
Adaptive Reorder Buffers for SMT Processors
Joseph Sharkey Deniz Balkan Dmitry Ponomarev

Department of Computer Science,
State University of New York,
Binghamton, NY 13902-6000

{jsharke, dbalkan, dima }@cs.binghamton.edu

ABSTRACT
In SMT processors, the complex interplay between private and shared
datapath resources needs to be considered in order to realize the full
performance potential. In this paper, we show that blindly increasing
the size of the per-thread reorder buffers to provide a larger number
of in-flight instructions does not result in the expected performance
gains but, quite in contrast, degrades the instruction throughput for
virtually all multithreaded workloads. The reason for this
performance loss is the excessive pressure on the shared datapath
resources, especially the instruction scheduling logic. We propose
intelligent mechanisms for dynamically adapting the number of
reorder buffer entries allocated to each thread in an effort to avoid
such allocations if they detrimentally impact the scheduler. We
achieve this goal through categorizing the program execution into
issue-bound and commit-bound phases and only performing the
buffer allocations to the threads operating in commit-bound phases.
Our adaptive technique achieves improvements of 21% in instruction
throughput and 10% in the fairness metric compared to the best
performing baseline configuration with static ROBs.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Other Architecture Styles –Pipeline
processors.

General Terms: Performance, Design

Keywords: Simultaneous Multithreading, Reorder Buffer

1. INTRODUCTION
In the last two decades, a plethora of sophisticated microarchitectural
techniques, mostly relying on various forms of speculation, have
been proposed to extract the instruction-level parallelism (ILP) from
single-threaded applications in dynamic out-of-order processors.
Unfortunately, the surging complexity and power consumption
associated with these mechanisms, as well as diminishing
performance returns due to the growing processor-memory gap, make
these solutions less and less attractive. Consequently, researchers
have been exploring ways to improve the
performance/complexity/power trade-offs in processor design by
exploiting parallelism across multiple threads of control, or Thread-
Level Parallelism (TLP).

Simultaneous Multithreading (SMT) is one processor design

paradigm that exploits TLP. In an SMT model, multiple threads
share the key datapath resources such as the issue queue (IQ),
the pool of physical registers used for renaming, the execution
units and the caches. In addition, each thread has a private
load/store queue, rename table, program counter and return
address stack. It is well established that such an organization
provides a significant boost in instruction throughput compared
to a superscalar machine with minimal area and complexity
overheads [13,14].

One key datapath component that can significantly impact the
performance of an SMT processor is the Reorder Buffer (ROB).
The ROB is a circular FIFO queue that stores all in-flight
instructions in program order and thus facilitates the recovery to
a precise state following a branch misprediction, an interrupt or
an exception. Instructions are dispatched into the ROB at the tail
end (pointed to by the ROB_tail pointer) and they are committed
from the head end (pointed to by the ROB_head pointer). The
ROB is essentially implemented as a RAM structure with a
number of read and write ports to support instruction
dispatching (writes into the ROB) and commitment (reads from
the ROB).

While logically each thread has its own private ROB to support
the commitment of instructions independently of the progress
made by other threads, the physical implementation can either
be in the form of a number of private structures (one ROB per
thread) or one shared structure with multiple head and tail
pointers, one for each thread. Some academic authors [5,12]
assume separate per-thread ROBs, while others [9,10] assume
one large shared ROB. Even if the shared implementation is
assumed, dedicated commit logic needs to be provided for each
thread in order to avoid huge commit blockages. If such an
organization is used for a W-way machine, then up to W oldest
committable instructions across all threads are committed per
cycle, regardless of their actual position in the ROB, noticeably
complicating the commitment logic. Industrial SMT designs
[16] typically use the shared ROB that is statically partitioned
across the threads – that, again, is logically analogous to having
separate per-thread ROBs. While the techniques proposed in this
work are applicable to any ROB organization, we assume the
use of private ROBs throughout the paper, although we also
examine the performance implications of shared ROBs in
Section 4.

It is well understood and accepted that larger ROBs generally
result in higher performance on a single-threaded superscalar
machine because a large window of instructions maintained in
the out-of-order core allows for the exploitation of more ILP.
However, in this paper we show that blindly increasing the sizes
of the per-thread ROBs beyond a certain limit consistently
degrades the performance of an SMT machine across virtually

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’06, September 16–20, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-264-X/06/0009...$5.00.

all the multi-threaded workloads that we simulated. This
phenomenon is a result of increased pressure on the shared SMT
resources, such as the issue queue and the pool of physical registers.

We propose techniques to overcome these performance challenges by
dynamically allocating a larger number of ROB entries to some
threads only if and when needed, without detrimentally impacting the
instruction scheduling logic. We achieve this goal through the
following key observation. A thread benefits from a larger ROB and
the scheduling of instructions from other threads is not impacted if
the thread exhibits commit-bound behavior, i.e. in an average cycle,
the majority of in-flight instructions from that thread have already
begun (or completed) the execution. Most instructions from such a
thread occupy an ROB entry for a very long time, but only use an IQ
entry for a few cycles. In other words, the instructions from such
threads issue shortly after being dispatched but then get delayed in
the ROB before commitment. These threads require large ROBs, but
can tolerate smaller IQs. It is therefore advantageous to provide a
larger ROB to such a thread during the phase of execution when such
behavior transpires. This occurs, for example, on an L2 cache miss
(or some other long-latency event, in general), when the missing load
blocks the thread’s commitment and many load-independent
instructions are also piled up in the ROB. Several recent studies [17,
18] showed that the number of load-dependent instructions is
typically very small, much smaller than the number of independent
instructions that can fit into the instruction window following an L2
miss.

On the other hand, if a thread exhibits issue-bound behavior, i.e. most
of the instructions in the ROB are not issued, then allocating more
ROB entries to the thread will simply increase the pressure on the
shared resources, possibly restricting the availability of these
resources to other threads, and thus degrading performance.

The specific contributions and the key results of this paper are:

• We show that the representative intervals of the SPEC 2000
benchmarks, as defined by the Simpoints tool [11], exhibit clear
phases of issue-bound or commit-bound behavior, with some
benchmarks being issue-bound, other benchmarks being
commit-bound, and yet others changing their behavior
throughout the execution.

• We propose a logically-partitioned ROB organization, which
can be used to adapt the number of ROB entries allocated to
each thread by simply controlling the range within which the
head and tail pointers can advance, without making any other
changes to the ROB structure.

• We investigate dynamic mechanisms to drive the
allocation/deallocation decisions of entries within such
logically-partitioned ROBs. Our goal is to provide larger ROBs
to threads executing in commit-bound phases and limit the ROB
allocations to threads executing in issue-bound phases.

• We show that the use of our adaptive techniques on a processor
with 128-entry per-thread ROBs increases the throughput IPC
by 54% and fairness by 29% compared to the static ROBs of
similar size. Compared to the best-performing static
configuration (ROBs with 48 entries), our techniques result in
21% improvement in IPC and 10% improvement in fairness. All
of this is achieved with minimal complexity.

• We demonstrate that the performance of our techniques very
closely approaches that of the machine with the infinite issue

queues, effectively addressing the performance challenges
associated with the ROB scalability on SMT. This result
essentially obviates the need to consider more sophisticated
ROB management techniques, such as a completely
dynamic sharing of all available ROB partitions across all
threads.

The rest of the paper is organized as follows. We review the
related work in Section 2. Our simulation methodology is
described in Section 3. Section 4 examines the reasons for the
performance losses with larger ROB sizes on SMT. We
categorize the execution of the SPEC benchmarks into commit-
bound and issue-bound phases in Section 5. Section 6 presents
our mechanisms for dynamic ROB adaptation. We present and
discuss the results in Section 7, and offer our concluding
remarks in Section 8.

2. RELATED WORK
The use of shared as well as partitioned resources in an SMT
processor can be indirectly controlled by instruction fetching
mechanisms. Various fetching policies have been proposed in
the literature to provide the best supply of instruction mixes
from multiple threads for building the most efficient execution
schedules. The I-Count fetching policy [13] gives fetching
priority to threads with fewer instructions in decode, rename and
the IQ. The goal is to avoid clogging of the IQ with the
instructions from one thread. Several optimizations of I-Count
have also been proposed in an effort to avoid fetching the
instructions that are likely to be stalled in the IQ for a large
number of cycles. STALL [12] prevents the thread from fetching
further instructions if it experienced an L2 cache miss. FLUSH
[12] extends STALL by squashing the already dispatched
instructions from such a thread, thus making the shared IQ
resources available for the instructions from other threads.
FLUSH++ [4] combines the benefits of STALL and FLUSH and
uses the cache behavior of threads to dynamically switch
between these two mechanisms. The Data Gating technique of
[5] avoids fetching from threads that experience an L1 data
miss.

In [3], a novel resource allocation policy (called DCRA)
exercising a more fine grained dynamic control over shared
SMT resources (such as the IQ and the register file) was
proposed. DCRA first classifies the threads according to their
demands for the resources and based on this classification
determines how the resources should be distributed among the
threads. In contrast to the previous methods that stall or flush
threads which have cache misses, the technique of [3] actually
attempts to help these threads by providing more resources to
them (if such resources are available) to increase the memory-
level parallelism by overlapping multiple cache misses. While
providing benefits compared to the previously proposed fetching
schemes, the technique of [3] requires a few additional counters
and the logic to implement the resource sharing model. It was
shown in [3], and corroborated by our analysis, that the DCRA
method is generally superior to all previously proposed fetching
policies. In this work, we use the DCRA mechanism as our
baseline case for comparison and show that our techniques
provide significant additional benefits on top of DCRA.

The effects of various resource partitioning schemes on the
performance of SMT processor were examined in several works.
In [10], a partitioned version of the oldest-first issue policy is

proposed, where separate issue queues are used to buffer the
instructions from different threads. In [9], the effects of partitioning
the datapath resources, including the issue queues and reorder
buffers, across multiple threads, were discussed. The authors of [9]
compared the use of private ROBs with a structure that is shared by
all threads, but that still allows the commitment of W oldest
committable instructions (for a W-way machine), possibly belonging
to different threads, to be performed in the same cycle. The main
conclusion of [9] is that the statically-partitioned ROB results in
performance advantages compared to the fully shared design for
smaller ROB sizes (as sharing can easily monopolize the ROB by the
instructions from one thread in this case). At larger ROB sizes, the
performance of architectures with shared and private ROBs was
found to be almost identical. Our studies showed similar trends, and
some results are presented in Section 4.

The work of [15] explored dynamic resource allocation on SMT
processors that preserve, as much as possible, the performance of a
single “foreground” thread while still permitting other, “background”
threads to share the resources. These low-priority transparent threads
are suitable for performing non-critical computations and can be
used, for example, as helper threads for prefetching. Our work, in
contrast, focuses on the resource allocations among treads with equal
priority levels.

3. METHODOLOGY
For estimating the performance impact of the schemes described in
this paper, we used M-Sim [22] - a significantly modified version of
the Simplescalar 3.0d simulator [1] that separately models pipeline
structures such as the issue queue, re-order buffer, and physical
register file, both for superscalar and SMT machines [13,14]. For the
SMT machine, we assume the shared register file, execution units,
caches, and issue queue [9]. As shown previously [9], and also
observed in our simulations, a shared issue queue provides better
performance than a private issue queue (by 8% for the 64-entry per-
thread ROBs in our simulations) and we therefore assume this model
through the paper. The simulator also supports speculative instruction
scheduling [19] and models the “squash” recovery following a load-
latency misprediction, as implemented in Alpha 21264. In the squash
recovery model, all instructions that have issued but not yet begun
execution at the time that a load-latency misprediction is detected are
replayed. The details of the studied processor configuration are
shown in Table 1. To fetch instructions from multiple threads, we
use the DCRA policy [3], which was discussed in more detail in
Section 2. In some cases, we also examine the I-Count [13] policy.

Table 1: Simulated processor configuration.

Parameter Configuration

Machine width 8-wide fetch, 8-wide issue, 8-wide commit
Window size 64 entry IQ, 48 entry per-thread load/store queue, ROB as specified
Pipeline Depth 5 cycles fetch to dispatch, 3 cycles issue to execute

Function Units and Lat
(total/issue)

8 Int Add (1/1), 4 Int Mult (3/1) / Div (20/19), 4 Load/Store (2/1), 8
FP Add (2), 4 FP Mult (4/1) / Div (12/12) / Sqrt (24/24)

Phys. Registers 300 integer + 300 floating point (including architectural registers)
L1 I–cache 32 KB, 2–way set–associative, 32 byte line, 1 cycles hit time
L1 D–cache 64 KB, 4–way set–associative, 32 byte line, 2 cycles hit time
L2 Cache unified 512 KB, 8–way set–associative, 128 byte line, 12 cycles hit time
BTB 2048 entry, 2–way set–associative
Branch Pred. Per Thread 4K entry gShare, 10-bit global history
Load-latency Predictor 4K entry bimodal predictor
Memory latency 300 cycles
TLB 64 entry (I), 128 entry (D), fully associative

We simulated the full set of 26 SPEC 2000 integer and floating point
benchmarks [6], using the precompiled Alpha binaries available from
the Simplescalar website [1]. We skipped the initialization part of

each benchmark using the procedure prescribed by the
Simpoints tool [11] and then simulated the execution of the
following 100 million instructions. In SMT mode, we stopped
the simulations when 100 million instructions from at least one
of the threads committed.

Our multithreaded workloads contain a subset of all possible
combinations of the simulated benchmarks. In selecting the
multithreaded workloads, we first simulated all benchmarks in
the single-threaded superscalar environment and used these
results to classify them as low, medium, and high ILP, where the
low ILP benchmarks are memory bound and the high ILP
benchmarks are execution bound.

Table 2: Simulated multi-threaded workloads

Classification Mix Name Benchmarks

Mix 1 mcf, equake, art, lucas
4 LOW ILP

Mix 2 twolf, vpr, swim, parser
Mix 3 applu, ammp, mgrid, galgel

4 MED ILP
Mix 4 gcc, bzip2, eon, apsi
Mix 5 facerec, crafty, perlbmk, gap

4 HIGH ILP
Mix 6 wuwpise, gzip, vortex, mesa
Mix 7 mcf, equake, mesa, vortex 2 LOW ILP +

2 HI ILP Mix 8 parser, swim, crafty, perlbmk
Mix 9 art, lucas, galgel, gcc 2 LOW ILP +

2 MED ILP Mix 10 parser, swim, gcc, bzip2
Mix 11 gzip, wupwise, fma3d, apsi 2 MED ILP +

2 HI ILP Mix 12 vortex, mesa, mgrid, eon

In total, we simulated 12 4-threaded workloads, two from each
of the following six categories: 1) 4 low-ILP programs; 2) 4
medium-ILP programs; 3) 4 high-ILP programs; 4) 2 low-ILP
and 2 high-ILP programs; 5) 2 medium-ILP and 2 high-ILP
programs; 6) 2 medium-ILP and 2 low-ILP programs. All
workloads are described in detail in Table 2.

We used several metrics for evaluating the performance of the
multithreaded workloads throughout this paper. The first metric
is the total instruction throughput in terms of commit IPC rate.
However, this metric is biased towards the architectures that
favor threads with high IPC at the expense of possibly hindering
threads with low IPC [7]. Therefore, we also present the
“fairness” metric of the harmonic mean of weighted IPCs [7],
which takes into account individual per-thread performance.
Throughout the rest of the paper, we present our performance
results in terms of both throughput and fairness (often using
separate graphs).

4. ROB SCALING: WHY CAN LARGER
ROBS DECREASE THE PERFORMANCE
OF SMT?
Figure 1 shows how the performance scales with the increase of
the ROB size if only one thread is executed at a time.
Specifically, when the ROB size is increased from 32 to 128
entries the performance increases by 39% and the IPC increases
monotonically as a function of the ROB size.

1

1.2

1.4

1.6

1.8

32 48 64 96 128 256
ROB Size

C
om

m
it

IP
C

 Figure 1: Harmonic mean of commit IPCs across the full set of
SPEC2000 benchmarks for a superscalar with various ROB sizes.

Quite in contrast to the results presented in Figure 1, the simultaneous
increase in the ROB size of all threads on a multithreaded machine
results in some unexpected performance challenges due to the side-
effects on shared SMT resources. These trends are depicted in Figure
2.

The bottom line on the graph in Figure 2 (labeled “Baseline”) shows
how the throughput of a 4-threaded SMT machine changes as the per-
thread ROB size is increased from 32 entries to 256 entries. For these
results, we assume private per-thread ROBs and the DCRA fetch
policy proposed in [3]. Across the simulated multithreaded mixes of
SPEC 2000 benchmarks, there is a 6% harmonic mean IPC loss as
the per-thread ROB in enlarged from 32 to 64 entries and further 25%
IPC loss as the ROB increases to 128 entries.

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

32 48 64 96 128 256
Per-thread ROB Size

C
om

m
it

IP
C

Baseline Infinite IQ and RF

Figure 2: Commit IPCs for the baseline SMT machine (as described in
Table 1) and the SMT machine with the infinite IQ and RF both using the
DCRA fetch policy [3].

The performance degradations shown in Figure 2 stem from the fact
that a simultaneous, across-the-board increase in the number of in-
flight instructions from all threads results in elevated pressure on the
shared datapath resources, such as the issue queue (IQ) and the
register file (RF). For example, if a thread operates in a phase where
instructions spend most of their lifetime waiting to be executed, then
the increase of that thread’s ROB will simply result in the placement
of a larger number of instructions in the IQ for longer periods of time,
thus denying the scarce issue resources to other threads and
decreasing the overall issue efficiency and, consequently,
performance. At the same time, had the IQ and the RF contention not
been a problem, the larger per-thread ROBs would have provided a
significant performance boost, as shown in the top line of Figure 2
(labeled “Infinite IQ and RF”), where the infinite IQ and RF were
simulated. Notice that the sharpest performance drop in the baseline
configuration comes with the per-thread ROB increase from 64 to 96
entries. This is because, at this point, the main performance
bottleneck shifts from the ROB to the IQ.

0

1

2

3

4

5

mi x1 mi x2 mi x3 mi x4 mi x5 mi x6 mi x7 mi x8 mi x9 mi x10 mi x11 mi x12

32-ent r y ROB 48-ent r y ROB 64-ent r y ROB 96-ent r y ROB 128-ent r y ROB 256-ent r y ROB

Figure 3: Per-benchmark commit IPCs for the baseline SMT machine
with various sizes of the per-thread ROBs

Of course, the phenomenon depicted in Figure 2 can be avoided at
these ROB sizes by implementing larger IQs and RFs. However, both
of these components generally lie on the critical timing path [20, 21]
and the schedulers are not easily pipelined without significant
performance loss [20]. As the enlargements of these structures are
likely to prolong the processor cycle time, it is important to
investigate techniques that support large ROBs without relying on the
increase of the IQ and the RF sizes to mitigate the upsetting trends
demonstrated by Figure 2. Also, even if larger IQ and RF are used,

the trends exhibited by Figure 2 will still manifest themselves at
larger ROB sizes.

The behavior presented in Figure 2 is not unique to a few
specific workloads, but is common to almost all simulated
multithreaded mixes. Figure 3 presents the per-mix results
pertaining to the commit IPCs as a function of the number of
entries in the per-thread ROBs. While mix 7 exhibits an
especially significant drop in performance as the ROBs are
increased beyond 64 entries, some performance degradations are
experienced by almost all of the other workloads as the ROB
size increases from 64 to 128 entries and sometimes even from
48 to 64 entries. For most workloads, there are still some
performance gains when the ROB is increased from 32 to 48
entries, as the ROBs, but not the issue queue, represent a
performance bottleneck in those configurations.

We now examine the impact of both the fetching policy and the
use of shared versus private ROB organizations on the
performance trends depicted in Figures 2 and 3. These
comparisons are presented in Figure 4. The X-axis is labeled in
terms of the total number of ROB entries. For the private ROBs,
the size of the per-thread ROBs is determined by dividing this
number by the number of threads (for example, 256 total ROB
entries = 64-entry ROBs per thread * 4 threads).

0.8

1.3

1.8

2.3

2.8

3.3

128 192 256 384 512 1024
Total # of ROB entries

C
om

m
it

IP
C

Infinate IQ and RF DCRA - Private ICOUNT - Private

ICOUNT - Shared DCRA - Shared

Figure 4: Commit IPCs for the baseline SMT machine with various
ROB organizations (private versus shared) and various fetching
policies.

The top line of the graph again depicts the performance of the
machine with private ROBs and the infinite issue queue. The
next two lines depict the performance of the private ROB
organization using the DCRA [3] and the ICOUNT [14] fetching
policies, respectively. As seen from the graph, the DCRA fetch
policy outperforms the ICOUNT policy for all sizes of the
private ROBs, by as much as 24% for 96-entry per-thread
ROBs. The next two lines in the graph show the performance of
the shared ROB organization using the DCRA and ICOUNT
fetching policies. Once again, the DCRA fetch policy provides
superior performance to ICOUNT – by as much as 21% and
20% for the shared ROB sizes of 256-entries and 384-entries,
respectively. Notice that the performance increases
monotonically as the size of the shared ROB is increased from
128 to 1024 entries, but that it remains significantly lower than
that of the private ROBs; especially for sizes up to 384 entries,
at which point the performance of the shared and private ROBs
converges. Similar trends were presented in [9]. The best
performance is obtained from the private per-thread ROBs with
the DCRA fetch policy. Therefore, due to the space constraints
and without loss of generality, we focus on this organization as
the basis for our study. However, the techniques and statistics
presented in the rest of the paper are certainly applicable to both
ROB organizations and the various fetching policies.

To understand the source of the performance losses shown in Figures
2 and 3, we present some additional statistics in Figures 5, 6 and 7.
Figure 5 depicts the average number of cycles that instructions spend
in the IQ. On average, as the ROB size is increased from 32 to 256
entries, the time spent by the instructions in the IQ almost triples,
because the uncontrolled increase in the number of allocated ROB
entries creates situations where chains of instructions from one thread
that depend on a long-latency event are placed in the IQ and reside
there for a large number of cycles, denying other threads the
opportunity to use these IQ entries. Had the ROB size not been
increased, this situation would have been avoided because these
problematic instructions would not have been allowed to enter the
scheduling window due to the lack of space in that thread’s ROB.
Figure 6 presents similar results for the register file. As seen from the
graph, the average time that a physical register remains allocated also
increases significantly with the increase of the ROB size.

0

20

40

60

80

100

120

140

160

180

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

av
er

ag
e

32-entry ROB 48-entry ROB 64-entry ROB 96-entry ROB 128-entry ROB 256-entry ROB

Figure 5: Average number of cycles spent in the issue queue by
instructions for various sizes of the per-thread ROBs.

0

100

200

300

400

500

600

700

800

900

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

av
er

ag
e

32-entry ROB 48-entry ROB 64-entry ROB 96-entry ROB 128-entry ROB 256-entry ROB

Figure 6: Average number of cycles for which a physical register remains
allocated for various sizes of the per-thread ROBs.

0%

10%

20%

30%

40%

50%

60%

70%

32 48 64 96 128 256

Per-thread ROB size

%
 o

f c
yc

le
s

Stalls due to the IQ entries Stalls due to lack of registers

Figure 7: Average percentage of cycles where dispatch is stalled due to
the lack of issue queue entry or a free physical register

As a consequence of the behavior presented in Figures 5 and 6, the
percentage of cycles that instruction dispatch is stalled due to the lack
of the IQ entries or free physical registers increases. Figure 7 shows
how this percentage of stalled cycles changes with the increase of the
ROB size. The bottom portion of the stacked bars shows the
percentage of stalled cycles due to the absence of a free IQ entry, and
the top portion of the stacked bars shows the additional percentage
due to the absence of a free physical register. Overall, the percentage
of stalled cycles increases from about 2% for 32-entry ROBs to more

than 60% for 256-entry ROBs. This is the main reason behind
the performance degradations.

The detailed results presented in Figures 5, 6 and 7 clearly show
that it makes little sense to allocate more ROB entries to threads
in an SMT machine, if such allocations increase the pressure on
the shared resources. However, some threads, for which
increasing the ROB size does not commensurately elevate the
pressure on the shared resources, can benefit from such
allocations. It is therefore important to consider techniques that
adaptively allocate ROB entries to threads without creating
contention for the use of shared resources.

5. CATEGORIZATION OF PROGRAM
PHASES
In an effort to design such dynamic allocation algorithms, we
first categorize the behavior of the full set of benchmarks from
the SPEC 2000 suite, when running in single-threaded mode,
into commit-bound and issue-bound phases. Figures 8, 9 and 10
depict some representative results, showing the varying behavior
of different benchmarks.

0

10

20

30

40

50

60

70

80

90

Cycles

N
um

be
r o

f i
ns

tr
uc

tio
ns

of instructions in the ROB but not in the IQ # of instructions in the IQ

Figure 8: Phase behavior of the equake benchmark

Figure 8 shows the execution profile of the equake benchmark.
Two lines are shown on this graph. The top line (shown in the
darker shade) depicts the average number of instructions which
have been issued but not yet committed, i.e. the instructions
which are located in the ROB, but not in the issue queue. The
bottom (lighter) line shows similar results for the average
number of dispatched instructions that have not yet begun their
execution, i.e. the instructions that reside in both the ROB and
the IQ. Each point on the graph represents the average value of
these metrics sampled every 100,000 cycles – the results are
presented for the full 100 million instruction execution period as
determined by Simpoints. For equake, there are distinct phases
of execution, such that in some phases (for example, phase B
circled in the figure) the number of issued instructions is much
larger than the number of non-issued instructions, and in other
phases (such as phase A) these numbers are close to each other.
We refer to the phases that exhibit the behavior similar to that of
phase B as commit-bound phases (the throughput is limited by
commitment) and we refer to the phases that behave similar to
phase A as issue-bound phases. In issue-bound phases, a
significant percentage of in-flight instructions are present in the
IQ, therefore increasing the ROB size in such situations is likely
to result in additional pressure on the IQ.

Phase A:
Issue bound

Phase B:
Commit bound

10

20

30

40

50

60

70

Cycles

N
um

be
r o

f i
ns

tr
uc

tio
ns

of instructions in the ROB but not in the IQ # of instructions in the IQ

Figure 9: Phase behavior of the lucas benchmark.

10

20

30

40

50

60

70

80

Cycles

N
um

be
r o

f i
ns

tr
uc

tio
ns

of instructions in the ROB but not in the IQ # of instructions in the IQ

Figure 10: Phase behavior of the vortex benchmark.

Table 3: Phase classification of SPEC2K benchmarks
Classification Benchmarks
Commit-bound ammp, applu, art, fma3d, galgel, gap, swim, vortex, wupwise
Issue-bound crafty, eon, gzip, lucas, mcf, perlbmk, sixtrack, twolf
Varying Behavior apsi, bzip2, equake, facerec, gcc, mesa, mgrid, parser, vpr

Note that in the case of equake, the issue-bound and commit-bound
phases interchange throughout the execution, although the duration of
each such phase is quite long. For some other benchmarks, the entire
simulated execution interval exhibits only one type of behavior,
either issue-bound or commit-bound. For example, the entire
execution of lucas (Figure 9), is characterized as an issue-bound
phase. In fact, for lucas we observe that the number of instructions in
the issue queue is actually significantly larger than the number of
instructions that are in the ROB but not in the IQ. This is illustrated
in the graph by the fact that the lighter-shaded line is above the
darker-shaded line throughout the entire execution. In contrast, the
vortex benchmark (Figure 10) exhibits commit-bound behavior
throughout its execution, where the number of instructions in the
issue queue represents just a small percentage of the total number of
instructions in the ROB. In the picture, this is manifested by the fact
that the darker line is always above the lighter line.

The trends demonstrated by Figures 8, 9 and 10 are quite
representative of the behavior of the SPEC 2000 suite at large. Table
3 shows the classification of all the SPEC 2000 benchmarks,
executed in a single-threaded mode, into three groups: commit-
bound, issue-bound and the ones with varying behavior. Formally, a
phase of execution was determined to be issue-bound if the number
of non-issued instructions (those presented in both the ROB and the
IQ) was greater than one third of the total number of instructions in
the ROB. While the resource occupancies obviously change in an
SMT mode, this characterization shows that the relative demands for
the IQ and the ROB resources are generally very different both across
and within the applications.

The existing fetch and resource allocation policies do not exploit the
commit-bound or issue-bound behavior directly and therefore
experience performance degradations with larger ROB sizes, as
shown in Section 4. For example, DCRA distinguishes fast and slow
threads indirectly, based solely on the presence of outstanding L1
cache misses: a thread with such a miss is considered as “slow”.
However, not all L1 misses are created equal – some can be

seamlessly hidden by the out-of-order execution mechanisms,
others can result in significant pressure on the shared resources,
and yet others can even miss into the lower levels of the memory
hierarchy. In contrast, the adaptive ROB mechanism proposed in
this paper directly classifies threads as “commit-bound” or
“issue-bound”, providing a more comprehensive view of the
resource needs of the individual threads. Our classification
effectively encompasses all possible sources for slow or fast
execution such as cache misses as well as long dependency
chains of long-latency instructions. Furthermore, while DCRA
only controls the use of shared resources, our technique
effectively adds another dimension to SMT resource allocation
by also dynamically adjusting the sizes of the private ROBs. In a
way, adaptive ROBs provide additional level of control to
correct the imbalances in the resource distribution created by
DCRA, perhaps as a result of erroneous thread classification.

6. STRUCTURES AND ALGORITHMS
FOR DYNAMIC ROB ADAPTATION
In this section, we describe the physical structures and
algorithms for dynamic ROB adaptation that exploit the phase
characteristics presented in the previous section to provide larger
ROBs to threads in commit-bound phases and limit the number
of ROB entries available to threads in issue-bound phases.

6.1 A Logically Partitioned ROB Organization
To support the dynamic allocation of ROB entries, we propose a
logically-partitioned ROB organization, which simply limits the
extent to which the ROB_tail and the ROB_head pointers can
advance, without making any other changes to the ROB
structure. While logically the ROB is divided into a number of
partitions (each with multiple entries) and the reconfiguration
decisions are made at the partition granularity, the physical
structure of the ROB does not change at all. In contrast to the
partitioning schemes that target power reduction by turning off
the power supply to the deactivated partitions [8] (which
requires a fairly substantial amount of additional circuitry), the
partitioning that we propose is purely logical and its only goal is
to control performance by limiting the advance of the ROB
pointers. The advancement of the ROB pointers can simply be
controlled by a single bit associated with an ROB entry at a
partition boundary.

Figure 11 shows an example of using the logically-partitioned
ROBs for a 3-threaded SMT processor. Each of the 3 threads has
its own ROB which is divided into 4 partitions. The last entry of
each partition has a next_partition_allocated bit associated with
it, which simply indicates whether the next partition is in use or
not. For an ROB with N partitions, N-1 such bits are used
because the first partition is always allocated. If this bit is set,
then the next ROB partition is also allocated for use by this
thread. Whenever the ROB_head or ROB_tail pointer reaches
the border of a partition where the next_partition_allocated bit
is set, it just moves to the next partition when it advances. If this
bit is not set, the next partition is not allocated for use, and the
ROB pointers wrap to the beginning of the ROB (entry number
0) instead of advancing to the next partition. The figure shows
the situation where the first thread is using all of its available
ROB partitions. The second thread has only the first partition
allocated for its use, so the rest of its three partitions are not
allocated and they are idle. The third thread has three of its ROB
partitions allocated to hold the in-flight instructions and the last

partition is not allocated. Note that the allocated partitions are not
necessarily holding useful instructions at the moment but they are
available for use by the corresponding thread. The
next_partition_allocated bits do not have to be stored within the ROB
itself, but instead can be incorporated into the logic that controls the
advancement of the ROB pointers. In the architectures which support
the “walk-back” examination of ROB entries to handle branch
mispredictions, such a traversal can be performed by storing the
largest index of an allocated entry to ensure that consecutive entries
can be examined when the ROB pointers wrap around.

Figure 11: Logically partitioned ROBs.

In summary, almost no additional complexities are incurred as a
result of the logical partitioning (except for the addition of a few
bits). The unique feature of our dynamic adaptation framework is that
it is sometimes advantageous to leave the partitions unused for
performance reasons!

6.2. Mechanisms for Dynamic ROB Allocation
We now describe the algorithms to dynamically adapt the size of the
ROB for each thread to reap the benefits of large instruction windows
without clogging the shared issue queue. As explained earlier, our
goal is only to make more ROB entries available to a thread if this
will not commensurately increase the pressure on the shared
resources such as the issue queue. To this end, we propose algorithms
to dynamically allocate and deallocate the ROB partitions to each
thread based on whether the thread executes in a commit-bound or
issue-bound phase. Our technique works in two independent and
cooperative phases – one for controlling allocations and one for
controlling deallocations. These decisions are made simultaneously
and independently for all threads. We describe these two mechanisms
separately.

6.2.1 Controlling ROB Allocations

For each thread, we maintain two counters. The first counter – called
not_issued_count, keeps the count of the number of instructions in
the issue queue. The second counter – called total_count - keeps the
count of the overall number of instructions residing in the ROB. The

not_issued_count is incremented at the time of dispatching and
is decremented when instructions issue or are flushed from the
pipeline following a branch misprediction. The total_count is
incremented when an instruction gets dispatched, and it is
decremented when the instruction is committed or is flushed
from the ROB as a result of a branch misprediction. The values
stored in these counters are adjusted on a cycle-by-cycle basis.

The decision of whether to perform additional allocations of the
ROB partitions to threads is made periodically. The duration
between the two consecutive allocation decisions is called the
Evaluation_Period (EP in the rest of the paper). At the end of
every EP, the following actions take place for each thread to
make a decision for allocating new ROB partitions:

1) The issued_count is computed as (total_count -
not_issued_count). The issued_count refers to the number of
instructions that reside in the ROB but not in the IQ. While it is
possible to accumulate this information directly (without
performing the subtraction), the logic needed to update this
counter would be more complicated than simply maintaining the
total number of in-flight instructions.

2) The average per-cycle values of not_issued_count and
issued_count are computed by shifting the values stored in the
corresponding counters by N positions to the right, where
N=log2EP. To make sure that such a shifting provides accurate
average values across the EP, we limit the EP to be a power of 2.

3) The difference computed as (not_issued_count –
issued_count) is then compared against the
allocation_threshold, and if it is determined that
(not_issued_count – issued_count) < allocation_threshold then
a new free ROB partition is allocated to this thread. If this
inequality does not hold, then no ROB allocations are performed
and the thread continues to execute using its current ROB. The
allocation threshold is empirically determined and we present
our results across the range of various threshold values in the
results section.

The intuition behind this algorithm is that by directly comparing
the number of issued instructions with the number of non-issued
instructions in a manner presented in this section, we can
distinguish the issue-bound and commit-bound phases of
execution. Specifically, if the issued_count is significantly larger
than the not_issued_count, then the program executes in a
commit-bound phase and additional allocations of the ROB
partitions to this thread can be performed, as they are unlikely to
impact the scheduling efficiency of other threads. However, if
the not_issued_count is larger or about the same as the
issued_count, then the program executes in an issue-bound
phase and no more allocations to the ROB of this thread will be
performed.

6.2.2 Controlling ROB Deallocations

We now describe the second component of our reconfiguration
algorithm – the logic that controls the ROB deallocation
decisions. As with allocations, deallocation decisions are made
periodically, at the end of every EP. The specific actions
involved in the deallocation algorithm are as follows:

1) At the end of every EP, the average per-cycle value of the
not_issued_count is computed by shifting the counter value by
N positions to the right, where N=log2EP.

Tail_1

1

Tail_2 Head_2

Head_1

Tail_3 Head_3

Thread 1 ROB

Not Used Allocated to Thread 1

Allocated to Thread 2 Allocated to Thread 3

Thread 2 ROB

Thread 2 ROB

next
partition
allocated
 bits

0 0 0

1 1 1

1 0 1

2) The shifted value of the not_issued_count is compared against the
deallocation_threshold. If the counter value exceeds the threshold
(not_issued_count > deallocation_threshold), then one of the ROB
partitions belonging to this thread is deallocated.

We experimented with the various parameters to be used as
deallocation thresholds. The intuition behind the deallocation
approach is that when a thread monopolizes a disproportionate
amount of the issue queue entries (perhaps as a result of some
erroneous decisions made by the allocation phase), the deallocation
logic corrects the situation by scaling down that thread’s ROB. We
present the evaluations across the range of the deallocation thresholds
in the results section.

At the end of an EP, it may be the case that the values of the
issued_count and not_issued_count are such that the allocation and
deallocation conditions are both met. In this situation, the
deallocation decision takes precedence and the allocation request is
ignored. Note that with the appropriate values of the
allocation_threshold and the deallocation_threshold, the situations
where both conditions are met simultaneously can be minimized.

After the allocation/deallocation decisions are made, the actual
allocations or deallocations happen after a number of cycles, when
the ROB pointers are aligned accordingly. We refer the readers to [8]
where the causes of possible delays are described in detail. However,
since our evaluation periods are generally large (as shown in the
results section), such delays have a negligible performance impact,
but were nevertheless accounted for in the simulations. Finally, it is
important to recall that the actions needed to accomplish the actual
allocation/deallocation of the partitions only amount to the setting or
resetting of one next_partition_allocated bit once the head and tail
pointers are aligned appropriately.

7. RESULTS AND DISCUSSIONS
We begin by presenting the sensitivity analysis of our adaptation
techniques to the ROB partition size. Figure 12 presents the
performance results as the size of the ROB partition varies from 4-
entries to 48-entries. We used the 96-entry per-thread ROBs for these
experiments. As seen from the graph, the best performance was
obtained when the ROB partition size was set at 8 entries. Notice
that, from the implementation standpoint, the partition size is not
much of a concern because the number of partitions merely
determines the number of next_partition_allocated bits necessary to
control the advancement of the ROB pointers. From the performance
standpoint, if the partition size is too small, then the
allocation/deallocation decisions have a relatively small impact
because only a few entries are allocated/deallocated at a time. On the
other hand, if the partition size is too large then the optimal point that
provides a sufficient number of ROB entries to threads and at the
same time avoids the scheduler starvation is more difficult to find.
We experimented with various ROB sizes and different thresholds in
our configuration algorithms and found that the 8-entry partitions
represented the optimal design point in all cases. Therefore, in the
rest of this section, the 8-entry partition size is used.

Figures 13 and 14 show the impact of our dynamic ROB adaptation
techniques on the performance of a 4-threaded SMT machine in
terms of the throughput IPC (Figure 13) and fairness metrics (Figure
14). The performance trends change significantly compared to the
situation where the same static number of ROB entries is used by
each thread (in the baseline case). The dynamic adaptation scheme
provides measurable performance improvements as the ROBs
increase from 48 to 64, to 96, and then to 128 entries. After that

point, the performance flattens out as the other resources
become the bottlenecks at these ROB sizes. Note that the trend
of monotonically increasing performance at larger ROB sizes is
re-established by the dynamic ROB adaptation techniques.

0.5
1

1.5
2

2.5
3

3.5
4

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

ha
rm

ea
n

C
om

m
it

IP
C

4-entry partitions 8-entry partitions 16-entry partitions 32-entry partitions 48-entry partitions

Figure 12: Performance of adaptive ROBs with 96-entry ROBs per
thread for various partition sizes.

Compared to the baseline machine where a fixed number of
ROB entries are statically assigned to each thread throughout its
execution, our dynamic mechanism increases the IPC by 5% for
48-entry ROBs, 16% for 64-entry ROBs, 47% for 96-entry
ROBs, and 53% for 128-entry ROBs. In terms of the fairness
metric (harmonic mean of weighted IPCs [7]), these percentages
are 2%, 7%, 25% and 29% (Figure 14). Compared to the best
performing static ROB configuration on the baseline machine,
which is the one with 48-entry ROBs per thread, our
dynamically adaptable ROBs with 128-entries per thread
increase the IPCs by 21% and fairness by 10% with respect to
the harmonic mean across all simulated mixes. Recall that the
increase of the per-thread ROB sizes from 48 to 128 entries in
the baseline machine leads to a 25% IPC reduction and 15%
reduction in fairness.

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

32 48 64 96 128 256

Per-thread ROB size

Th
ro

ug
hp

ut
 IP

C

Baseline

Baseline with infinite IQ and RF

Adaptive ROB with 8-entry partitions

 Figure 13: Harmonic mean throughput IPCs for the adaptive ROBs
with various sizes of the per-thread ROBs for the configurations
with 8-entry partitions.

Our experiments showed that the EP has little impact on the
performance. Specifically, the performance is insensitive for the
evaluation periods up to at least 128K cycles. This result
correlates well with the data presented in Figures 8, 9, and 10,
which show that the issue-bound and commit-bound phases of
applications usually last for several 100,000 cycles at a time.

0.44

0.49

0.54

0.59

0.64

0.69

0.74

32 48 64 96 128 256
Per-thread ROB size

Fa
irn

es
s

M
et

ric

Baseline Baseline with infinite IQ and RF Adaptive ROB with 8-entry partitions

Figure 14: Harmonic mean results for the adaptive ROBs with
various sizes of the per-thread ROBs for the configurations with 8-
entry partitions presented in the form of the fairness metric (of
harmonic mean of weighted IPCs).

We now examine the impact of various values of the
allocation_threshold and the deallocation_threshold on the
performance. We experimented with various mechanisms to set these
thresholds, and our best results were achieved when the thresholds
were expressed as a percentage of the ROB partition size. Figure 15
presents the sensitivity of our reconfiguration algorithm to the
allocation_threshold. If we denote the number of entries in an ROB
partition as λ, the threshold values considered as
allocation_thresholds were in the range between λ/2 and –λ/2. The
larger values of the allocation_threshold (towards the left side of the
graph) result in more aggressive allocations, while lower values
(towards the right side of the graph) result in less aggressive
allocations.

For deallocations, the higher thresholds are more aggressive while
lower thresholds are less aggressive. In the figure, the results are
presented for two values of deallocation thresholds, which provided
the best results. We also experimented with other values of
deallocation thresholds and found them to be worst than the best
results presented here. As seen from the graph, the scheme using 2*λ
as the deallocation_threshold outperforms the datapath with 3*λ as
the threshold in general for nearly all values of the
allocation_threshold examined.

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

λ/2 λ/4 λ/8 0 -λ/8 -λ/4 -λ/2
Allocation Threshold

Th
ro

ug
hp

ut
 IP

C

Deallocation_threshold = 2*λ Deallocation_threshold = 3*λ

]

Figure 15: Performance Sensitivity to Allocation and Deallocation
Thresholds Presented as Harmonic Mean of Throughput IPC. λ is the
ROB partition size.

In general, low values of the allocation_theshold (including the
negative values) provide lower performance because they are not
aggressive enough to allocate a sufficient amount of ROB entries to
threads that could make use of them. On the other hand, a very large
allocation_threshold is too aggressive and thus allows issue-bound
threads to further clog the issue queue (although the effects of this are
somewhat mitigated by an appropriately selected
deallocation_threshold). The optimal configuration lies somewhere
between these extremes and, in our framework, is obtained with the
deallocation_threshold of 2*λ and the allocation_threshold of λ/8.

Having determined the optimal thresholds, we now show some
performance aspects of our reconfiguration algorithms. Table 4
presents the detailed statistics for two of the simulated multithreaded
mixes – mix 1 and mix 10. The details for other mixes are not
presented due to the space constraints, but similar trends were
observed for those workloads. For each thread, the table shows the
average number of allocated ROB partitions, the distribution of the
evaluation periods according to the type of reconfiguration decision
made, the average number of instructions in the IQ, the average
number of instructions which are in the ROB but not in the IQ, and
the classification of the thread. The results generally demonstrate the
effectiveness of our adaptive techniques. For example, consider mix
1. The mcf benchmark (classified as heavily issue-bound) has only 2
ROB partitions allocated to it on the average, while art (classified as
heavily commit-bound) has its full ROB allocated throughout the run
(12*8 = 96). In fact, art is so consistently commit-bound, that our
algorithm quickly allocates all 12 available partitions to it and never
deallocates them again.

The behavior of equake, on the other hand, varies between
commit-bound and issue-bound phases, and on the average 9
ROB partitions are allocated. Lucas is issue-bound, but the
degree of boundedness is less than in the case of mcf, so a larger
number of ROB partitions (6 on the average) are allocated to
lucas. Overall, each benchmark in the mix gets a different
number of ROB entries according to its characteristics. We can
also see that for some benchmarks (art, swim), the number of
allocated ROB partitions is stable, while for others (lucas,
parser) relatively frequent allocation/deallocation decisions are
made.

While the goal of this paper is to improve the performance
scalability of the ROB, similar mechanisms can be used to
reduce dynamic and leakage power. If a more complicated ROB
partitioning circuitry can be deployed [8], then the unused
partitions can be temporarily put into a stand-by mode, thus
reducing the leakage dissipations. Furthermore, the dynamic
dissipations can be reduced by using bitline segmentation [8].
As demonstrated in Table 4, many ROB partitions are in the
deallocated state at any given time and remain so for a large
number of cycles (as the commit-bound / issue-bound phases
last several 100,000 cycles as shown in Figures 8, 9 and 10).
While we do not present a full detailed power evaluation of such
power reduction techniques, a first-order approximation of
power-saving potential can be determined based on the number
of deallocated (inactive) ROB partitions and assuming that the
extent of power savings is proportional to the fraction of
partitions that are deallocated. During an average cycle, 32%,
25%, and 11% of the ROB partitions are in the deallocated state
for the per-thread ROB sizes of 128-entries, 96-entries, and 48-
entries, respectively. Finally note that if the optimization process
is performed in the power/performance domain, then the optimal
thresholds used by the adaptive ROB algorithms presented in
this paper are likely to change.

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

32 48 64 96 128 256

Per-thread ROB size

Th
ro

ug
hp

ut
 IP

C

Baseline

Baseline with infinite IQ

Adaptive ROB

 Figure 16: Performance Comparison of Various Configurations
Presented as Harmonic Mean of Throughput IPC.

Finally, Figure 16 compares the performance of the dynamic
ROB allocation schemes presented in this paper against the
performance of the static per-thread ROB (baseline machine),
the baseline machine with an infinite IQ but limited number of
physical registers (as per Table 1). As seen from the graph, our
mechanisms essentially provide the same performance as that of
the baseline machine with the infinite number of issue queue
entries. This shows that the use of our techniques completely
alleviates the problem of clogging in the shared issue queue and
avoids the performance degradations incurred by increasing the
ROB sizes. This is because the case where the shared resources
are idealized servers as an upper bound for the performance that
can be achieved by dynamic ROB adaptation. Indeed, with
infinite shared resources, dynamic ROB adaptation can only
degrade performance compared to statically sized ROBs.

Another implication of these results is that a more complicated ROB
partitioning and allocation scheme, where the partitions can be
organized in a global shared pool to be assigned across all threads
dynamically is not needed, as there is no further performance benefit
that can be reaped from such a scheme. Similar conclusions can be
arrived at if the fairness metric is considered (fairness results are not
presented due to space constraints).

8. CONCLUDING REMARKS
Complex interactions between the shared and private per-thread
resources need to be considered in order to understand the nuances of
SMT architectures and realize the full performance potential of
multithreading. One interesting and somewhat unexpected
phenomenon is that across-the-board increase in the size of per-
thread reorder buffers often decreases the instruction throughput on
SMT due to the excessive pressure on the shared SMT resources such
as the issue queue and the register file. In this paper, we proposed
mechanisms and the underlying ROB organization to dynamically
adapt the number of ROB entries allocated to threads only when such
adaptations do not result in increased pressure on the shared datapath
resources. To this end, we characterized the execution phases of the
SPEC 2000 benchmarks into commit-bound and issue-bound and
designed the algorithms to allocate more ROB entries to threads
executing in commit-bound phases and limit the ROB allocations to
threads in issue-bound phases.

Our results indicate that such dynamic adaptation of the ROBs results
in significant increases on top of the DCRA resource allocation
policy in terms of both throughput (54% compared to similarly-sized
static ROBs and 21% compared to the best-performing static
configuration) and fairness (29% and 10% respectively). These gains
are achieved with very little hardware overhead and simple
reconfiguration algorithms. We also demonstrated that the
performance of adaptive ROBs approaches that of the datapath with
an infinite issue queue, thus completely eliminating the size-effects of
ROB scaling on the shared issue queue and obviating the need for
more complex ROB management mechanisms.

9. REFERENCES
[1] D. Burger, T. Austin. "The SimpleScalar tool set: Version 2.0.” Tech.

Report, Dept. of CS, Univ. of Wisconsin-Madison, June 1997 and
documentation for all Simplescalar releases.

[2] A. Buyuktosunoglu, et al. “A Circuit-Level Implementation of an
Adaptive Issue Queue for Power-Aware Microprocessors.” in Proc of
Great Lakes Symposium on VLIS, 2001.

[3] F. Cazorla, et al. “Dynamically Controlled Resource Allocation in SMT
Processors.” in Proc Int’l Symp. on Microarchitecture, 2004.

[4] F. Cazorla, et al. “Improving Memory Latency Aware Fetch
Policies for SMT Processors.” in Proc International Symposium on
High Performance Computing, 2003.

[5] A. El-Moursy, D.Albonesi. “Front-End Policies for Improved Issue
Efficiency in SMT Processors.” in Proc. HPCA, 2003.

[6] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the
New Millennium”, IEEE Computer, 33(7):28-35, July 2000.

[7] K. Luo, et al. “Balancing Throughput and Fairness in SMT
Processors.” in Proc ISPASS, 2001.

[8] D. Ponomarev, G.Kucuk, K.Ghose, “Reducing Power
Requirements of Instruction Scheduling Through Dynamic
Allocation of Multiple Datapath Resources.” in Proc. International
Symposium on Microarchitecute (MICRO), 2001.

[9] S. Raasch, S. Reinhardt, “The Impact of Resource Partitioning on
SMT Processors.” in Proc. PACT, 2003.

[10] B. Robatmili et al. “Thread-Sensitive Instruction Issue for SMT
Processors.” Computer Architecture News, 2004.

[11] T. Sherwood, et al. “Automatically Characterizing Large Scale
Program Behavior.” Proc. ASPLOS, 2002.

[12] D. Tullsen, et al. “Handling Long-Latency Loads in a
Simultaneous Multi-threaded Processor.” in Proc of International
Symposium on Microarchtiecture, 2001.

[13] D. Tullsen, et al. “Exploiting Choice: Instruction Fetch and Issue
on an Implementable Simultaneous Multithreading Processor.” in
Proc International Symposium on Computer Architecture, 1996.

[14] D. Tullsen, et al. “Simultaneous Multithreading: Maximizing on-
chip Parallelism.” , Int’l Symp. on Computer Architecture, 1995.

[15] G. Dorai, et al., “Transparent Threads: Resource Sharing in SMT
Processors for High Single-Thread Performance“, Int’l Conference
on Parallel Architectures and Compilation Techniques, 2002.

[16] D. Marr, et al, “Hyperthreading Technology Architecture and
Microarchitecture”, Intel Tech. Journal, vol. 6, No.1, Feb. 2002.

[17] S. Srinivasan et al, “Continual Flow Pipelines”, in Proceedings of
ASPLOS, 2004.

[18] S. Sarangi, et al, “Re-Slice: Selective Re-execution of Long-
Retired Misspeculated Instructions Using Forward Slicing”, in 38th
International Symposium on Microarchitecture, 2005.

[19] I. Kim, M. Lipasti, “Understanding Scheduling Replay Schemes”,
Int’l Symp. High Perf. Computer Architecture, 2004.

[20] J. Stark, et al., “On Pipelining Dynamic Instruction Scheduling
Logic”, in Proc. of MICRO, 2000.

[21] S. Palacharla, et al., “Complexity-Effective Superscalar
Processors”, in Proc. of the Int’l Symp. On Computer Architecture
(ISCA), 1997.

[22] J. Sharkey, “M-Sim: A Flexible, Multi-threaded Simulation
Environment.” Tech. Report CS-TR-05-DP1, Department of
Computer Science, SUNY Binghamton, 2005.
http://www.cs.binghamton.edu/~jsharke/m-sim

Table 4: Detailed performance statistics for representitive mixes.

allocations
are made

deallocations
are made

no changes are
made

mcf 2 5% 5% 90% 9 7 issue-bound

equake 9 15% 15% 70% 23 41 varying behavior

art 12 0% 0% 100% 12 61 commit-bound

lucas 6 33% 33% 34% 15 14 issue-bound

parser 9 23% 23% 54% 19 32 varying behavior

swim 12 0% 0% 100% 3 69 commit-bound

gcc 11 17% 17% 66% 22 34 varying behavior

bzip2 5 21% 21% 58% 13 13 varying behavior

Avg # of
instructions
not in the IQ

Categorization from
Table 3

mix1

mix10

Avg # of
partitions
allocated

% of evaluation periods where Avg # of
instructions in
the IQ

