extValue = REGS[regClass][index]; endcase
 case [regClass, i, j]: extValue = REGS[regClass][OpBinary[i:j]]; endcase
 case Operation Spec: (extValue, tmp) = DecodeOperation(OpBinary, t);
 endcase
 EndSwitch;
 return extValue;
End;

Algorithm 3 gets a symbol type and an operation binary
(OpBinary), and returns the actual value of the corresponding
symbol. If the type itself is a micro-operation specification, the
decode algorithm (Algorithm 2) is called again and the result is
returned. If the type is not a fixed constant (register), the value is
calculated by interpreting the proper portion of the operation
binary (OpBinary[i:j]) as a constant (register index).
In the previous example, the four symbols (opcode, dest, src1,
src2) are decoded using Algorithm 3. Symbol opcode’s type is
OpTypes in which the mask pattern of Add matches the operation
pattern. So the value of opcode is Add function. Symbol dest’s
type is DestType which is a register type. It is an integer register
whose index is bits 25th to 29th (00010), i.e. 2. Similarly, the
values for the symbols src1 and src2 can be computed. By
replacing these values in the expression part of the IntegerOps the

16

final behavior of the operation would be: g2 = Add(g1, 10); which
means g2 = g1 + 10.
The complexity of the decoding algorithm is O(n*m*log2m), where
n is the number of operations in the input binary program and m is
the number of operations in the instruction set.

3.3 Generating Fast Code for Simulators
Typically in simulators, for each instruction of the simulated
architecture instruction set, there is a general piece of code (in
form of a function or switch-case statements) that simulates the
behavior of the instances of that instruction. However, these
instances may have a constant value for a particular field that can
be used for further optimizations. For example, a majority of the
ARM instructions execute unconditionally (condition field has
value always) and hence it is a waste of time to check the
condition for such instructions every time they are executed. By
considering these constant (static) values and applying the partial
evaluation technique [14], it is possible to generate a customized
code for different formats of instructions. To take advantage of
such situations we need separate functions (or case statements) for
each and every possible format of instructions so that the function
can be optimized by the compiler at compile time and produce the
best performance at run time. In our instruction model, all of these
formats and their corresponding functions can be constructed by
generating all of the permutations of the symbol values in an
operation class. The number of generated formats (functions) can
be controlled by excluding some of the symbols or iterating only
on a subset of symbol values. Controlling the level of
optimizations and number of generated formats using the same
small description is one of the unique features of our model.
However, generating all of the instruction formats of an
instruction set may not be feasible in practice. For example, as
discussed in section 3.1, there are 10240 possible formats for the
data processing instructions of the ARM processor and generating
all these formats, imposes a huge overhead on the compiler. To
solve this problem in our framework, we generate the customized
code only for the instruction instances of the simulated program.
Furthermore, instead of generating distinct functions, we use C++
templates and customize them during decode. We generate a
template for each operation or micro-operation class specification.
For each symbol in the operation class the corresponding template
has a parameter in its parameter list. During the decode phase,
these parameters are replaced with the values of the symbols.
Finally during the compilation on host machine, these customized
templates are optimized by the compiler. After extracting the
templates in this way, we can use IS-CS technique for generating
a high performance simulator. The details of using and optimizing
these templates in IS-CS technique are described in [2]. Figure 5
shows the extracted template and its parameters for data-
processing instructions in ARM, described in Figure 4.

/* extracted template for data processing operations of ARM*/
template<class Conditions, class Operations, class ShifterOperand, bool
updateFlag >
class DPOperations {
 intReg dest, src1; ShifterOperand src2;
public:
 …
 virtual void execute() {
 if (Conditions::f()){
 dest = Operations::f(src1, src2);
 if (updateFlag){ Z = (dest == 0); N= (dest < 0); …}
 }
 }
};

Figure 5- Code generation for an ARM instruction

Note that the decode algorithm, described in Section 3.2, relies
only on the descriptions of instructions to extracts the values of
symbols corresponding to an instruction instance. These values
can be used either dynamically in some conditional statements or
statically to generated the source code of proper functions.
Therefore the generic instruction model and the proposed decode
algorithm can be used in any simulation technique and does not
depend on IS-CS technique.

4. EXPERIMENTS
In order to evaluate the applicability of our framework, we
modeled two contemporary, yet very different, processors:
ARM7[16] and SPARC [15] to demonstrate the usefulness of our
approach. The ARM7 processor is a RISC machine with fairly
complex instruction set. We used arm-linux-gcc for generating
target binaries for ARM7 and validated the generated simulator by
comparing traces with Simplescalar-arm [11] simulator. The
Sparc V7 is a high performance RISC processor with 32-bit
instructions. We used gcc3.1 to generate the target binaries for
Sparc and validated the generated simulator by comparing traces
with Shade [13] simulator. We have used benchmarks from SPEC
95 and DSP domains. In this section we show the results using
three application programs: adpcm, 099.go and 129.compress.

4.1 Efficiency of description
It took us one man-month for each processor to study the manual
and generate the corresponding simulator. This very short
generation time was mainly because of the three following
reasons. First, the description of instructions in our model is very
similar to their representation in the architecture manual and
therefore we needed a simple mapping between manual and the
language. Second, the descriptions are very compact and efficient.
For example by adding a very small code for an operation and its
mask to the Operations class in the Figure 4, we can add a new
instruction and reuse the rest of the description. Third, since all of
the operations in an operation class share the same expression, it
is very easy to debug and verify the descriptions. For example, in
Figure 4 if the expression of DPOperations class works correctly
for Add, it will also work well for Sub and other operations that
can be replaced with symbol opcode.
01: RESOURCE {
02: PROGRAM_MEMORY byte8 prog_mem[0x0..0x1000];
03: REGISTER word32 R[1..15];
04: }
05: OPERATION ADD {
06: DECLARE { GROUP dst,src1,src2 = {Register}}
07: CODING { 0b01011 0b0000 src1 src2 dst}
08: SYNTAX { "ADD" dst "," src1 "," src2 }
09: BEHAVIOR{ dst = src1 + src2}
10: }
11: OPERATION Register {
12: DECLARE { LABEL index; }
13: CODING { index=0bx[4]}
14: SYNTAX { "R" index }
15: EXPRESSION { R[index]}}

Figure 6- LISA sample code for Add operation
Figure 6 shows a sample code in LISA language taken from a
recent publication [12]. In this figure an operation Add with
register parameters is described. To describe an Add operation
with immediate integer operands the ‘OPERATION ADD’
section (lines 5-10) must be repeated again with slight
modification. In other words, for every possible addressing mode
in the architecture, a separate section for an operation is needed in
LISA description. In LISA, a C function is generated in the
simulator for the behavior section of each operation. Therefore to
exploit different instruction formats and generate faster

17

simulation, the formats must be explicitly included in the
description. For example consider the data processing instructions
in ARM (Section 3.1). In these operations since one of the sources
can be a ShifterOperand addressing mode, each instruction needs
at least five OPERATION sections. Now consider the
optimizations discussed in Section 3.3. Since all ARM
instructions are predicated but majority of them execute
unconditionally in a program, we can generate two formats for
each instructions: the conditional version that checks the proper
condition, and the unconditional one that executes faster. This is
only one of the possible optimizations. Considering five formats
for the ShifterOperand addressing mode and only two formats for
the optimization, each instruction needs ten OPERATION
sections similar to the one presented in lines 5-10 in Figure 6.
Finally for sixteen instructions in this group we need at least
16x10x5=800 lines in the LISA description. As shown in Figure
4, in our mode, this group of instructions is represented by only
three operation classes (DPOperation, Conditions, and
Operations) in less than 50 lines.
A similar approach to LISA is used in Babel [10]. In Babel, a
separate section is needed to describe each individual format of an
instruction. For example Sparc description in Babel is more than
2300 lines long while its description with our model contains less
than 400 lines of code.
Additionally, in these languages, the instruction can contain only
contiguous fields. Therefore dummy or multiple fields are needed
to describe non-contiguous opcodes (as in Sparc). These extra
fields not only increase the size of description but also make the
decoder inefficient. On the other hand, since in our model we use
bit masks, the descriptions are more natural and does not require
such tricks in similar cases.

4.2 Performance of the simulator
The IS-CS performance results presented in [2] are based on
generating the instruction templates manually. We extracted
similar instruction templates automatically from our instruction
model and generated the simulator. Typically retargetable
approaches slow down the simulation. In our framework, since the
generation of the simulator and extraction of the templates is
completely separate from the simulation engine itself, there are no
negative effects imposed on the performance.

0
2
4
6
8

10
12
14

ARM7 Sparc

M
IP

S

adpcm 129.compress 099.go

Figure 7- Simulation Results of ARM7 & Sparc processors

Figure 7 shows the simulation performance of our technique on
both ARM7 and Sparc processor models. The performance results
of the retargetable framework are exactly similar to that of IS-CS.
We achieved 30%-50% performance improvement compared to
best published results in this category of simulators. Note that, the
overall performance of ARM simulator is slightly better than that
of Sparc. ARM instructions are more complex and in most cases
are equivalent to more than one Sparc instruction. Therefore
optimizing one ARM instruction is equivalent to optimizing
multiple instructions in Sparc. Also simulating Sparc model on a

Pentium host machine requires a data encoding translation (Big-
Endian to Little-Endian).

5. SUMMARY
In this paper, we presented a retargetable framework for
generating fast and flexible ISA simulator. We proposed a generic
instruction model as well as a generic decode algorithm that can
specify and decode many variations of instruction binary formats
with any complexity. We demonstrated the applicability of the
approach on two radically different architectures, viz. ARM and
Sparc processors. Use of symbols in the generic instruction model
enables maximum reuse of descriptions among operations and
results in very compact descriptions. It also simplifies the debug
and verification of the whole description. Furthermore, describing
instructions in our generic model is very simple due to its
similarity with the architecture manual. The ISA described using
our generic instruction model is an order of magnitude smaller in
size than other languages such as LISA and Babel. To achieve
high performance simulation, we have integrated the IS-CS
simulation technique in our retargetable framework by
automatically extracting the required templates for simulating the
instructions. Since the generation of the simulator is completely
separate from the simulation engine, we can incorporate any other
fast simulation technique without loosing performance. Future
work will concentrate on using this framework for cycle accurate
simulation of complex architectures including reconfigurable
platforms.

6. ACKNOWLEDGMENTS
This work was partially supported by NSF grants CCR-0203813
and CCR-0205712.

7. REFERENCE
[1] A.Halambi et al. EXPRESSION: A Language for Architecture
Exploration through Compiler/Simulator Retargetability. DATE, 1999.
[2] M.Reshadi et al, Instruction-Set Compiled Simulation: A Technique
for Fast and Flexible Instruction Set Simulation, DAC, 2003.
[3] J.Zhu et al. A Retargetable, Ultra-fast Instruction Set Simulator.
DATE, 1999.
[4] E.Schnarr et al. Facile: A language and compiler for high-performance
processor simulators. PLDI, Jun. 2001.
[5] M.Hartoog et al. Generation of Software Tools from Processor
Descriptions for Hardware/Software Codesign. DAC, 1997.
[6] G.Hadjiyiannis et al. ISDL: An instruction set description language for
retargetability. In Proc. DAC, 1997.
[7] R.Leupers et al. Generation of Interpretive and Compiled Instruction
Set Simulators. DAC, 1999.
[8] P.Paulin et al. FlexWare: A flexible firmware development
environment for embedded systems. In Proc. Dagstuhl Code
GenerationWorkshop, 1994.
[9] F.Engel et al. A generic tool set for application specific processor
architectures. (CODES), May 2000.
[10] W.S.Mong et al, A Retargetable Micro-architecure Simulator. DAC,
2003.
[11] Simplescalar Home page: http://www.simplescalar.com
[12] A.Nohl et al. A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation. DAC, 2002.
[13] R.F.Cmelik et al. Shade: A fast instruction set simulator for execution
profiling. ACM SIGMETTRICS Conference on Measurment and
Modeling of computer systems, Philadelphia, 1996.
[14] Y. Futamura. Partial Evaluation of Computation Process: an
Approach to a Compiler-Compiler. Systems, Computers, Controls, 1971.
[15] Sparc Version 7 Instruction set manual: http://www.sun.com
[16] The ARM7 User Manual, http://www.arm.com

18

