
Choreography of Web Services based on Natural Language Storybooks

Kurt Englmeier1, Javier Pereira2 , Josiane Mothe3.
1 LemonLabs GmbH, Germany
KurtEnglmeier@computer.org

2Escuela de Informática, Universidad Diego Portales,Santiago, Chile
Javier.pereira@udp.cl

3Université Paul Sabatier, IRIT Lab., France,
mothe@irit.fr

Abstract

Business processes usually span beyond the boundaries
of single operations and many a process spans even
beyond the boundaries of organizations. Web Service
orchestration or choreography languages address the
middle layer where atomic services (or operations) are
integrated for more complex applications. They endow
tech people to compose application logic into the
required logic of a business process. The key actors, the
experts of these processes, however, are not IT experts,
and thus not the main designers. Nevertheless they have
to be involved in the design of business processes. This
paper presents the WS-Talk Service Designer which
enables business process experts to write storybooks in
their own language which are transformed automatically
into semantics that can be handled by applications. The
WS-Talk Service Designer currently supports
organizations in managing their own and individual
information.

1. Introduction

Web Service technology provides universal
interchangeability and thus universal availability of
application logic. This availability raises the potential to
develop more applications, or more facets of applications,
for broader quantity and variety of business processes
(business logic). However, this availability does not mean
an automatic pathway to new horizons in designing IT-
based business processes.

What organizations expect from Web Services is first
of all a reduction of “integration headaches” [1]. A survey
– recently published on WebServices.Org – shows that a
majority of companies take up Web Service technology in
order “to integrate disparate systems”. A further
motivation for take-up addresses ”tangible benefits in
terms of reuse, developer productivity, and cost savings“
[1]. Web Services, once conceived to facilitate more
seamless e-commerce transactions beyond the firewall,
get a role that is clearly focused on internal integration.
Web Services standards and Web Service orchestration

languages enable an essential move towards a new
middleware-layer for integration [2].

Using Web Services, an application is rather a
coalition of standardized and almost ubiquitous software
modules than the typical monolithic block as we know it
since decades. This coalition can be composed as well as
adapted on-the-fly. WSDL (Web Service Definition
Language), SOAP (Simple Object Access Protocol) and
UDDI (Universal Description, Discovery and Integration)
are proven standards to define coalitions of highly
interoperable components and to propagate them in a
distributed environment [3]. To form dynamic coalitions,
they need to be orchestrated or choreographed. [4]

In this paper we investigate how natural language can
enhance Semantic Web standards in order to bring the
human expert of business processes and the IT expert
closer together in the design of IT-based business
processes. Natural language (NL) can provide us with
semantics to write storybooks in our language, i.e. to
compose and choreograph software modules in the way
humans think about their everyday work. This rationale is
the focus point of the WS-Talk project. The objective of
this project is to develop an instrument that enables the
experts in business processes rather than the IT expert to
define business processes. WS-Talk’s focus on natural
language processing extends towards information
retrieval applications or features, by nature. The vision of
WS-Talk is to provide companies with natural language
interfaces for their enterprise search systems.

This paper thus focuses primarily on coexistence of
natural language and semantic web standards in a layered
architecture for applications based on Web Services: in
section 2 we present the framework of the layered
architecture. The bottom layer comprises the Web Service
stack. In the middle resides the choreography stack and
on top of that the NL storybook serving the role of the NL
modeling layer. Section 3 outlines and illustrates the
rationale and advantages of extending service semantics
by natural language. It demonstrates how WS-Talk can
support enterprise search applications. Section 4
concludes the paper.

2. Three-layer Integration Architecture

Making services available for business purposes (with
or without resorting to web service technology) is
extremely intertwined with Business Process
Management [5, 6]. The WS-Talk approach is thus
inclined to Business Process Management where
definition and management of business processes rests on
two shoulders: the ones of the domain expert and of the
IT expert.

This rationale has to be reflected by the architecture
for business integration that follows a three-layered
approach (see figure 1): the NL storybook at its top layer
resides on the choreography layer which in turn resides
on a Web Service stack. Our approach is inclined to the
three-layer stack developed by W3C [7]. It considers the
top level as the one that still needs to be developed.
Standards are available for the middle and bottom layer.
Web Service orchestration and Web Service
choreography are concepts addressing the middle layer.
In WS-Talk we investigate to what extend natural
language processing capabilities can enrich the
choreography (or orchestration) layer to make its
semantics human-understandable. The WS-Talk
storybook process engine, the WS-Talk Service Designer,
operates primarily on the third layer, but can include the
logic of the following layers as well without resorting to
orchestration engines.

Figure 1: Three layers for a service-oriented
architecture including the coexistence of natural language
and semantic web standards.

At the second layer we concentrate on the observable

behavior of Web Services in the context of message
exchange between them. In WS-Talk we do not apply
web service orchestration (or choreography) standards,
but developed a simple choreography layer which inclines
to those principles. Storybook statements are processed
by the WS-Talk Process Engine. This includes also error

handling and compensation actions as well as the
conditional execution of storybook statements. Again, the
main focus of the WS-Talk project is on the use of natural
language on the third layer of this architecture.

The Process Engine’s Service Stack defines a set of
Web Services as atomic entities. It does not define a
choreography language or any other language that helps
to coordinate atomic operations. It contains their
protocols and message characteristics. The messages
themselves may be wrapped in SOAP envelopes.

3. Business Process Storybook

The WS-Talk process engine associates each statement
of the storybook with instructions and executes the
corresponding services and handles communication and
data transfer between them. The following example
shows a storybook used for a helpdesk application. It
refers to a WS-Talk pilot application – an enterprise
search system for the Chilean health insurance company
“Cruz del Sur”. The search system uses product
descriptions as database and retrieves appropriate
documents and extracts text passages from these
documents in order to produce tailored retrieval results.
The domain expert uses a storybook to describe the
application logic – composition of and transactions over
software components (or web services) – for a specific
retrieval situation (retrieving information from product
descriptions, for instance). In this case the helpdesk
manager, for instance, describes how incoming user
queries have to be handled: First, the user is prompted by
the system to enter his query. The query is then
processed, i.e. the type of the query is determined and
stopwords are eliminated. Text analysis as applied in
retrieval depends on the type of the query (see figure 2).
And finally the system prints the result which should be a
small number of text passages.

Figure 2: Example of a storybook.

The process engine is equipped with text interpretation

capabilities. Storybooks are analyzed by the engine using
a controlled vocabulary reflecting the language of the

respective business domain. We use this vocabulary to
describe operations, business objects, collaborations, etc.

While analyzing a storybook the WS-Talk process
engine treats each natural language statement as a single
instruction and considers the whole set of instructions as
necessary to complete a particular process (handling a
user request, in this case). The process may have different
facets (alternative instructions are selected according to
the results produced in course of the execution of its
instructions). However, for each facet the ACID1
rationale known from database technology is applied.

Before continuing we outline briefly the role of the

controlled vocabulary. It is used to support information
retrieval features that comprise primarily the functionality
of WS-Talk’s first application context. We improve the
accuracy of text analysis by classification and taxonomy
features by resorting to this vocabulary. In WS-Talk,
classification is used to set up taxonomies which provide
a way to see information around thematic categories [8].
Enterprise search in WS-Talk uses taxonomies and
inverted term lists to annotate a text document, to
determine document or document passage descriptors).
The same process can be used for identifying suitable
services for a given storybook statement.

Semantic co-ordinates – i.e. controlled vocabularies
derived from taxonomies and structured according to
concept hierarchies – are elements of orientation that can
be communicated. Semantic co-ordinates enable us to
develop a context map for the respective domain where
the services are used. In addition, these hierarchies can be
mapped into different natural languages in parallel [9].

3.1. The role of the WS-Talk Service Designer

The task of the WS-Talk Service Designer is
1) to associate a task to be completed (in natural

language correctly with the corresponding storybook,
2) to identify Semantic Web representations of services

and business objects corresponding to this storybook, and
3) to execute storybook statements using business

object representations.

In the context of WS-Talk, “description” refers to NL

representations of processes and objects (storybook
statements) that can be processed by text analyzing
features, but are human-understandable by nature.
“Instructions” shall be machine-processable elements, not
necessarily understandable to humans. Instructions are

1 The ACID model is one of the oldest and most
important concepts of database theory. It sets forward
four goals that every database management system must
strive to achieve: atomicity, consistency, isolation and
durability.

generally expressed by semantics of a programming
language or semantic web standards like XML. The
transformation of descriptions into instructions is
achieved through an incremental process where

• a storybook statement is linked to one or more
instructions and

• its components necessary to perform the
instruction.

Instructions and components may be represented in
ontology-like Semantic Web representations. In the end,
concepts like “customer profile” or “inform users”, for
instance, have to be mapped to ontologies suitable for
these business objects and processes.

3.2. Associating storybook statements with
program instructions.

A particular service may address a business process
reflecting also the process’ inner logic. After a service is
described in the way as explained above it is available
under its title (like “How to handle a user request”). It can
be selected and executed by the user (or by other
services) like any other application. The process engine
operates like a program interpreter. It takes a statement
and looks for the corresponding semantic web
representation. This “translation” process starts with a
simple analysis of the statement’s structure. In general,
the schema subject-predicate-object is applied to identify
what actor (user or other instruction) uses a function
(represented by the predicate) to operate on a certain
object. The engine applies the simple grammatical
relationship

[subject] predicate [object]

in its first step of the analysis of a statement. While a
predicate is always required, subject and object are
optional. Each statement may contain more than just one
predicate as well as predicate-object pairs. For each
predicate there may be restrictions that apply like “Search
is restricted to the paragraphs of the texts”. These
restrictions can be considered as parameters that are
passed to and processed to the function represented by the
predicate. The application of a sentence may depend of a
condition extending the grammatical principles to

[condition] [subject] predicate [object].

The grammatical structure of a statement can be

represented by (an asterisk indicates that the element may
occur iteratively)

[condition] [[subject] [[predicate] [restriction] [object]]*]

The restriction may also reflect an attribute that should
be related to an object. The condition itself can be
represented by a simple relationship of “[object] predicate
[restriction]” where “predicate” simply has the quality
such as “is_a” used in semantic networks. Subjects refer
to system components that reside within a certain
application, not necessarily the Service Designer where
the required appliance is composed and tested. The
statement “The email system sends the results to the user”
indicates that the remote mailing system is in charge with
passing the retrieved information to the user. Or “The
user enters a request” addresses the subject “user” which
in fact refers to the user interface of the system. A
statement thus indicates a process represented by a
predicate owned by a subject and producing an object, a
query, for instance, as in our example. This object is
automatically made available (by a message bus) to the
subsequent predicates (within the same statement or the
following statements). From a different point of view it is
an implicit restriction or attribute that is used by the
subsequent process instructions. “Determine type of
query” takes the query as input and produces a further
object which reflects the nature of the query as stated by
the user. The object produced by this statement is used
further down to resolve the conditions “in case of a
yes/no-query” and “in case of a regular query”.

Figure 3. Representation of an instruction that
corresponds to a statement’s predicate.

While processing each statement the engine looks first
for an instruction matching the statement’s predicate
(eventually including the object’s name). If a
corresponding description exists, the engine looks for
objects that are required for this instruction (indicated as
incoming messages). These (“MessageIn”)-parameters are
passed to the instruction. The results of the instruction are
sent to the bus as outgoing message (“MessageOut”).

The example of figure 3 shows an instruction that
corresponds to the predicate “determine type of query”. It
looks for objects on the message bus that are labeled
“query types” and “query”. If the required information is
available the engine sends the parameters to the process

“local.patternMatch” that returns to the bus the two
parameters “type of query” and “search terms”. These
parameters are later used by the subsequent instructions
such as search, for instance.

Business objects are represented in a similar way.
There is a key word (“databases” annotated to a XML
structure that contains a number of access points of data
collections. Each access point has again a descriptor in
natural language.

Figure 4. Representation of the access points to different
data collections.

Figure 5. Representation of query types in Spanish. The
first set comprises questions like “Is there …?” or “Does
… contain …?” where the answer is only yes or no. The
second group addresses more general questions like
“Who is …?” or “What is …?” or “How and where can
…?” etc..

3.3 A scenario

Business process experts describe not only services (or

orchestrated services) in natural language, but also
requests for services and process or object descriptions.
From a different angle, a request may be nothing else, but
a query to be matched with a service description, which
may be the title of a storybook or an additional and more
elaborate description. In many a case it will be inevitable

to find a number of necessary process and/or object
descriptions before a full transformation of the
description into machine-processable instructions is
possible.

Let us come back to our scenario which demonstrates
the appliance as it results from the storybook presented.
The user describes the requested service using natural
language. This request, in turn, may also be considered as
the description of a particular service that needs to be
developed. In WS-Talk, controlled vocabularies are
available in different languages in parallel. Even if a
particular storybook is written in English, for instance,
the retrieval feature as triggered by the storybook
mentioned above can handle queries and texts in Spanish.

Figure 6. The first instruction of the storybook:

querying the system. In this case the user asks for benefits
of a certain house insurance.

Prompting the user to state a query is the first

statement of the storybook as mentioned above. The
query here is in Spanish and asks for the benefits of an
insurance product called “Cruz Hogar” (Figure 6). From
all available product information the system retrieves the
most appropriate paragraphs from a product description
concerning the household insurance “Cruz Hogar”. The
following monitor windows show the first the original
text after its text structure has been identified (Figure 7).
Structure information of a text is taken into account in the
retrieval process. The annotation process using concept
hierarchies is used to support retrieval of the most
suitable document within a document retrieval is
restricted to inverted term lists including structural
information, which takes into account where matching
terms occur (in the title, an enumeration, the body of a
paragraph, etc.) [10]. The two statements preceding the
final print statement in our storybook refer to this
matching process From the whole product description
(about two pages) only two paragraphs are retrieved that
refer to the benefits of the insurance (Figure 8). The
second paragraph was selected because of the term
“advantages” which was considered equivalent to
“benefits”. The results as shown here are only available if
the whole “retrieval” storybook could be executed
successfully; otherwise the user gets information about
the step where the execution of the application failed.

The inner logics of a business process (like the one
presented in our storybook) are covered by Web Service
Orchestration or Choreography languages whereas the
operations within a process (database access, for instance)
are performed by web services. In WS-Talk, we
investigate to what extend process templates (in NL) can
be used for orchestration purposes. In this context it is of
minor importance if we consider Web Service
Orchestration or Web Service Choreography.

Figure 7. Extract of a structured resource description.
Texts are marked with text structure information such as
paragraphs, titles etc.

Figure 8. Retrieval results: second selected paragraph.

From all available texts on house insurance product
information the retrieval features select two paragraphs
that matches with the user’s query (see figure 6). The key
expression of the paragraph shown here is “advantage”
that determined the assignment to the user’s query.
“Advantage” (Spanish: ventaja) is used here as a
synonym to “benefit”

The test environment of WS-Talk as presented here is

an “Interactive Assistance Manual”, an automatic
information system based on an assistance manual for the
support centre. Requests are questions stated in natural
language. For the time being, we consider the simple case
that one single question is answered by one single

answer. Usually an answer is composed by observing a
number of task steps. This composition can be steered by
a storybook. And, in turn, it may resort to object
representations that help to specify concepts appearing in
the answers. Each storybook represents a complete
transaction that can be performed only as a whole and
must be rolled back completely if an error occurs. In that
case the engine triggers in addition a compensation
process that consists at least in a message to the users
informing them why the transaction could not be
completed and if it will be completed in the future.

The engine creates for each template an execution
stub. It lists the sequence of operations to be executed.
Each entry in the stub refers not only to its operation, but
also to the required parameters and return values
produced. Parameters are passed to the operation by
incoming messages whereas results are passed to the
operation’s environment by outgoing messages. There are
a number of object templates that help to “translate”
concepts from the process template into concepts of the
object templates.

4. Conclusions

Being less integrative than they should be can be a
crucial downside of current Web Service technologies
while approaching integrated and interoperable
architectures. They still fail to integrate humans as the
important resource both as an interactive part of the
business processes and as a competent designer of
integrated business solutions. Developing models for
complex and dynamic solutions is a difficult activity for
most system analysts because it demands both modeling
experience and domain knowledge. To make the domain
expert the principal designer will be crucial in the
development of future Web Service technology [11].

In WS-Talk we opt for a different approach that
proposes a co-existence of natural language and Web
Service technology. Semantic Web representations of
objects as well as processes are extended by natural
language descriptions. They let users directly interact
with web services, business logic representations, or other
such objects that are rendered by or operating on
Semantic Web standards. The best way for humans to
develop a network of integrated business processes is to
use their own language to describe the processes.

Acknowledgement

Research outlined in this paper is part of the project
WS-Talk that is supported by the European Commission
under the Sixth Framework Programme (COOP-006026).
However views expressed herein are ours and do not
necessarily correspond to the WS-Talk consortium.

5. References

[1] WebServices.Org, “From Web Services to SOA and
Everything in Between: The Journey Begins”. Retrieved
June 14, 2005, from WebServices.Org website:
http://www.webservices.org/index.php/ws/content/view/f
ull/63404

[2] Q.H. Mahmoud, “Service-Oriented Architecture
(SOA) and Web Services: The Road to Enterprise
Application Integration (EAI).” Retrieved November 16,
2005, from Sun Microsystems website: http://
java.sun.com/
developer/technical/Articles/WebServices/soa/

[3] C. Peltz, “Web Services Orchestration and
Choreography”, IEEE Computer, (10) 36, 2003, p. 46.

[4] M.N. Huhns and M.P. Singh, “Service-Oriented
Computing: Key Concepts and Principles”, IEEE Internet
Computing 9 (1), 2005, pp. 75-81.
[5] F. Casati,, E. Shan, U. Dayal, and M.-C. Shan,
“Service-oriented computing: Business-oriented
management of Web services”, Communications of the
ACM 46 (10), 2004, pp. 55-60.

[6] N. Milanovic and M. Malek, “Current Solutions for
Web Service Composition”, IEEE Internet Computing 8
(6), 2004, pp. 51-59.

[7] W3C, “Web Service Choreography Interface 1.0”.
August 2002, Retrieved November 4, 2005, from W3
Consortium website: http://www.w3c.org/ TR/wsci

[8] C. Moore, “Taxonomy tools organize searching.
InfoWorld”. Retrieved June 27, 2004 from http://
www.infoworld.com/article/04/06/21/25NNsearch_1.html

[9] K. Englmeier and J. Mothe, “Natural language meets
semantic web”. Retrieved July 16, 2003 from ktweb.org
website: http://www.ktweb.org/doc/ Englmeier-NLP-
SW.pdf.

[10] Karen Sauvagnat, Gilles Hubert, Mohand
Boughanem, Josiane Mothe, IRIT at INEX 2003
INitiative for the Evaluation of XML Retrieval (INEX
2003), pp 142-148, 2003.

[11] V. Ovchininnikov, “Architecture of Heterogeneous
Concept Space Managed by non-IT people”. Journal of
Conceptual Modeling, September 2004. Retrieved
October 18, 2004 from www.inconcept.com/JCM/
September 2004/Ovchinnikov.html

