
Fast, Automatic, Procedure-Level Performance Tuning ∗

Zhelong Pan
Purdue University, School of ECE

West Lafayette, IN, 47907

zpan@purdue.edu

Rudolf Eigenmann
Purdue University, School of ECE

West Lafayette, IN, 47907

eigenman@purdue.edu

ABSTRACT
This paper presents an automated performance tuning so-
lution, which partitions a program into a number of tun-
ing sections and finds the best combination of compiler op-
tions for each section. Our solution builds on prior work on
feedback-driven optimization, which tuned the whole pro-
gram, instead of each section. Our key novel algorithm
partitions a program into appropriate tuning sections. We
also present the architecture of a system that automates the
tuning process; it includes several pre-tuning steps that par-
tition and instrument the program, followed by the actual
tuning and the post-tuning assembly of the individually-
optimized parts. Our system, called PEAK, achieves fast
tuning speed by measuring a small number of invocations of
each code section, instead of the whole-program execution
time, as in common solutions. Compared to these solutions
PEAK reduces tuning time from 2.19 hours to 5.85 minutes
on average, while achieving similar program performance.
PEAK improves the performance of SPEC CPU2000 FP
benchmarks by 12% on average over GCC O3, the highest
optimization level, on a Pentium IV machine.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code
Generation, Compilers, Optimization, Run-time Environ-
ments

General Terms
Performance

Keywords
Performance Tuning, Optimization Orchestration, Dynamic
Compilation

∗This work was supported, in part, by the National Science
Foundation under Grants No. 9974976-EIA, 0103582-EIA,
and 0429535-CCF.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’06,September 16–20, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-264-X/06/0009 ...$5.00.

1. INTRODUCTION
Compiler optimizations yield significant performance im-

provements in many programs on modern architectures.
However, potential performance degradation in certain pro-
gram patterns is a well-known phenomenon. Programmers
are expected to deal with this problem through compiler
options – when finding that an option causes performance
degradation, one may switch it off. The presence of many
optimization options reflects the inability of today’s compil-
ers to make the best optimization decision at compile time.
In this paper, we refer to the problem of finding the best op-
timization combination for a target program as optimization
orchestration. The large number of compiler optimizations,
the subtle interactions between optimizations, the sophisti-
cation of computer architectures, and the complexity of the
program make this problem difficult to solve.

Several optimization orchestration algorithms have been
developed [1, 4, 8, 9, 11]. (They will be discussed in Sec-
tion 6.) A feedback-directed approach is used in many of
these algorithms. They generate a series of experimental
code versions, compiled under different optimization com-
binations. The performance of each experimental version
is then rated based on execution time or estimated met-
rics. Using these performance ratings, the algorithms iter-
atively choose the next experimental optimization combi-
nations, until some convergence criterion is satisfied. This
paper makes use of the Combined Elimination (CE) algo-
rithm [8], which is fast and accurate.

Common methods use the overall program execution as
a basis for performance measurements. As typically several
hundreds of executions are needed for tuning a program,
tuning times amount to several hours for programs that ex-
ecute in minutes, such as the SPEC CPU2000 benchmarks.
The present work aims to reduce the tuning time by an or-
der of magnitude. The key observation is that, in the course
of a program execution, the same subroutines are often in-
voked many times; these invocations can serve as the basis
for performance measurements, enabling multiple optimized
variants to be rated in one run of the program. When doing
so, an important challenge must be addressed: the invoca-
tions may happen under different contexts (e.g., different
values of subroutine parameters). Naively comparing sub-
routine execution times would lead to incorrect ratings of the
optimized variants. Our solution makes use of three rating
methods [7] that have been designed for fair comparisons.

Building on the described techniques, our intended solu-
tion must answer two key questions: (1) How do we par-
tition a program into appropriate sections for performance

 Tuning Section Selection (TSS)

 Rating Method Analysis (RMA)

 Code Instrumentation (CI)

 Driver Generation (DG)

 Performance Tuning (PT)

 Final Version Generation (FVG)

Pre-Tuning

Post-Tuning

During Tuning

(1)

(6)

(5)

(4)

(3)

(2)

Figure 1: Work flow of the PEAK system

tuning? (2) How do we integrate the existing and new tech-
niques into a system architecture for automatic performance
tuning? Our PEAK (Program Evolution by Adaptive Com-
pilation) system provides such an architecture.

Figure 1 shows the work flow of PEAK. Several pre-tuning
steps must be performed. The program is partitioned into
tuning sections, based on a call-graph profile. Next, our
compiler tools analyze and instrument the program to em-
ploy the appropriate rating methods. The instrumented pro-
gram forms a tuning driver. During tuning, the driver iter-
atively runs the program, under a training input data set,
until optimization orchestration finishes for all the tuning
sections. The feedback-directed CE algorithm is applied in
this process. After tuning, the final program is assembled
from the individually optimized sections.

This paper makes the following contributions:

1. An algorithm is presented to partition a program into
code segments for individual performance tuning. The
objectives of the algorithm are to choose tuning sec-
tions such that they (1) cover most of (typically more
than 90% of) the total program execution time and (2)
are invoked many times (typically several hundreds) in
one run of the program.

2. An architecture is presented that integrates the par-
titioning algorithm and other building blocks for pro-
gram tuning into a system for automated optimiza-
tion orchestration. The architecture is realized in our
PEAK system, which includes a compile-time and run-
time part, performing the necessary pre-tuning, actual
tuning, and post-tuning steps.

3. Results are presented for the SPEC CPU2000 FP
benchmarks and all options included in GCC’s O3 op-
timization level – the highest optimization level – on
a 2.8 GHz Pentium IV platform. Compared to whole-
program performance tuning, our solution reduces tun-
ing time from 2.19 hours to 5.85 minutes on average,
while achieving similar program performance. Perfor-
mance improves by 12% over O3 for SPEC CPU2000
FP benchmarks.

The remainder of this paper is organized as follows. Sec-
tion 2 shows background on the CE algorithm and the per-
formance rating methods. Section 3 develops an algorithm
for selecting tuning sections. Section 4 shows the design
of our PEAK system. Section 5 evaluates PEAK in terms
of tuning time and tuned program performance. Section 6
discusses related work.

2. BACKGROUND

2.1 The Combined Elimination (CE) Algo-
rithm

Similar to related approaches [1, 7, 9], the CE algo-
rithm [8] tunes compiler options with the following goal:

Given a set of compiler optimization options {F1, F2, ..., Fn},
find the combination that minimizes the program execution
time. Each option Fi has two possible values: Fi = 0 means
Fi is off; Fi = 1 means on.1

CE turns on all the optimizations for the baseline perfor-
mance B. The performance effect of one optimization, Fi,
relative to B, can be represented by its Relative Improve-
ment Percentage (RIP), RIPB (Fi = 0), which is the relative
performance difference of the baseline and the version with
Fi turned off.

RIPB(Fi = 0) =
T (Fi = 0) − TB

TB
× 100% (1)

In Equation 1, if the orchestration algorithm is applied at
the whole-program level, T (Fi = 0) is the execution time
of the whole program with Fi turned off; TB is the baseline
execution time. Our PEAK system applies the CE algo-
rithm at the tuning-section level. In PEAK, T (Fi = 0) is
the rating generated based on the execution times of a few
invocations to the tuning-section version with Fi turned off;
TB is the baseline rating. (rating methods are discussed in
Section 2.2.)

A simple algorithm would identify all the optimizations
with negative effects and turn them off. While such a
method is fast, it does not suffice, as it ignores possible inter-
action of optimizations. A better algorithm starts from the
baseline and iteratively turns off the optimization with the
most negative effect, one at a time. In this way, it considers
interactions; however, it would be slow.

CE combines these two ideas. It iteratively turns off the
optimization with the most negative effect. Moreover, in
each iteration, after identifying the optimizations with neg-
ative effects, CE tries to eliminate these optimizations one
by one in a greedy fashion. Therefore, when the optimiza-
tions interact weakly, CE eliminates the optimizations with
negative effects in one iteration; otherwise, CE eliminates
them iteratively. As a result, CE achieves both high pro-
gram performance and fast tuning speed.

2.2 Fast and Accurate Performance Rating
Recall that the new idea in this paper is to apply the opti-

mization orchestration algorithm on the basis of an invoca-
tion of a program section. In this way, these sections can be
tuned in a single, or a few, program executions. Obtaining
accurate performance ratings of the optimization variants is
difficult because different executions of the same tuning sec-
tion may have different input parameters – more generally,
they execute under different contexts and thus have different
workloads.

In our tuning system we will use three methods that have
been proposed to compare multiple invocations of a program
section in a fair way and to generate accurate ratings [7].
The key ideas are as follows.

1All options in GCC are of type “on-off optimizations”. The
CE algorithm can be used to tune other types of optimiza-
tions as well.

2.2.1 Context Based Rating (CBR)
Context-Based Rating (CBR) identifies and compares in-

vocations of a tuning section that have the same workload,
in the course of a program run. Our PEAK compiler im-
plements the algorithm presented in [7] to find the context
variables, which are the input variables that may influence
the conditions of the control regions, such as if and loop

constructs. The context of one tuning section invocation is
determined by the values of all context variables in that in-
vocation. Therefore, each context represents a unique work-
load.

CBR rates one optimized version under a certain context
by using the average execution time of several invocations.
The best versions for different contexts may be different, in
which case CBR could report the context-specific winners.
PEAK makes use of the best version under the most impor-
tant context, which covers most (e.g. more than 80%) of
the execution time spent in the tuning section. This ma-
jor context is determined by one profile run of the program.
The rating of a version v, R(v), is computed according to
Equation 2, where x is the most time-consuming context of
version v, T (i, x) is the execution time of the ith invocation
under context x, and w is the number of invocations.

R(v) =
X

i=1..w

T (i, x)/w (2)

2.2.2 Model Based Rating (MBR)
If a tuning section has no major context or the number of

invocations of the major context is small, the Model-Based
Rating (MBR) method is preferred. MBR formulates math-
ematical relationships between different contexts of a tuning
section and adjusts the execution time accordingly. In this
way, different contexts become comparable.

The execution time of a tuning section consists of the
execution time spent in all of its basic blocks:

TTS =
X

(Tb × Cb) (3)

TTS is the execution time in one tuning-section invocation;
Tb is the execution time in one entry to the basic block b;
and Cb is the number of entries to the basic block b in the
tuning-section invocation.

The tuning system collects the execution times (TTS) and
the numbers of entries (Cb) for a number of invocations. By
linear regression, MBR computes the component times (Tb).
The rating of a version, R(v), is computed based on the
Tb’s according to Equation 4, where Cbavg is the average Cb

during one whole run of the program.

R(v) =
X

(Tb × Cbavg) (4)

2.2.3 Re-execution Based Rating (RBR)
If there are many (e.g., ten) components in the above exe-

cution time model, a large number of invocations need to be
measured in order to perform an accurate linear regression.
MBR would lead to a long tuning time in this case and hence
is not applied. Instead, Re-execution-Based Rating (RBR)
can be employed. It enables fair comparison by re-executing
a tuning section under the same input.

Suppose that the execution times of two versions (v1 and
v2) under the same input are Tv1 and Tv2. Then, the per-
formance of v2 relative to v1 is Rv2/v1:

Rv2/v1 = Tv1/Tv2 (5)

If Rv2/v1 is larger than 1, v2 performs better than v1. Oth-
erwise, v2 performs worse. RBR uses the average Rv2/v1

over a number of invocations as the relative performance
rating. In [7], details have been provided about how to re-
execute the optimized versions under the same input and
how to generate an accurate rating.

2.2.4 Applying the Rating Methods to Our Solution
Before tuning, the original source program is analyzed

according to the techniques described in [7]. One profile
run yields the major context, if it exists, for CBR, and the
execution time model for MBR. From the static analysis and
profile information, the applicable rating method is chosen
for each tuning section, in the priority order of CBR, MBR
and RBR. For the PEAK system, we have developed a set
of compiler tools to perform these tasks.

During the actual tuning process, the rating, R(v), and
the rating variance, V ar(v), are generated across a num-
ber of invocations of the tuning section, which we call a
window [7]. PEAK’s orchestration algorithm uses R(v) as
the performance of each version. The window size is deter-
mined by V ar(v). Basically, the version v is executed and
rated until the rating variance V ar(v) falls below a thresh-
old. Performing this task is the responsibility of the PEAK
runtime system.

3. TUNING SECTION SELECTION
While the techniques presented in Section 2 are important

building blocks of our auto-tuning solution, the key open
question is how to partition a program into sections that can
be tuned effectively. A good algorithm must select tuning
sections that cover a large percentage of the program’s exe-
cution time, so that improvements of the sections translate
into overall performance gain. The algorithm must also de-
fine the tuning sections in a way that they are invoked many
times in the course of a program execution; this enables the
tuning algorithm to try many code variants in one run of
the program and hence to complete quickly. Furthermore,
the algorithm needs to form tuning sections that execute
sufficiently long, allowing accurate time measurements.

3.1 Profile Data for Tuning Section Selection
Our algorithm selects a tuning section based on its num-

ber of invocations and its execution time. These data are
collected from a profile run (using gprof [3]) allowing the
construction of a call graph G = (V, E); the graph is an-
notated with execution time spent in a procedure and its
descendants, how many times a procedure is called and how
many times a procedure calls its children.

The call graph is a directed graph. It has one source (root)
node, δ, and a set, Γ, of sink (leaf) nodes. Each node v ∈ V
identifies a procedure. δ identifies subroutine main(). Each
edge e ∈ E identifies a procedure call. The associated
profile information is as follows.

v = {fn} (6)

e = {s, t, n, tm} (7)

fn(v) is the procedure name of the node. s(e) identifies the
caller node; t(e) identifies the callee node; n(e) is the number
of invocations to t(e) made by s(e); tm(e) is the time spent
in t(e) and its callees, when t(e) is called from s(e).

 a

 c

 d e f

1000
(80)

5
(20)

200
(18) 10000

(30)

20000
(1) 20000

(1)

 b

Figure 2: An example of tuning section selection.
The graph is a call graph with node a as the main
procedure. The weights on each edge are the num-
ber of invocations and the execution time, which
is in the parentheses. The optimal edge cut is
(Θ = {a, c}, Ω = {b, d, e, f}), shown by the dashed
curve. Edges (a, b) and (c, f) are chosen as the S
set. Edge (c, e) in the cut (Θ, Ω) is not included in
S, because its average execution time is 1/20000, less
than Tlb = 1e−4. There are two tuning sections led
by node b and node f , T = {b, f}. The numbers of
invocations of b and f are 1000 and 200 in respect,
so, Nmin = 200. coverage = (80 + 18)/100 = 0.98, where
the total execution time, Ttotal, is 100.

3.2 A Formal Description of the Tuning Sec-
tion Selection Problem

Tuning section selection aims at finding a set of single
entry regions, each of which is a tuning section. The entry
procedure in a region identifies the tuning section. All other
procedures in the region are the direct or indirect callees. If
one procedure is used in two different tuning sections, it is
replicated into these two tuning sections.

The problem of tuning section selection can be described,
in a formal way, as an optimal edge cut problem. Given call
graph G = (V, E), find an edge cut (Θ,Ω) so as to maximize
the invocation numbers and the coverage of the tuning sec-
tions. Here, Θ and Ω are a partition of the node set V , such
that Θ contains the source node δ, and Ω contains the set of
sink nodes in Γ. This edge cut (Θ,Ω) is a set of edges, each
of which leaves Θ and enters Ω. This edge cut determines
the set of tuning sections in two steps. (1) Find all the edges
in this cut whose average execution times are greater than
Tlb, the lower bound on the average execution time. i.e., for
each edge e ∈ (Θ,Ω), put e in a set S, if tm(e)/n(e) ≥ Tlb.
(2) The edges in set S point to the selected tuning sections.
i.e., make the entry-node set T = {v|v = t(ei), ei ∈ S}.
Each node v in set T identifies a tuning section. (Tuning
sections are the subgraphs led by the entry procedure v.)
Figure 2 gives an example.

The tuning section selection algorithm maximizes the cov-
erage and the number of invocations of the tuning sections.
These two goals are computed as follows:

1. The primary goal of the tuning section selection algo-
rithm is to maximize the execution time coverage.

coverage =
X

e∈S

tm(e)/Ttotal (8)

Ttotal is the total execution time of the program.

2. The secondary goal deals with the number of invoca-
tions to the tuning section v:

Nt(v) =
X

e∈S,t(e)=v

n(e). (9)

The goal is to maximize the smallest Nt(v), denoted
as Nmin.

Nmin = minv∈T (Nt(v)) (10)

We use a two-step algorithm to maximize the two goals
coverage and Nmin. In the first step, the algorithm maxi-
mizes the primary goal, coverage , under the constraint that
the number of invocations to each selected tuning section ex-
ceeds a lower bound Nlb. In the second step, the algorithm
trades off large gains of Nlb for small losses in coverage ; this
is done as long as the coverage drop rate (the loss/gain ra-
tio) is small and the coverage remains above a lower bound.
The two steps and chosen thresholds will be described for-
mally in Section 3.4 and Section 3.5, respectively. We briefly
discuss the handling of recursive functions in Section 3.3.

The tuning section selection problem does not always have
a reasonable solution. For example, suppose that a program
has only one procedure, main(), which contains a loop con-
suming most of the execution time. If main is chosen as
the tuning section, Nmin is 1 and coverage is 100%. Other-
wise, coverage is 0%. The first solution degrades to whole-
program tuning. The second solution does not find any tun-
ing section. Neither of them is acceptable. The right solu-
tion is to choose the loop body in main as a tuning section.
Using a call graph profile, the selection algorithm cannot
identify the loops within a procedure. Extra work is needed
to find the loop and extract its body into a separate pro-
cedure. We call this step of the algorithm extra code parti-
tioning. After this step, the loop body appears in the call
graph profile, which then is chosen as a tuning section by
the selection algorithm.

3.3 Dealing with Recursive Functions
Recursive functions cannot be easily partitioned. To call

a recursive function, the program makes an initial call to
the function; then the function will be called by itself, in the
case of self-recursion, or by its callees, in the case of mutual-
recursion. Both self-recursive calls and mutually-recursive
calls are referred to as recursive calls, which are different
from the initial call. Our PEAK system treats initial calls to
a recursive function as normal function calls; while recursive
calls can be viewed as loop iterations, which are ignored by
tuning section selection. In other words, the tuning section
selection algorithm does not choose the call graph edges that
correspond to recursive calls.

In a call graph, the functions (nodes) that recursively call
themselves or each other form cycles (including loops). To
exclude recursive calls from tuning section selection, our call-
graph simplification algorithm uses the strongly connected
components to find the nodes and edges that appear in a
cycle. It merges the nodes involved in a common cycle into

Subroutine
[T , M] = MaxCoverage(G = (V, E), Nlb, Tlb, Plb)
Input: G = (V, E), a simplified call graph, which is a DAG;
Nlb, the lower bound on numbers of invocations; Tlb, the
lower bound on average execution times; Plb, the lower bound
on the execution percentage for a code section worth code
partitioning.
Output: The algorithm selects the tuning sections and puts
their entry procedures into set T . The procedures that are
worth extra code partitioning are put into M .

1. Clear the selection flag for each edge e ∈ E: f(e) = 0.
Empty the result sets: T = φ and M = φ.

2. Mark the edges whose average execution times are less
than Tlb. i.e., for each edge e ∈ E, set f(e) = −1, if
tm(e)/n(e) < Tlb. (These edges will be ignored when
summing the profile data of the edges for one node.)

3. Sort all the nodes into a topological order: v1, v2, ...,
i.e., if there is an edge (u, v), node u appears before
node v. The nodes will be traversed in this order.

4. For node vi (i = 1, 2, ...), compute the total number
of invocations to vi.

n(vi) =
X

e∈E,t(e)=vi,f(e)=0

n(e) (11)

If n(vi) is greater than Nlb, vi is selected: (1) Put vi

into T ; (2) set f(e) = 1, if t(e) = vi; (3) update the
profile.

5. Put node v into M , if v is not selected but
consumes a large amount of execution time, i.e.,
P

t(e)=v,f(e) 6=1 tm(e) > Plb ×Ttotal. (These nodes may

be partitioned to improve tuning section coverage.)

Figure 3: A TS selection algorithm to maximize ex-
ecution time coverage given a lower bound on num-
bers of TS invocations, Nlb. This algorithm tra-
verses the simplified call graph from top down to
find the code sections whose numbers of invocations
are greater than Nlb. In addition, the algorithm finds
the procedures that may be partitioned to improve
tuning section coverage.

one node, removes the edges used inside a cycle, adjusts the
edges entering or leaving the merged nodes, and updates the
associated profile data. After this simplification process, the
call graph is a Directed Acyclic Graph (DAG).

3.4 Maximizing Coverage underNlb

Figure 3 describes an algorithm to achieve a large
coverage , under the constraint that the number of invoca-
tions to each selected tuning section is larger than a lower
bound Nlb. This algorithm selects the tuning sections and
puts their entry nodes into set T . It finds the nodes that
are worth extra code partitioning and puts them into set
M . The call graph G = (V, E) is a DAG, simplified by the
algorithm described in Section 3.3. Besides Nlb, two other
parameters are used: (1) Tlb, the lower bound on average
execution times; (2) Plb, the lower bound on the execution
percentage for a code section worth extra partitioning.

Tlb is determined by the timing accuracy of the PEAK
system. By default, we set Tlb = 100µsec in our experi-
ments. We set Plb = 0.02, meaning that a code section is
worth extra partitioning if its execution time is greater than
2% of Ttotal. Nlb will be adjusted to trade off the tuning sec-
tion coverage in the final tuning-section selection algorithm
described in Section 3.5. The optimal Nlb picked by the final
algorithm usually ranges from hundreds to thousands.

The max-coverage algorithm in Figure 3 traverses the call
graph from top down in a topological order. The procedure
calls whose average execution time is less than Tlb are ig-
nored. The nodes that are invoked more than Nlb times
are selected as tuning sections. When a tuning section is
selected, the profile data are updated to reflect the execu-
tion times and invocation numbers after excluding this tun-
ing section. 2 After the whole selection process finishes,
if the remaining execution time on node v is greater than
Plb × Ttotal, v is worth extra partitioning.

3.5 The Final TS Selection Algorithm
In order to achieve a large Nmin, we raise the Nlb gradu-

ally to tolerate a small drop of coverage . Two new parame-
ters are introduced to this final algorithm.

1. Clb, the lower bound on the tuning section coverage. If
the coverage of the selected tuning sections is smaller
than Clb, extra partitioning is necessary. We set it as
80% of the total execution time.

2. Rub, the upper bound on the coverage drop rate. The
coverage drop rate is computed based on two tuning-
section selection solutions as follows, where Nmin2 is
larger than Nmin1.

R =
coverage1 − coverage2

Nmin2 − Nmin1
(12)

If, on average, after increasing Nmin by 1, the coverage
drops more than Rub, the algorithm finds a trade-off
point. In our experiments, we tolerate 1% decrease of
the coverage, if Nmin can be improved by 100. So, we
set Rub as 0.01/100 = 1e−4.

The final tuning-section selection algorithm iteratively
uses the method shown in Figure 3 to maximize coverage
under a series of thresholds Nlb’s. The new Nlb in the next
iteration, Nlb2, is equal to the Nmin obtained from the pre-
vious iteration. (We notice that this Nmin is greater than
the old Nlb in the previous iteration, Nlb1, and that any
threshold value in [Nlb1, Nmin−1] gives the same solution to
maximize the coverage.) Using Nmin from the previous iter-
ation as the new threshold value for Nlb makes the trade-off
process fast. This process finishes when the coverage drops
below Clb or the coverage drop rate is greater than Rub.

For example, Table 1 shows the result of each iteration, via
applying this algorithm to benchmark mgrid. The second
iteration gets the optimal result, with coverage = 0.957 and
Nmin = 2000. (The initial Nlb is 10, which is a reasonable
boundary for our rating methods to achieve fast tuning.)

2To update the profile, we need a context-sensitive inclusive
profile. This profile should show the execution time and
number of invocations of each procedure call; it should also
split this information for each call path. Note that gprof
does not provide such information. Instead, our algorithm
estimates it by evenly distributing the profile data of the
selected tuning section to its ancestors and descendants.

Table 1: Tuning section selection for mgrid. The best
Nlb is 400. The optimal coverage and Nmin are 0.957
and 2000.

iteration Nlb coverage Nmin

1 10 0.998 400
2 400 0.957 2000
3 2000 0.808 2400

Profile Input

TS Selection
Configuration

TS Selector

TS
List

Rating
Method

Consultant

Annotated Program

Search Method
Configuration

PEAK
Instrumentation

Tool

Instrumented
Source Code

PEAK
Search Engine

Backend
Compiler

1

2

3

Performance
Tuning Driver

TS Code

3

Training Input

4 Generate new
versions

Compute the
ratings

More?

Done

5

Final Version Generation
6

Figure 4: Block diagram of the PEAK performance
tuning system. The blocks in the diagram are the
components in PEAK and the input and output of
these components. Steps 1 to 6 correspond to the
ones shown in Figure 1.

4. THE PEAK SYSTEM
PEAK has two major parts: the PEAK compiler and the

PEAK runtime system. The PEAK compiler is used in the
pre-tuning steps, while the PEAK runtime system controls
the actual tuning process. Figure 4 shows a block diagram of
the PEAK system, which lists all the components in PEAK
and all the performance tuning steps. Steps 1 to 4 are taken
before tuning to construct a tuning driver for a given pro-
gram. In these steps, the PEAK compiler analyzes and in-
struments the source code. During performance tuning at
Step 5, the tuning driver continually runs the program un-
der a training input until the best version is found for each
tuning section. In this step, the PEAK runtime system is
involved in dynamically generating and loading optimized
versions, rating these versions, and feeding new optimiza-
tion combinations to the tuning driver. After tuning, in
Step 6, each tuning section is compiled under its best op-
timization combination and linked to the main program to
generate the final tuned version. Specifically, PEAK takes
the following steps.

1. The tuning section selector chooses the important code
sections as the tuning sections, applying the algorithm
described in Section 3.

2. The rating method consultant analyzes the source pro-
gram to find the applicable rating methods for each
tuning section. The compiler techniques developed
in [7] are implemented here.

3. The PEAK instrumentation tool applies the appropri-
ate rating method to each tuning section, after a profile
run to find the major context for CBR and the model
parameters for MBR. It inserts the initialization and
finalization functions to activate the PEAK runtime
system and the functions to load and save the tuning
state of previous runs, since the performance tuning
driver may run the program multiple times in Step 5.
Each tuning section is retrieved into a separate file,
which will be compiled at Step 5 under different opti-
mization combinations to generate optimized versions.

4. The instrumented code is compiled and linked with the
PEAK runtime system, which is provided in a library
format, to construct the performance tuning driver.
The PEAK runtime system implements the three rat-
ing methods developed in [7] and the CE optimization
orchestration algorithm developed in [8]. Special func-
tions for dynamically loading the binary code during
tuning are also included in the PEAK runtime system.

5. The performance tuning driver iteratively runs the
program under a training input until optimization or-
chestration finishes for all the tuning sections. At each
invocation to a tuning section, the driver takes over
the control. It runs and times the current experimen-
tal version and decides whether more invocations are
needed to rate the performance of this version. Af-
ter the rating of this version is done (i.e., when the
rating variance is small enough) the driver generates
new experimental versions according to the orchestra-
tion algorithm. (The tuning sections are tuned inde-
pendently.) The tuning process ends when the best
version is found for each tuning section.

6. After the tuning process finds the best optimized ver-
sion for each tuning section, these best versions are
linked to the main program to generate the final ver-
sion. Here, the main program is the original source
program with the tuning sections removed. The final
version is the one to be delivered to the end users. This
completes the tuning process.

PEAK evaluates the performance of optimized code ver-
sions via executing the program under a training input. It
generates and loads the binary code during the program ex-
ecution.

To generate an optimized version for a tuning section sepa-
rately, excluding other unrelated code, PEAK extracts each
tuning section into a separate source file via a source-to-
source transformation. This source file includes the entry
procedure to the tuning section and all its direct and indirect
callees. So, this source file can be compiled and optimized
separately.

Callees are included in the tuning section, so, inlining and
interprocedural analysis can be performed during code gen-
eration, which is important to performance improvement in
some cases. If a procedure is called in two tuning sections,
this procedure is replicated and renamed in the correspond-
ing source files to avoid name conflicts at link time. Different
from cloning [2], such replication in our PEAK system does
not have the problem of code explosion, because the number
of replicas for a procedure is never more than the number
of tuning sections, which is fixed and usually small, around
three.

Table 2: Tuning-section selection results for SPEC
CPU2000 FP benchmarks. (Three benchmarks that
needed extra code partitioning are annotated with
‘*’. The last row, wupwise+, uses a smaller Tlb =
1µsec.)

Benchmark coverage Nmin # of TS
ammp 88.6 127 3
applu 97.9 250 5
apsi 87.8 720 9
art 99.9 250 2
equake 54.6 2709 1
equake* 99.0 2709 1
mesa 96.9 4000 1
mgrid 95.7 2000 4
sixtrack 10.4 208 2
sixtrack* 97.9 1693 2
swim 83.9 198 3
swim* 99.2 198 4
wupwise 91.7 22 1
wupwise+ 83.0 22528000 2

An important implementation detail is the mechanism for
dynamically loading an optimized version. PEAK must pay
attention to the global variables used in the tuning sections,
especially static variables in C and common blocks in For-
tran. Multiple versions of the same tuning section are in-
voked during one run of the program. Each global variable
used in these versions will be located to the same address,
when the versions are loaded. We developed a special binary
update tool to achieve this effect.

5. EXPERIMENTAL RESULTS

5.1 Results of Tuning Section Selection
Table 2 shows the results of our tuning section selection

algorithms, demonstrating that the algorithm achieves the
goal of maximizing both the program coverage and the num-
ber of invocations to the tuning sections. In most bench-
marks, the coverage is 90% or higher. Three codes needed
extra code partitioning.

The minimum number of invocations, Nmin, ranges from
hundreds to thousands for all the benchmarks, except wup-
wise. Wupwise contains many small functions with an av-
erage execution time in the order of µsecs, which are below
the chosen threshold Tlb. When lowering the threshold to
1µsec, the algorithm finds tuning sections that are called a
large number of times (22528000). This solution necessitates
a high-resolution timer for accurate measurements, which is
implemented in our system.

The three benchmarks that needed extra partitioning are
equake, sixtrack and swim. In these codes, our tuning sec-
tion selection algorithm identifies the procedures that take
a large execution time but with only a few invocations. In
these procedures, the extra partitioning step extracts the
loop body of the important loop into a separate procedure.
After partitioning, the new procedure will cover a significant
part of the program execution time with a large number of
invocations. Extra code partitioning, while automatable,
was done manually in our experiments.

5.2 PEAK Performance

5.2.1 Experimental Environment for PEAK
We evaluate PEAK’s performance in orchestrating the 38

optimizations that are included in the O3-level of the GCC
3.3.3 compiler. To verify PEAK performs well on different
platforms, we experimented with a Pentium IV (2.8 GHz)
and a SPARC II (400 MHz) system. The test applications
include all SPEC CPU2000 FP benchmarks written in F77
and C, which are amenable to GCC.

We compare PEAK with a system that performs whole-
program tuning. This reference system applies the same CE
algorithm, but uses overall program execution for timing
measurements [8].

Similar to [8], we apply two experiment techniques.
(1) We use a code repository to memorize and reuse the
performance results. (2) To ensure accurate measurements,
we execute each code version multiple times under a single-
user environment. In the reference system, the whole pro-
gram is re-executed until the three least execution times are
within a range of [−1%,1%]. In PEAK, each version of a
tuning section is invoked a number of times controlled by
the techniques presented in Section 2.2.

Two important metrics characterize the behavior of opti-
mization orchestration:
(1) The program performance of the final, tuned version. We
define it as the performance improvement percentage of the
final version relative to the base version under the highest
optimization level O3.
(2) The total tuning time. Because the execution times of
different benchmarks are not the same, we normalize the
tuning time (TT) by the time of evaluating the whole pro-
gram optimized under O3, i.e., one compilation time (CTB)
plus three execution times (ETB) of the base version.

NTT = TT/(CTB + 3 × ETB) (13)

The goal is the achieve high program performance and short
tuning time.

5.2.2 Results of PEAK
Figure 5 shows the normalized tuning time of the Whole-

Program Tuning and the PEAK system. (For PEAK, the
tuning time includes the time spent in all six tuning steps.)
On average, the normalized tuning time is reduced from 68.3
to 3.36., amounting to a tuning speedup of 20.3. The bench-
mark that has a high speedup usually has a large number
of invocations to the tuning sections. On average, the abso-
lute tuning time is reduced from 2.19 hours to 5.85 minutes.
Hence, applying the rating methods at the tuning-section
level significantly improves the tuning time.

Figure 6 shows the tuning time percentages of the six
tuning steps. Most of the time is spent in Step 5, the
performance tuning (PT) stage. The second largest por-
tion is spent in Step 1, the tuning section selection (TSS)
stage. This is because TSS does a profile run, which in some
cases (e.g., wupwise) takes more time than a normal run of
the program. The third largest portion is spent in Step 2,
the rating method analysis (RMA) stage. RMA does data
flow analysis and may need a profile run to get the context
parameters for CBR and execution model parameters for
MBR. For programs with a large source code (e.g., ammp
and mesa), compilation time is also significant.

62.22

50.99

105.76

69.23
63.14

89.28

50.59

87.32

36.96

102.97

68.28

2.33
7.06

11.21
4.03 1.79 2.33 3.38 4.22 2.59 1.61 3.36

0.00

20.00

40.00

60.00

80.00

100.00

120.00

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

G
eo

M
ea

n

N
or

m
al

iz
ed

 tu
ni

ng
 ti

m
e

Whole PEAK

Figure 5: Normalized tuning time of the Whole-
Program Tuning and the PEAK system for SPEC
CPU2000 FP benchmarks on Pentium IV. On aver-
age, PEAK gains a speedup of 20.3 over the Whole-
Program Tuning.

The results on SPARC II are similar. The normalized
tuning time is reduced from 63.42 to 4.88, with a tuning
speedup of 13.0. The absolute tuning time is reduced from
9.83 hours to 43.7 minutes. (Note that our Pentium machine
is much faster than the SPARC machine.)

Figure 7 shows the program performance achieved by the
Whole-Program Tuning and the PEAK system on Pentium
IV. Our overall tuning process is similar to profile-based
optimizations. A train dataset is used to tune the program.
A different input, the SPEC ref dataset, is usually used to
measure performance. To separate the performance effects
attributed to the tuning system from those caused by the
input sets, we measure program performance under both the
train and ref datasets.

The first two bars show the performance of the final tuned
version under the same train dataset for the Whole-Program
Tuning and the PEAK system. For all the benchmarks,
PEAK achieves similar performance. PEAK outperforms
Whole-Program Tuning by 1.5% on applu. The benchmarks
equake and mesa have only one tuning section. Art, swim
and mgrid have similar code structure in the selected tun-
ing sections, hence they favor similar optimizations. These
two observations explain why PEAK outperforms Whole-
Program Tuning insignificantly in terms of tuned program
performance.

The last two bars show the performance under the ref
dataset. (Still, the train dataset is used during tuning.) For
these benchmarks, the performance is similar to the one un-
der the train dataset. This similarity shows that our off-line
tuning scenario does find a good combination of compiler
optimizations, for the chosen benchmarks, that is of general
applicability.

On average, PEAK improves performance by 12.0% and
12.1% for train and ref, respectively, while Whole-Program
Tuning improves performance by 11.9% and 11.7%. On
SPARC II, both PEAK and Whole-Program Tuning improve
performance by 4.1% and 3.7% for train and ref, respec-
tively. Hence, we find that PEAK achieves similar program
performance than Whole-Program Tuning.

0%

20%

40%

60%

80%

100%

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
ve

ra
ge

P
er

ce
nt

ag
e

of
 th

e
to

ta
l t

im
e

sp
en

t i
n

tu
ni

ng

TSS RMA CI DG PT FVG

Figure 6: Tuning time percentage of the six stages
for SPEC CPU2000 FP benchmarks on Pentium IV.
(TSS: tuning section selection, RMA: rating method
analysis, CI: code instrumentation, DG: driver gen-
eration, PT: performance tuning, FVG: final version
generation.)

0

10

20

30

40

50

60

70

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

G
eo

M
ea

n

R
el

at
iv

e
pe

rf
or

m
an

ce
 im

pr
ov

em
en

t p
er

ce
nt

ag
e

(%
)

Whole_Train PEAK_Train Whole_Ref PEAK_Ref

Figure 7: Program performance improvement rel-
ative to O3 for SPEC CPU2000 FP benchmarks
on Pentium IV. All the benchmarks use the
train dataset as the input to the tuning pro-
cess. Whole Train (PEAK Train) is the perfor-
mance achieved by the Whole-Program Tuning (the
PEAK system) under the train dataset. Whole Ref
and PEAK Ref use the ref dataset to evaluate the
tuned program performance.

6. RELATED WORK
Many performance tuning systems use a feedback-directed

approach. For example, ATLAS [12] generates numerous
variants of matrix multiplication to search for the best one
for a specific target machine. Similarly, Iterative Compila-
tion [6] searches through the transformation space to find
the best block sizes and unrolling factors. Meta optimiza-
tion [10] uses machine-learning techniques to adjust several
compiler heuristics automatically.

The above three projects [6, 10, 12] have focused on a rel-
atively small number of optimization techniques, while this
paper tunes all optimizations that are controlled by com-
piler options (e.g., all the 38 GCC O3 optimization options
in our experiments).

Several projects address the same optimization orchestra-
tion problem as this paper. The Optimization-Space Ex-
ploration (OSE) compiler [11] defines sets of optimization
configurations and an exploration space, which is traversed
to find the best configuration for the program using compile-
time performance estimates as feedback. Statistical Selec-
tion (SS) in [9] uses orthogonal arrays [5] to compute the
performance effects of the optimizations based on a statis-
tical analysis of profile information, which, in turn, is used
to find the best optimization combination. Compiler Opti-
mization Selection [1] applies fractional factorial design to
optimize the selection of compiler options. Option Recom-
mendation [4] chooses the PA-RISC compiler options intelli-
gently for an application, using heuristics based on informa-
tion from the user, the compiler and the profiler. (Different
from finding the best optimization combination, Adaptive
Optimizing Compiler [4] uses a biased random search to dis-
cover the best order of optimizations.)

Many of the above systems [1, 4, 9] tune the performance
at the whole-program level. By contrast, we have developed
a system that tunes at the procedure level. To this end, we
have designed a new algorithm to partition a program into
multiple sections for individual performance tuning. An-
other important difference is that OSE [11] uses compile-
time performance estimates as feedback, whereas our system
uses accurate execution times.

7. CONCLUSIONS
This paper has described an automated performance tun-

ing system, called PEAK. We have presented a novel algo-
rithm that selects the important code sections in a program
for individual performance tuning. PEAK searches for the
best optimization combination for each such tuning section,
leveraging a fast optimization orchestration algorithm and
accurate rating methods, presented in related work. Instead
of measuring overall performance, PEAK uses partial pro-
gram executions for tuning feedback, leading to a reduction
in tuning time from 2.19 hours to 5.85 minutes, while achiev-
ing similar performance.

8. REFERENCES
[1] K. Chow and Y. Wu. Feedback-directed selection and

characterization of compiler optimizations. In Second
Workshop on Feedback Directed Optimizations, Israel,
November 1999.

[2] K. D. Cooper, M. W. Hall, and K. Kennedy. A
methodology for procedure cloning. Computer
Languages, 19(2):105–117, 1993.

[3] S. L. Graham, P. B. Kessler, and M. K. McKusick.
gprof: a call graph execution profiler. In SIGPLAN
Symposium on Compiler Construction, pages 120–126,
1982.

[4] E. D. Granston and A. Holler. Automatic
recommendation of compiler options. In 4th Workshop
on Feedback-Directed and Dynamic Optimization
(FDDO-4), December 2001.

[5] A. Hedayat, N. Sloane, and J. Stufken. Orthogonal
Arrays: Theory and Applications. Springer, 1999.

[6] T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle,
F. Bodin, and H. A. G. Wijshoff. A feasibility study in
iterative compilation. In International Symposium on
High Performance Computing (ISHPC’99), pages
121–132, 1999.

[7] Z. Pan and R. Eigenmann. Rating compiler
optimizations for automatic performance tuning. In
SC2004: High Performance Computing, Networking
and Storage Conference, page (10 pages), November
2004.

[8] Z. Pan and R. Eigenmann. Fast and effective
orchestration of compiler optimizations for automatic
performance tuning. In The 4th Annual International
Symposium on Code Generation and Optimization
(CGO), page (12 pages), March 2006.

[9] R. P. J. Pinkers, P. M. W. Knijnenburg, M. Haneda,
and H. A. G. Wijshoff. Statistical selection of compiler
options. In The IEEE Computer Society’s 12th Annual
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications
Systems (MASCOTS’04), pages 494–501, Volendam,
The Netherlands, October 2004.

[10] M. Stephenson, S. Amarasinghe, M. Martin, and
U.-M. O’Reilly. Meta optimization: improving
compiler heuristics with machine learning. In
Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation,
pages 77–90. ACM Press, 2003.

[11] S. Triantafyllis, M. Vachharajani, N. Vachharajani,
and D. I. August. Compiler optimization-space
exploration. In Proceedings of the international
symposium on Code generation and optimization,
pages 204–215, 2003.

[12] R. C. Whaley and J. Dongarra. Automatically tuned
linear algebra software. In SuperComputing 1998:
High Performance Networking and Computing, 1998.

