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ABSTRACT 
Instruction-set architecture (ISA) simulators are an integral part of 
today’s processor and software design process. While increasing 
complexity of the architectures demands high performance 
simulation, the increasing variety of available architectures makes 
retargetability a critical feature of an instruction-set simulator. 
Retargetability requires generic models while high performance 
demands target specific customizations. To address these 
contradictory requirements, we have developed a generic 
instruction model and a generic decode algorithm that facilitates 
easy and efficient retargetability of the ISA-simulator for a wide 
range of processor architectures such as RISC, CISC, VLIW and 
variable length instruction set processors. The instruction model is 
used to generate compact and easy to debug instruction 
descriptions that are very similar to that of architecture manual. 
These descriptions are used to generate high performance 
simulators. The generation of the simulator is completely separate 
from the simulation engine. Hence, we can incorporate any fast 
simulation technique in our retargetable framework without 
loosing performance. We illustrate the retargetability of our 
approach using two popular, yet different realistic architectures: 
the Sparc and the ARM. 
Categories and Subject Descriptors 
I.6.5 [Simulation And Modeling]: Model Development; 
I.6.7 [Simulation And Modeling]: Simulation Support Systems 
General Terms: Design, Language, Performance 
Keywords: Retargetable Instruction-Set Simulation, Generic 
Instruction Model, Instruction Binary Encoding, Decode 
Algorithm, Architecture Description Language. 

1. INTRODUCTION 
Instruction-set architecture (ISA) simulators are indispensable 
tools in the development of new architectures. They are used to 
validate an architecture design, a compiler design as well as to 
evaluate architectural design decisions during design space 
exploration. Running on a host machine, these tools mimic the 
behavior of an application program on a target machine. These 
simulators should be fast to handle the increasing complexity of 
processors, flexible to handle all features of applications and 
processors, e.g. runtime self modifying codes, multi mode 
processors; and retargetable to support a wide spectrum of 
architectures. Although in the past years, performance has been 
the most important quality measure for the ISA simulators, 

retargetability is now an important concern, particularly in the 
area of the embedded systems and SoC design.  
A retargetable ISA simulator requires a generic model, supported 
by a language, to describe the architecture and its instruction set. 
The simulator uses the architecture description to decode 
instructions of the input program and execute them. The challenge 
is to have a model that is efficient in terms of both quality of the 
description and performance of the simulator. To have a high 
quality description, the model must easily capture the architectural 
information in a natural, compact and manageable form for a wide 
range of architectures. On the other hand, to generate a high 
performance simulator and to reduce the operations that the 
simulator must do dynamically at run time, the model should 
provide as much static information as possible about the 
architecture and its instruction set.  
Designing an efficient model that captures a wide range of 
architectures is a hard problem because such architectures have 
different instruction-set format complexities. There is a tradeoff 
between speed and retargetability in ISA simulators. Some of the 
retargetable simulators use a very general processor model and 
support a wide range of architectures but are slow, while others 
use some architectural or domain specific performance 
improvements but support only a limited range of processors. 
Also in some description languages, deriving a fast simulator 
requires lengthy descriptions of all possible formats of 
instructions. 
In this paper, we present a retargetable simulation framework that 
supports many variations of architectures with any instruction-set 
complexity while generating high performance ISA simulators. 
To achieve maximum retargetability, we have developed a generic 
instruction model coupled with a decoding technique that flexibly 
supports variations of instruction formats for widely differing 
contemporary processors. This model can also be used to exploit 
all possible instruction formats to generate optimized code for 
them. We use this generic model to capture the behavior and 
binary encoding of the instructions. The EXPRESSION 
Architecture Description Language (ADL) [1] is used to capture 
the structure of the architecture. The instruction descriptions, 
based on our generic model, are very compact and easy to debug 
and verify. In our framework, we have used the Instruction-Set 
Compiled Simulation (IS-CS) technique [2] to generate fast and 
flexible simulators by automatically generating the instruction 
templates from the descriptions. Our retargetable framework is 
generic enough to incorporate any other simulation optimization 
technique as well. 
The rest of the paper is organized as follows. Section 2 presents 
related work addressing ISA simulator generation techniques and 
distinguishes our approach. Section 3 outlines the retargetable 
simulation framework. It describes three key components of the 
framework: a generic instruction model, a decoding algorithm, 
and the simulation code generation. Section 0 compares the 
efficiency of the instruction model with other architecture 
description languages and presents simulation performance results 
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using two contemporary processor architectures: ARM7 and 
SPARC. Section 5 concludes the paper. 

2. RELATED WORK 
An extensive body of recent work has addressed instruction-set 
architecture simulation. A fast and retargetable simulation 
technique is presented in [3]. It improves traditional static 
compiled simulation by mapping the target machine registers to 
the host machine registers through a low level code generation 
interface. Retargetable simulators based on an ADL have been 
proposed within the framework of FACILE [4], Sim-nML [5], 
ISDL [6], and MIMOLA [7]. The proposed ADL in ISDL is 
mainly suitable for assembly/binary code generation. FACILE is 
optimized for out-of-order processor simulation; Sim-nML only 
supports DSP processors. FLEXWARE Simulator [8] uses a 
VHDL model of a generic parameterizable model. SimC [9] is 
based on a machine description in ANSI C. It uses compiled 
simulation and has limited retargetability. Babel [10] was 
originally designed for retargeting the binary tools and has been 
recently used for retargeting the SimpleScalar simulator [11].   
The just-in-time cache compiled simulation (JIT-CCS) [12] 
technique, the closest to our approach, combines some 
retargetability, flexibility and high simulation performance. It uses 
the LISA machine description and its performance improvement 
is gained by caching the decoded instruction information. LISA 
supports simple RISC like instruction formats and efficient 
support of complex instruction formats requires extensive coding 
in this language.  
In contrast, our simulation framework efficiently supports a wide 
variety of instruction formats supported by contemporary 
processor architectures as well as architectures with complex 
hybrid instruction sets. Our generic instruction model results in 
very compact and easy to debug descriptions and the proposed 
decode algorithm can extract the required information for any 
simulator generation technique.  

3. RETARGETABLE SIMULATION FRAMEWORK 
In a retargetable ISA simulation framework, the range of 
architectures that can be captured and the performance of the 
generated simulators depend on three issues: first, the model 
based on which the instructions are described; second, the 
decoding algorithm that uses the instruction model to decode the 
input binary program; and third, the execution method of decoded 
instructions. These issues are equally important and ignoring any 
of them results in a simulator that is either very general but slow 
or very fast but restricted to some architecture domain. However, 
the instruction model significantly affects the complexity of 
decode and the quality of execution. We have developed a generic 
instruction model coupled with a simple decoding algorithm that 
lead to an efficient and flexible execution of decoded instructions. 

 

Figure 1- Generating the simulator from ADL 

Figure 1 shows our retargetable simulation framework that uses 
the ADL specification of the architecture and the application 
program binary (compiled by gcc) to generate the simulator. The 
ADL captures behavior and structure of the target architecture. 
We describe the binary encoding and behavior of instructions, 
based on our generic instruction model, as described in Section 
3.1. Using the instruction specifications from ADL, the Static 
Instruction Decoder decodes the target program one instruction at 
a time, as described in Section 3.2. It then generates the optimized 
source code of the decoded instructions (Section 3.3), that is 
loaded in the instruction memory. 

 
Figure 2- Simulation Engine Flow 

The Structure Generator compiles the structural information of 
the ADL into components and objects that keep track of the state 
of the simulated processor. It generates proper source code for 
instantiating these components at run time. 
The target independent components are described in the Library. 
This library is finally combined with the Structural Information 
and the Decoded Instructions and is compiled on the host machine 
to get the final ISA simulator. Figure 2 shows the flow of the 
simulation engine. This engine fetches the decoded instructions 
from the instruction memory and executes them. If the simulator 
detects that the program code of a previously executed address 
has changed it initiates a re-decoding and then updates the 
instruction memory. The simulation engine is specified by the 
Library component. Therefore, by modifying this component, we 
can integrate other simulation techniques and optimizations in our 
retargetable framework. 
In the remainder of this section, we describe the generic 
instruction model used in the ADL for capturing the binary 
encoding and behavior of instruction set. Then, we explain how 
the decoding algorithm decodes the program binary using the 
description of instructions in the ADL. Finally, we show how we 
can generate fast and optimized code for simulation. 

3.1 Generic Instruction Model 
A major challenge in retargetable simulation is the ability to 
capture a wide variety of instructions. We propose an instruction 
model that is generic enough to capture variations of instruction 
formats of contemporary processors. The focus of this model is on 
the complexities of different instruction binary formats in 
different architectures. As an illustrative example, we model the 
integer arithmetic instructions of the Sparc V7 processor. The 
completer description is shown in Figure 3. 
Example 1: Sparc V7 [15] is a single-issue processor with 32-bit 

instruction. The integer-arithmetic instructions, IntegerOps (as 
shown below), perform certain arithmetic operation on two 
source operands and write the result to the destination operand. 
This subset of instructions is distinguished from the others by 
the following bit mask: 

Bitmask: 10xxxxx0 xxxxxxxx xxxxxxxx xxxxxxxx 
IntergerOps: <opcode   dest   src1   src2> 

A bit mask is a string of ‘1’, ‘0’ and ‘x’ symbols and it matches 
the bit pattern of a binary instruction if and only if for each ‘1’ or 
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‘0’ in the mask, the binary instruction has a 1 or a 0 value in the 
corresponding position respectively. The ‘x’ symbol matches with 
both 1 and 0 values. 
In this model, an instruction of a processor is composed of a 
series of slots, I=<sl0, sl1,…>, and each slot contains only one 
operation from a subset of operations. All the operations in an 
instruction execute in parallel. Each operation is distinguished by 
a mask pattern. Therefore, each slot (sli) contains a set of 
operation-mask pairs (opi, mi) and is defined in the following 
format. The length of an operation is equal to the length of mask 
pattern.  

sli=<(opi
0, mi

0) | (opi
1, mi

1) | …> 
An operation class refers to a set of similar operations in the 
instruction set that can appear in the same instruction slot and 
have similar format. The previous slot description can be 
rewritten using an operation class clops: sli=<(clOpsi, mi)>. For 
example, integer arithmetic instructions in Sparc V7 can be 
grouped in a class (IntegerOps) as shown below: 

ISPARC =  <(IntegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx)| … > 
 
An operation class is composed of a set of symbols and an 
expression that describes the behavior of the operation class in 
terms of the values of its symbols. For example, the operation 
class in Example 1 has four symbols: opcode, dest, src1 and src2. 
The expression for this example will be: dest = fopcode(src1, src2). 
Each symbol may have a different type depending on the bit 
pattern of the operation instance in the program. For example, the 
possible types for src2 symbol in Example 1 are register and 
immediate integer. The value of a symbol depends on its type and 
can be static or dynamic. For example, the value of a register 
symbol is dynamic and is known only at run time, whereas the 
value of an immediate integer symbol is static and is known at 
compile time. Each symbol in an operation has a possible set of 
types. A general operation class is then defined as:  

clOps=<(s0, T0), (s1, T1), … | exp(s0, s1, …)> 
where (si, Ti) are (symbol, type) pairs and exp(s0,s1,…) is the 
behavior of the operations based on the values of the symbols. 
The type of a symbol can be defined as a register (∈ Registers) or 
an immediate constant (∈ Constants) or can be based on certain 
micro-operations (∈ Operations). For example, a data processing 
instruction in ARM (e.g., add) uses shift (micro-operation) to 
compute the second source operand, known as ShifterOperand. 
Each possible type of a symbol is coupled with a mask pattern 
that determines what bits in that operation must be checked to find 
out the actual type of the corresponding symbol. Possible types of 
a symbol are defined as: 

x)*}|0|(1m Constants,RegistersOperationst|m){(t,T ∈∪∪∈=
For example, the opcode symbol in Example 1 can be any of valid 
integer arithmetic operations and can be described as: 

 OpTypes = {  
  (Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),  
  (Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx),  
  … } 

Note that this provides more freedom for describing the 
operations because here the symbols are not directly mapped to 
some contiguous bits in the instruction and a symbol can 
correspond to multiple bit positions in the instruction binary. 
The actual register in a processor is defined by its class and its 
index. The index of a register in an instruction is defined by 
extracting a slice of the instruction bit pattern and interpreting it 
as an unsigned integer. An instruction can also use a specific 

register with a fixed index, as in a branch instruction that update 
the program counter. A register is defined by:  

r= [regClass, i, j] | [regClass, index] 
where i and j define the boundary of index bit slice in the 
instruction. For example, the dest symbol (in Example 1) is from 
25th to 29th bits in the instruction, and is an integer register. Its 
type can be described as: 

DestType = [IntegerRegClass, 29, 25]. 
Similarly a portion of an instruction may be considered as a 
constant. For example, one bit in an instruction can be equivalent 
to a Boolean type or a set of bits can make an integer immediate. 
It is also possible to have constants with fixed values in the 
instructions. A constant type is defined by 

value#type,#  |  j#i,type,#c =  where i and j show the bit positions 
of the constant and type is a scalar type such as integer, Boolean, 
float, etc. 

SPARCInst = $  
 (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) |  … 
$; 
IntegerOp = <  
 (opcode, OpTypes), (dest, DestType), (src1, Src1Type),  (src2, Src2Type)  
 | { dest = opcode(src1, src2); } 
>; 
OpTypes = { 
 (Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),  
 (Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx),  
 (Or , xxxx-xxxx 0010-xxxx xxxx-xxxx xxxx-xxxx),  
 (And, xxxx-xxxx 0001-xxxx xxxx-xxxx xxxx-xxxx),  
 (Xor, xxxx-xxxx 0011-xxxx xxxx-xxxx xxxx-xxxx),  
 …  
}; 
DestType = [IntegerRegClass, 29, 25]; 
Src1Type = [IntegerRegClass, 18, 14]; 
Src2Type = { 
 ([IntegerRegClass,4,0], xxxx-xxxx xxxx-xxxx xx0x-xxxx xxxx-xxxx),  
 (#int,12,0#, xxxx-xxxx xxxx-xxxx xx1x-xxxx xxxx-xxxx) 
}; 

Figure 3- Integer arithmetic instcutions in SPARC 
Figure 3 shows the complete description of integer-arithmetic 
instructions in SPARC processor (Example 1). Figure 4 describes 
how to capture data-processing instructions of the ARM processor 
using our instruction model. ARM has complex 32-bit instruction 
formats that are all conditional. In data-processing operations 
(DPOperation), if the condition (16 possibilities) is true, some 
arithmetic operation (16 possibilities) is performed on the two 
source operands and the result is written in the destination 
operand. The destination and the first source operand are always 
registers. The second source operand, called ShifterOperand, has 
three fields: shift operand (register/immediate), shift operation (5 
types) and shift value (register/immediate). The shift value shows 
the number of shifts that must be performed on the shift operand 
by the specified shift operation. For example, the “ADD r1, r2, r3 
sl #10” is equivalent to “r1=r2+(r3 << 10)” expression. If 
indicated in the instruction opcode, the flag bits (Z, N, C, and V) 
are updated. Therefore, 16x16x(2x5x2)x2=10240 formats of 
instructions binaries are possible in this class of instructions. All 
these formats are covered by the description of Figure 4. In the 
next sections, we show how all these possibilities are explored for 
generating an optimized code for each type of instruction. 
We defined a set of macros that can be used for compact 
description. For example mask(8, 2,“10”) macro generates an 8 
bit mask that has a ‘10’ at position 2 i.e. xxxx-x10x. 
In this model, instructions that have similar format are grouped 
together into one class. Most of the time this information is 
readily available from the instruction set architecture manual. For 
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example, we defined six instruction classes for the ARM 
processor viz., Data Processing, Branch, LoadStore, Multiply, 
Multiple LoadStore, Software Interrupt, and Swap. 
In this section, we have demonstrated two key features of our 
instruction model: first, it is generic enough to capture 
architectures with complex instruction sets; second, it captures the 
instructions efficiently by allowing instruction grouping. 

ARMInst = $ 
 (DPOperation, xxxx-001x xxxx-xxxx xxxx-xxxx xxxx-xxxx) |  
 (DPOperation, xxxx-000x xxxx-xxxx xxxx-xxxx xxx0-xxxx) |  
 (DPOperation, xxxx-000x xxxx-xxxx xxxx-xxxx 0xx1-xxxx) | 
 …  
$; 
DPOperation = <  
 (cond, Conditions), (opcode, Operations), (dest, [intReg,15,12]),  
 (src1, [intReg,19,16]), (src2, ShifterOperand),   
 (updateFlag, {(true, mask(32, 20, “1”), (false, mask(32, 20, “0”)}) 
 | {   
  if (cond()) { 
   dest = opcode( src1, src2);  
   if (updateFlags)  {/*Update flags*/}  
  }  
 } 
>; 
Conditions = {  
 (Equal, mask(32, 31, “0000”), (NotEqual, mask(32, 31, “0001”), 
 (CarrySet, mask(32, 31, “0010”), (CarryClear, mask(32, 31, “0011”),  
 …, (Always, mask(32, 31, “1110”), (Never, mask(32, 31, “1111”) 
}; 
Operations = {  
 (And, mask(32, 24, “0000”), (XOr, mask(32, 24, “0001”),  
 (Sub, mask(32, 24, “0010”), (Add, mask(32, 24, “0100”), … 
}; 
ShifterOperand = <  
 (op, {([intReg,11,8], mask(32,4,“0”)), (#int,11,7#, mask(32,7,“0xx1”))}),  
 (sh, {(ShiftLeft, mask(32,6,”00)), (ShiftRight, mask(32,6,”01)), …}),  
 (val, {([intReg,3,0], mask(32,25,“0”)), (#int,7,0#, mask(32,25,“1”))})  
 | {  sh(op, val)  } 
>; 

Figure 4- Data processing instructions in ARM 

3.2 Generic Instruction Decoder 
A key requirement in a retargetable simulation framework is the 
ability to automatically decode application binaries of different 
processors architectures. This necessitates a generic decoding 
technique that can decode the application binaries based on 
instruction specifications. In this section we propose a generic 
instruction decoding technique that is customizable depending on 
the instruction specifications captured through our generic 
instruction model. 

Algorithm 1: StaticInstructionDecoder 
Input: Target Program Binary Appl, Instruction Specifications InstSpec; 
Output: Decoded Program DecodedOperations; 
Begin 
  Addr = Address of first instruction in App;    DecodedOperations={}; 
 While (Appl not processed completely) 
  BinStream = Binary stream in Appl starting at Addr; 
  (Exp, AddrIncrement) = DecodeOperation (BinStream, InstSpec); 
   DecodedOperations  = DecodedOperations  U <Exp, Addr>; 
  Addr = Addr + AddrIncrement; 
 EndWhile; 
 return  DecodedOperations ; 
End; 

 
Algorithm 1 describes how Static Instruction Decoder of Figure 1 
works. This algorithm accepts the target program binary and the 
instruction specification as inputs and generates a source file 
containing decoded instructions as output. Iterating on the input 
binary stream, it finds an operation, decodes it using Algorithm 2, 
and adds the decoded operation to the output source file. 
Algorithm 2 also returns the length of the current operation that is 
used to determine the beginning of the next operation. 

Algorithm 2 gets a binary stream and a set of specifications 
containing operation or micro-operation classes. The binary 
stream is compared with the elements of the specification to find 
the specification-mask pair that matches with the beginning of the 
stream. The length of the matched mask defines the length of the 
operation that must be decoded. The types of symbols are 
determined by comparing their masks with the binary stream. 
Finally, using the symbol types, all symbols are replaced with 
their values in the expression part of the corresponding 
specification. The resulting expression is the behavior of the 
operation. This behavior and the length of the decoded operation 
are produced as outputs. 

Algorithm 2: DecodeOperation 
Input: Binary Stream BinStream, Specifications Spec; 
Output: Decoded Expression Exp, Integer DecodedStreamSize; 
Begin 
 (OpDesc, OpMask) = findMatchingPair(Spec, BinStream); 
 OpBinary = initial part of BinStream whose length is equal to OpMask; 
 Exp = the expression part of OpDesc; 
 ForEach pair of (s, T) in the OpDesc 
  Find t in T whose mask matches the OpBinary; 
  v = ValueOf(t, OpBinary); 
  Replace s with v in Exp; 
 EndFor 
 return (Exp , size(OpBinary)); 
End; 
 

 
Consider the following SPARC Add operation example and its 
binary pattern: 

31 23 15 7 
Add g1, #10, g2 1000-0100  0000-0000 0110-0000 0000-1010 

 
Using the specifications of Figure 3, in the first line of Algorithm 
2, the (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) 
pair matches with the instruction binary. This means that the 
IntegerOps operation class matches this operation. It calls 
Algorithm 3 to decode the symbols of IntegerOps viz. opcode, 
dest, src1, src2. 

Algorithm 3: ValueOf 
Input: Type t, Operation Binary OpBinary; 
Output: Extracted Value extValue; 
Begin 
 Switch (t) 
  case #type, value#: extValue = (type) value; endcase 
  case #type, i, j#: extValue = (type) OpBinary[i:j]; endcase 
  case [regClass, index]: extValue = REGS[regClass][index]; endcase 
  case [regClass, i, j]: extValue = REGS[regClass][ OpBinary[i:j]]; endcase 
  case Operation Spec: (extValue, tmp) = DecodeOperation(OpBinary, t); 
  endcase 
 EndSwitch; 
 return extValue; 
End;  

 
Algorithm 3 gets a symbol type and an operation binary 
(OpBinary), and returns the actual value of the corresponding 
symbol. If the type itself is a micro-operation specification, the 
decode algorithm (Algorithm 2) is called again and the result is 
returned. If the type is not a fixed constant (register), the value is 
calculated by interpreting the proper portion of the operation 
binary (OpBinary[i:j]) as a constant (register index). 
In the previous example, the four symbols (opcode, dest, src1, 
src2) are decoded using Algorithm 3. Symbol opcode’s type is 
OpTypes in which the mask pattern of Add matches the operation 
pattern. So the value of opcode is Add function. Symbol dest’s 
type is DestType which is a register type. It is an integer register 
whose index is bits 25th to 29th (00010), i.e. 2. Similarly, the 
values for the symbols src1 and src2 can be computed. By 
replacing these values in the expression part of the IntegerOps the 
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final behavior of the operation would be: g2 = Add(g1, 10); which 
means g2 = g1 + 10. 
The complexity of the decoding algorithm is O(n*m*log2m), where 
n is the number of operations in the input binary program and m is 
the number of operations in the instruction set. 

3.3 Generating Fast Code for Simulators 
Typically in simulators, for each instruction of the simulated 
architecture instruction set, there is a general piece of code (in 
form of a function or switch-case statements) that simulates the 
behavior of the instances of that instruction. However, these 
instances may have a constant value for a particular field that can 
be used for further optimizations. For example, a majority of the 
ARM instructions execute unconditionally (condition field has 
value always) and hence it is a waste of time to check the 
condition for such instructions every time they are executed. By 
considering these constant (static) values and applying the partial 
evaluation technique [14], it is possible to generate a customized 
code for different formats of instructions. To take advantage of 
such situations we need separate functions (or case statements) for 
each and every possible format of instructions so that the function 
can be optimized by the compiler at compile time and produce the 
best performance at run time. In our instruction model, all of these 
formats and their corresponding functions can be constructed by 
generating all of the permutations of the symbol values in an 
operation class. The number of generated formats (functions) can 
be controlled by excluding some of the symbols or iterating only 
on a subset of symbol values. Controlling the level of 
optimizations and number of generated formats using the same 
small description is one of the unique features of our model. 
However, generating all of the instruction formats of an 
instruction set may not be feasible in practice. For example, as 
discussed in section 3.1, there are 10240 possible formats for the 
data processing instructions of the ARM processor and generating 
all these formats, imposes a huge overhead on the compiler. To 
solve this problem in our framework, we generate the customized 
code only for the instruction instances of the simulated program. 
Furthermore, instead of generating distinct functions, we use C++ 
templates and customize them during decode. We generate a 
template for each operation or micro-operation class specification. 
For each symbol in the operation class the corresponding template 
has a parameter in its parameter list. During the decode phase, 
these parameters are replaced with the values of the symbols. 
Finally during the compilation on host machine, these customized 
templates are optimized by the compiler. After extracting the 
templates in this way, we can use IS-CS technique for generating 
a high performance simulator. The details of using and optimizing 
these templates in IS-CS technique are described in [2]. Figure 5 
shows the extracted template and its parameters for data-
processing instructions in ARM, described in Figure 4. 

/* extracted template for data processing operations of ARM*/ 
template<class Conditions, class Operations, class ShifterOperand, bool 
updateFlag >  
class DPOperations { 
 intReg dest, src1; ShifterOperand src2; 
public: 
 … 
 virtual void execute() {  
  if (Conditions::f()){ 
   dest = Operations::f(src1, src2);  
   if (updateFlag){ Z = (dest == 0); N= (dest < 0);  …} 
  } 
 }  
}; 

Figure 5- Code generation for an ARM instruction 

Note that the decode algorithm, described in Section 3.2, relies 
only on the descriptions of instructions to extracts the values of 
symbols corresponding to an instruction instance. These values 
can be used either dynamically in some conditional statements or 
statically to generated the source code of proper functions. 
Therefore the generic instruction model and the proposed decode 
algorithm can be used in any simulation technique and does not 
depend on IS-CS technique. 

4. EXPERIMENTS 
In order to evaluate the applicability of our framework, we 
modeled two contemporary, yet very different, processors: 
ARM7[16] and SPARC [15] to demonstrate the usefulness of our 
approach. The ARM7 processor is a RISC machine with fairly 
complex instruction set. We used arm-linux-gcc for generating 
target binaries for ARM7 and validated the generated simulator by 
comparing traces with Simplescalar-arm [11] simulator. The 
Sparc V7 is a high performance RISC processor with 32-bit 
instructions. We used gcc3.1 to generate the target binaries for 
Sparc and validated the generated simulator by comparing traces 
with Shade [13] simulator. We have used benchmarks from SPEC 
95 and DSP domains. In this section we show the results using 
three application programs: adpcm, 099.go and 129.compress. 

4.1 Efficiency of description 
It took us one man-month for each processor to study the manual 
and generate the corresponding simulator. This very short 
generation time was mainly because of the three following 
reasons. First, the description of instructions in our model is very 
similar to their representation in the architecture manual and 
therefore we needed a simple mapping between manual and the 
language. Second, the descriptions are very compact and efficient. 
For example by adding a very small code for an operation and its 
mask to the Operations class in the Figure 4, we can add a new 
instruction and reuse the rest of the description. Third, since all of 
the operations in an operation class share the same expression, it 
is very easy to debug and verify the descriptions. For example, in 
Figure 4 if the expression of DPOperations class works correctly 
for Add, it will also work well for Sub and other operations that 
can be replaced with symbol opcode.  
01:  RESOURCE { 
02:  PROGRAM_MEMORY byte8 prog_mem[0x0..0x1000]; 
03:  REGISTER word32 R[1..15]; 
04:  } 
05:  OPERATION ADD { 
06:  DECLARE { GROUP dst,src1,src2 = {Register}} 
07:  CODING { 0b01011 0b0000 src1 src2 dst} 
08:  SYNTAX { "ADD" dst "," src1 "," src2 } 
09:  BEHAVIOR{ dst = src1 + src2} 
10:  } 
11:  OPERATION Register { 
12:  DECLARE { LABEL index; } 
13:  CODING { index=0bx[4]} 
14:  SYNTAX { "R" index } 
15:  EXPRESSION { R[index]}} 

Figure 6- LISA sample code for Add operation 
Figure 6 shows a sample code in LISA language taken from a 
recent publication [12]. In this figure an operation Add with 
register parameters is described. To describe an Add operation 
with immediate integer operands the ‘OPERATION ADD’ 
section (lines 5-10) must be repeated again with slight 
modification. In other words, for every possible addressing mode 
in the architecture, a separate section for an operation is needed in 
LISA description. In LISA, a C function is generated in the 
simulator for the behavior section of each operation. Therefore to 
exploit different instruction formats and generate faster 
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simulation, the formats must be explicitly included in the 
description. For example consider the data processing instructions 
in ARM (Section 3.1). In these operations since one of the sources 
can be a ShifterOperand addressing mode, each instruction needs 
at least five OPERATION sections. Now consider the 
optimizations discussed in Section 3.3. Since all ARM 
instructions are predicated but majority of them execute 
unconditionally in a program, we can generate two formats for 
each instructions: the conditional version that checks the proper 
condition, and the unconditional one that executes faster. This is 
only one of the possible optimizations. Considering five formats 
for the ShifterOperand addressing mode and only two formats for 
the optimization, each instruction needs ten OPERATION 
sections similar to the one presented in lines 5-10 in Figure 6. 
Finally for sixteen instructions in this group we need at least 
16x10x5=800 lines in the LISA description. As shown in Figure 
4, in our mode, this group of instructions is represented by only 
three operation classes (DPOperation, Conditions, and 
Operations) in less than 50 lines. 
A similar approach to LISA is used in Babel [10]. In Babel, a 
separate section is needed to describe each individual format of an 
instruction. For example Sparc description in Babel is more than 
2300 lines long while its description with our model contains less 
than 400 lines of code.  
Additionally, in these languages, the instruction can contain only 
contiguous fields. Therefore dummy or multiple fields are needed 
to describe non-contiguous opcodes (as in Sparc). These extra 
fields not only increase the size of description but also make the 
decoder inefficient. On the other hand, since in our model we use 
bit masks, the descriptions are more natural and does not require 
such tricks in similar cases. 

4.2 Performance of the simulator 
The IS-CS performance results presented in [2] are based on 
generating the instruction templates manually. We extracted 
similar instruction templates automatically from our instruction 
model and generated the simulator. Typically retargetable 
approaches slow down the simulation. In our framework, since the 
generation of the simulator and extraction of the templates is 
completely separate from the simulation engine itself, there are no 
negative effects imposed on the performance. 
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Figure 7- Simulation Results of ARM7 & Sparc processors 

Figure 7 shows the simulation performance of our technique on 
both ARM7 and Sparc processor models. The performance results 
of the retargetable framework are exactly similar to that of IS-CS. 
We achieved 30%-50% performance improvement compared to 
best published results in this category of simulators. Note that, the 
overall performance of ARM simulator is slightly better than that 
of Sparc. ARM instructions are more complex and in most cases 
are equivalent to more than one Sparc instruction. Therefore 
optimizing one ARM instruction is equivalent to optimizing 
multiple instructions in Sparc. Also simulating Sparc model on a 

Pentium host machine requires a data encoding translation (Big-
Endian to Little-Endian).  

5. SUMMARY 
In this paper, we presented a retargetable framework for 
generating fast and flexible ISA simulator. We proposed a generic 
instruction model as well as a generic decode algorithm that can 
specify and decode many variations of instruction binary formats 
with any complexity. We demonstrated the applicability of the 
approach on two radically different architectures, viz. ARM and 
Sparc processors. Use of symbols in the generic instruction model 
enables maximum reuse of descriptions among operations and 
results in very compact descriptions. It also simplifies the debug 
and verification of the whole description. Furthermore, describing 
instructions in our generic model is very simple due to its 
similarity with the architecture manual. The ISA described using 
our generic instruction model is an order of magnitude smaller in 
size than other languages such as LISA and Babel. To achieve 
high performance simulation, we have integrated the IS-CS 
simulation technique in our retargetable framework by 
automatically extracting the required templates for simulating the 
instructions. Since the generation of the simulator is completely 
separate from the simulation engine, we can incorporate any other 
fast simulation technique without loosing performance. Future 
work will concentrate on using this framework for cycle accurate 
simulation of complex architectures including reconfigurable 
platforms.  
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