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ABSTRACT 
In SMT processors, the complex interplay between private and shared 
datapath resources needs to be considered in order to realize the full 
performance potential. In this paper, we show that blindly increasing 
the size of the per-thread reorder buffers to provide a larger number 
of in-flight instructions does not result in the expected performance 
gains but, quite in contrast, degrades the instruction throughput for 
virtually all multithreaded workloads.  The reason for this 
performance loss is the excessive pressure on the shared datapath 
resources, especially the instruction scheduling logic. We propose 
intelligent mechanisms for dynamically adapting the number of 
reorder buffer entries allocated to each thread in an effort to avoid 
such allocations if they detrimentally impact the scheduler. We 
achieve this goal through categorizing the program execution into 
issue-bound and commit-bound phases and only performing the 
buffer allocations to the threads operating in commit-bound phases. 
Our adaptive technique achieves improvements of 21% in instruction 
throughput and 10% in the fairness metric compared to the best 
performing baseline configuration with static ROBs. 

Categories and Subject Descriptors 
C.1 [Processor Architectures]: Other Architecture Styles –Pipeline 
processors.  

General Terms: Performance, Design 

Keywords: Simultaneous Multithreading, Reorder Buffer 

1. INTRODUCTION 
In the last two decades, a plethora of sophisticated microarchitectural 
techniques, mostly relying on various forms of speculation, have 
been proposed to extract the instruction-level parallelism (ILP) from 
single-threaded applications in dynamic out-of-order processors. 
Unfortunately, the surging complexity and power consumption 
associated with these mechanisms, as well as diminishing 
performance returns due to the growing processor-memory gap, make 
these solutions less and less attractive. Consequently, researchers 
have been exploring ways to improve the 
performance/complexity/power trade-offs in processor design by 
exploiting parallelism across multiple threads of control, or Thread-
Level Parallelism (TLP). 

Simultaneous Multithreading (SMT) is one processor design 

paradigm that exploits TLP. In an SMT model, multiple threads 
share the key datapath resources such as the issue queue (IQ), 
the pool of physical registers used for renaming, the execution 
units and the caches. In addition, each thread has a private 
load/store queue, rename table, program counter and return 
address stack. It is well established that such an organization 
provides a significant boost in instruction throughput compared 
to a superscalar machine with minimal area and complexity 
overheads [13,14]. 

One key datapath component that can significantly impact the 
performance of an SMT processor is the Reorder Buffer (ROB). 
The ROB is a circular FIFO queue that stores all in-flight 
instructions in program order and thus facilitates the recovery to 
a precise state following a branch misprediction, an interrupt or 
an exception. Instructions are dispatched into the ROB at the tail 
end (pointed to by the ROB_tail pointer) and they are committed 
from the head end (pointed to by the ROB_head pointer). The 
ROB is essentially implemented as a RAM structure with a 
number of read and write ports to support instruction 
dispatching (writes into the ROB) and commitment (reads from 
the ROB). 

While logically each thread has its own private ROB to support 
the commitment of instructions independently of the progress 
made by other threads, the physical implementation can either 
be in the form of a number of private structures (one ROB per 
thread) or one shared structure with multiple head and tail 
pointers, one for each thread. Some academic authors [5,12] 
assume separate per-thread ROBs, while others [9,10] assume 
one large shared ROB. Even if the shared implementation is 
assumed, dedicated commit logic needs to be provided for each 
thread in order to avoid huge commit blockages. If such an 
organization is used for a W-way machine, then up to W oldest 
committable instructions across all threads are committed per 
cycle, regardless of their actual position in the ROB, noticeably 
complicating the commitment logic. Industrial SMT designs 
[16] typically use the shared ROB that is statically partitioned 
across the threads – that, again, is logically analogous to having 
separate per-thread ROBs. While the techniques proposed in this 
work are applicable to any ROB organization, we assume the 
use of private ROBs throughout the paper, although we also 
examine the performance implications of shared ROBs in 
Section 4. 

It is well understood and accepted that larger ROBs generally 
result in higher performance on a single-threaded superscalar 
machine because a large window of instructions maintained in 
the out-of-order core allows for the exploitation of more ILP. 
However, in this paper we show that blindly increasing the sizes 
of the per-thread ROBs beyond a certain limit consistently 
degrades the performance of an SMT machine across virtually 
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all the multi-threaded workloads that we simulated. This 
phenomenon is a result of increased pressure on the shared SMT 
resources, such as the issue queue and the pool of physical registers.  

We propose techniques to overcome these performance challenges by 
dynamically allocating a larger number of ROB entries to some 
threads only if and when needed, without detrimentally impacting the 
instruction scheduling logic. We achieve this goal through the 
following key observation.  A thread benefits from a larger ROB and 
the scheduling of instructions from other threads is not impacted if 
the thread exhibits commit-bound behavior, i.e. in an average cycle, 
the majority of in-flight instructions from that thread have already 
begun (or completed) the execution. Most instructions from such a 
thread occupy an ROB entry for a very long time, but only use an IQ 
entry for a few cycles. In other words, the instructions from such 
threads issue shortly after being dispatched but then get delayed in 
the ROB before commitment. These threads require large ROBs, but 
can tolerate smaller IQs. It is therefore advantageous to provide a 
larger ROB to such a thread during the phase of execution when such 
behavior transpires. This occurs, for example, on an L2 cache miss 
(or some other long-latency event, in general), when the missing load 
blocks the thread’s commitment and many load-independent 
instructions are also piled up in the ROB. Several recent studies [17, 
18] showed that the number of load-dependent instructions is 
typically very small, much smaller than the number of independent 
instructions that can fit into the instruction window following an L2 
miss. 

On the other hand, if a thread exhibits issue-bound behavior, i.e. most 
of the instructions in the ROB are not issued, then allocating more 
ROB entries to the thread will simply increase the pressure on the 
shared resources, possibly restricting the availability of these 
resources to other threads, and thus degrading performance. 

The specific contributions and the key results of this paper are: 

• We show that the representative intervals of the SPEC 2000 
benchmarks, as defined by the Simpoints tool [11], exhibit clear 
phases of issue-bound or commit-bound behavior, with some 
benchmarks being issue-bound, other benchmarks being 
commit-bound, and yet others changing their behavior 
throughout the execution. 

• We propose a logically-partitioned ROB organization, which 
can be used to adapt the number of ROB entries allocated to 
each thread by simply controlling the range within which the 
head and tail pointers can advance, without making any other 
changes to the ROB structure. 

• We investigate dynamic mechanisms to drive the 
allocation/deallocation decisions of entries within such 
logically-partitioned ROBs. Our goal is to provide larger ROBs 
to threads executing in commit-bound phases and limit the ROB 
allocations to threads executing in issue-bound phases. 

• We show that the use of our adaptive techniques on a processor 
with 128-entry per-thread ROBs increases the throughput IPC 
by 54% and fairness by 29% compared to the static ROBs of 
similar size. Compared to the best-performing static 
configuration (ROBs with 48 entries), our techniques result in 
21% improvement in IPC and 10% improvement in fairness. All 
of this is achieved with minimal complexity. 

• We demonstrate that the performance of our techniques very 
closely approaches that of the machine with the infinite issue 

queues, effectively addressing the performance challenges 
associated with the ROB scalability on SMT. This result 
essentially obviates the need to consider more sophisticated 
ROB management techniques, such as a completely 
dynamic sharing of all available ROB partitions across all 
threads. 

The rest of the paper is organized as follows. We review the 
related work in Section 2. Our simulation methodology is 
described in Section 3.  Section 4 examines the reasons for the 
performance losses with larger ROB sizes on SMT. We 
categorize the execution of the SPEC benchmarks into commit-
bound and issue-bound phases in Section 5. Section 6 presents 
our mechanisms for dynamic ROB adaptation. We present and 
discuss the results in Section 7, and offer our concluding 
remarks in Section 8. 

2. RELATED WORK 
The use of shared as well as partitioned resources in an SMT 
processor can be indirectly controlled by instruction fetching 
mechanisms. Various fetching policies have been proposed in 
the literature to provide the best supply of instruction mixes 
from multiple threads for building the most efficient execution 
schedules. The I-Count fetching policy [13] gives fetching 
priority to threads with fewer instructions in decode, rename and 
the IQ. The goal is to avoid clogging of the IQ with the 
instructions from one thread. Several optimizations of I-Count 
have also been proposed in an effort to avoid fetching the 
instructions that are likely to be stalled in the IQ for a large 
number of cycles. STALL [12] prevents the thread from fetching 
further instructions if it experienced an L2 cache miss. FLUSH 
[12] extends STALL by squashing the already dispatched 
instructions from such a thread, thus making the shared IQ 
resources available for the instructions from other threads. 
FLUSH++ [4] combines the benefits of STALL and FLUSH and 
uses the cache behavior of threads to dynamically switch 
between these two mechanisms. The Data Gating technique of 
[5] avoids fetching from threads that experience an L1 data 
miss.  

In [3], a novel resource allocation policy (called DCRA) 
exercising a more fine grained dynamic control over shared 
SMT resources (such as the IQ and the register file) was 
proposed. DCRA first classifies the threads according to their 
demands for the resources and based on this classification 
determines how the resources should be distributed among the 
threads. In contrast to the previous methods that stall or flush 
threads which have cache misses, the technique of [3] actually 
attempts to help these threads by providing more resources to 
them (if such resources are available) to increase the memory-
level parallelism by overlapping multiple cache misses. While 
providing benefits compared to the previously proposed fetching 
schemes, the technique of [3] requires a few additional counters 
and the logic to implement the resource sharing model. It was 
shown in [3], and corroborated by our analysis, that the DCRA 
method is generally superior to all previously proposed fetching 
policies. In this work, we use the DCRA mechanism as our 
baseline case for comparison and show that our techniques 
provide significant additional benefits on top of DCRA. 

The effects of various resource partitioning schemes on the 
performance of SMT processor were examined in several works. 
In [10], a partitioned version of the oldest-first issue policy is 



proposed, where separate issue queues are used to buffer the 
instructions from different threads. In [9], the effects of partitioning 
the datapath resources, including the issue queues and reorder 
buffers, across multiple threads, were discussed. The authors of [9] 
compared the use of private ROBs with a  structure that is shared by 
all threads, but that still allows the commitment of W oldest 
committable instructions (for a W-way machine), possibly belonging 
to different threads, to be performed in the same cycle. The main 
conclusion of [9] is that the statically-partitioned ROB results in 
performance advantages compared to the fully shared design for 
smaller ROB sizes (as sharing can easily monopolize the ROB by the 
instructions from one thread in this case). At larger ROB sizes, the 
performance of architectures with shared and private ROBs was 
found to be almost identical. Our studies showed similar trends, and 
some results are presented in Section 4.  

The work of [15] explored dynamic resource allocation on SMT 
processors that preserve, as much as possible, the performance of a 
single “foreground” thread while still permitting other, “background” 
threads to share the resources. These low-priority transparent threads 
are suitable for performing non-critical computations and can be 
used, for example, as helper threads for prefetching. Our work, in 
contrast, focuses on the resource allocations among treads with equal 
priority levels. 

3. METHODOLOGY 
For estimating the performance impact of the schemes described in 
this paper, we used M-Sim [22] - a significantly modified version of 
the Simplescalar 3.0d simulator [1] that separately models pipeline 
structures such as the issue queue, re-order buffer, and physical 
register file, both for superscalar and SMT machines [13,14]. For the 
SMT machine, we assume the shared register file, execution units, 
caches, and issue queue [9]. As shown previously [9], and also 
observed in our simulations, a shared issue queue provides better 
performance than a private issue queue (by 8% for the 64-entry per-
thread ROBs in our simulations) and we therefore assume this model 
through the paper. The simulator also supports speculative instruction 
scheduling [19] and models the “squash” recovery following a load-
latency misprediction, as implemented in Alpha 21264. In the squash 
recovery model, all instructions that have issued but not yet begun 
execution at the time that a load-latency misprediction is detected are 
replayed. The details of the studied processor configuration are 
shown in Table 1.  To fetch instructions from multiple threads, we 
use the DCRA policy [3], which was discussed in more detail in 
Section 2. In some cases, we also examine the I-Count [13] policy. 

Table 1: Simulated processor configuration. 

Parameter Configuration 

Machine width 8-wide fetch, 8-wide issue, 8-wide commit 
Window size 64 entry IQ, 48 entry per-thread load/store queue, ROB as specified 
Pipeline Depth 5 cycles fetch to dispatch, 3 cycles issue to execute 

Function Units and Lat 
(total/issue) 

8 Int Add (1/1), 4 Int Mult (3/1) / Div (20/19), 4 Load/Store (2/1), 8 
FP Add (2), 4 FP Mult (4/1) / Div (12/12) / Sqrt (24/24) 

Phys. Registers 300 integer + 300 floating point (including architectural registers)  
L1 I–cache 32 KB, 2–way set–associative, 32 byte line, 1 cycles hit time 
L1 D–cache 64 KB, 4–way set–associative, 32 byte line, 2 cycles hit time 
L2 Cache unified 512 KB, 8–way set–associative, 128 byte line, 12 cycles hit time 
BTB 2048 entry, 2–way set–associative 
Branch Pred. Per Thread 4K entry gShare, 10-bit global history 
Load-latency Predictor 4K entry bimodal predictor 
Memory latency 300 cycles 
TLB 64 entry (I), 128 entry (D), fully associative 

We simulated the full set of 26 SPEC 2000 integer and floating point 
benchmarks [6], using the precompiled Alpha binaries available from 
the Simplescalar website [1]. We skipped the initialization part of 

each benchmark using the procedure prescribed by the 
Simpoints tool [11] and then simulated the execution of the 
following 100 million instructions. In SMT mode, we stopped 
the simulations when 100 million instructions from at least one 
of the threads committed.  

Our multithreaded workloads contain a subset of all possible 
combinations of the simulated benchmarks. In selecting the 
multithreaded workloads, we first simulated all benchmarks in 
the single-threaded superscalar environment and used these 
results to classify them as low, medium, and high ILP, where the 
low ILP benchmarks are memory bound and the high ILP 
benchmarks are execution bound.  

Table 2: Simulated multi-threaded workloads 

Classification Mix Name Benchmarks 

Mix 1 mcf, equake, art, lucas 
4 LOW ILP 

Mix 2 twolf, vpr, swim, parser 
Mix 3 applu, ammp, mgrid, galgel 

4 MED ILP 
Mix 4 gcc, bzip2, eon, apsi 
Mix 5 facerec, crafty, perlbmk, gap 

4 HIGH ILP 
Mix 6 wuwpise, gzip, vortex, mesa 
Mix 7 mcf, equake, mesa, vortex 2 LOW ILP + 

2 HI ILP Mix 8 parser, swim, crafty, perlbmk 
Mix 9 art, lucas, galgel, gcc 2 LOW ILP + 

2 MED ILP Mix 10 parser, swim, gcc, bzip2 
Mix 11 gzip, wupwise, fma3d, apsi 2 MED ILP + 

2 HI ILP Mix 12 vortex, mesa, mgrid, eon 

In total, we simulated 12 4-threaded workloads, two from each 
of the following six categories: 1) 4 low-ILP programs; 2) 4 
medium-ILP programs; 3) 4 high-ILP programs; 4) 2 low-ILP 
and 2 high-ILP programs; 5) 2 medium-ILP and 2 high-ILP 
programs; 6) 2 medium-ILP and 2 low-ILP programs. All 
workloads are described in detail in Table 2. 

We used several metrics for evaluating the performance of the 
multithreaded workloads throughout this paper. The first metric 
is the total instruction throughput in terms of commit IPC rate. 
However, this metric is biased towards the architectures that 
favor threads with high IPC at the expense of possibly hindering 
threads with low IPC [7]. Therefore, we also present the 
“fairness” metric of the harmonic mean of weighted IPCs [7], 
which takes into account individual per-thread performance. 
Throughout the rest of the paper, we present our performance 
results in terms of both throughput and fairness (often using 
separate graphs). 

4. ROB SCALING: WHY CAN LARGER 
ROBS DECREASE THE PERFORMANCE 
OF SMT? 
Figure 1 shows how the performance scales with the increase of 
the ROB size if only one thread is executed at a time. 
Specifically, when the ROB size is increased from 32 to 128 
entries the performance increases by 39% and the IPC increases 
monotonically as a function of the ROB size. 
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 Figure 1: Harmonic mean of commit IPCs across the full set of 
SPEC2000 benchmarks for a superscalar  with various ROB sizes. 



Quite in contrast to the results presented in Figure 1, the simultaneous 
increase in the ROB size of all threads on a multithreaded machine 
results in some unexpected performance challenges due to the side-
effects on shared SMT resources. These trends are depicted in Figure 
2. 

The bottom line on the graph in Figure 2 (labeled “Baseline”) shows 
how the throughput of a 4-threaded SMT machine changes as the per-
thread ROB size is increased from 32 entries to 256 entries. For these 
results, we assume private per-thread ROBs and the DCRA fetch 
policy proposed in [3]. Across the simulated multithreaded mixes of 
SPEC 2000 benchmarks, there is a 6% harmonic mean IPC loss as 
the per-thread ROB in enlarged from 32 to 64 entries and further 25% 
IPC loss as the ROB increases to 128 entries. 
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Figure 2: Commit IPCs for the baseline SMT machine (as described in 
Table 1) and the SMT machine with the infinite IQ and RF both using the 
DCRA fetch policy [3]. 

The performance degradations shown in Figure 2 stem from the fact 
that a simultaneous, across-the-board increase in the number of in-
flight instructions from all threads results in elevated pressure on the 
shared datapath resources, such as the issue queue (IQ) and the 
register file (RF). For example, if a thread operates in a phase where 
instructions spend most of their lifetime waiting to be executed, then 
the increase of that thread’s ROB will simply result in the placement 
of a larger number of instructions in the IQ for longer periods of time, 
thus denying the scarce issue resources to other threads and 
decreasing the overall issue efficiency and, consequently, 
performance. At the same time, had the IQ and the RF contention not 
been a problem, the larger per-thread ROBs would have provided a 
significant performance boost, as shown in the top line of Figure 2 
(labeled “Infinite IQ and RF”), where the infinite IQ and RF were 
simulated. Notice that the sharpest performance drop in the baseline 
configuration comes with the per-thread ROB increase from 64 to 96 
entries. This is because, at this point, the main performance 
bottleneck shifts from the ROB to the IQ. 
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Figure 3: Per-benchmark commit IPCs for the baseline SMT machine 
with various sizes of the per-thread ROBs 

Of course, the phenomenon depicted in Figure 2 can be avoided at 
these ROB sizes by implementing larger IQs and RFs. However, both 
of these components generally lie on the critical timing path [20, 21] 
and the schedulers are not easily pipelined without significant 
performance loss [20]. As the enlargements of these structures are 
likely to prolong the processor cycle time, it is important to 
investigate techniques that support large ROBs without relying on the 
increase of the IQ and the RF sizes to mitigate the upsetting trends 
demonstrated by Figure 2. Also, even if larger IQ and RF are used, 

the trends exhibited by Figure 2 will still manifest themselves at 
larger ROB sizes. 

The behavior presented in Figure 2 is not unique to a few 
specific workloads, but is common to almost all simulated 
multithreaded mixes. Figure 3 presents the per-mix results 
pertaining to the commit IPCs as a function of the number of 
entries in the per-thread ROBs.  While mix 7 exhibits an 
especially significant drop in performance as the ROBs are 
increased beyond 64 entries, some performance degradations are 
experienced by almost all of the other workloads as the ROB 
size increases from 64 to 128 entries and sometimes even from 
48 to 64 entries. For most workloads, there are still some 
performance gains when the ROB is increased from 32 to 48 
entries, as the ROBs, but not the issue queue, represent a 
performance bottleneck in those configurations. 

We now examine the impact of both the fetching policy and the 
use of shared versus private ROB organizations on the 
performance trends depicted in Figures 2 and 3. These 
comparisons are presented in Figure 4. The X-axis is labeled in 
terms of the total number of ROB entries. For the private ROBs, 
the size of the per-thread ROBs is determined by dividing this 
number by the number of threads (for example, 256 total ROB 
entries = 64-entry ROBs per thread * 4 threads). 
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Figure 4: Commit IPCs for the baseline SMT machine with various 
ROB organizations (private versus shared) and various fetching 
policies. 

The top line of the graph again depicts the performance of the 
machine with private ROBs and the infinite issue queue. The 
next two lines depict the performance of the private ROB 
organization using the DCRA [3] and the ICOUNT [14] fetching 
policies, respectively. As seen from the graph, the DCRA fetch 
policy outperforms the ICOUNT policy for all sizes of the 
private ROBs, by as much as 24% for 96-entry per-thread 
ROBs. The next two lines in the graph show the performance of 
the shared ROB organization using the DCRA and ICOUNT 
fetching policies. Once again, the DCRA fetch policy provides 
superior performance to ICOUNT – by as much as 21% and 
20% for the shared ROB sizes of 256-entries and 384-entries, 
respectively. Notice that the performance increases 
monotonically as the size of the shared ROB is increased from 
128 to 1024 entries, but that it remains significantly lower than 
that of the private ROBs; especially for sizes up to 384 entries, 
at which point the performance of the shared and private ROBs 
converges. Similar trends were presented in [9]. The best 
performance is obtained from the private per-thread ROBs with 
the DCRA fetch policy. Therefore, due to the space constraints 
and without loss of generality, we focus on this organization as 
the basis for our study. However, the techniques and statistics 
presented in the rest of the paper are certainly applicable to both 
ROB organizations and the various fetching policies. 



To understand the source of the performance losses shown in Figures 
2 and 3, we present some additional statistics in Figures 5, 6 and 7. 
Figure 5 depicts the average number of cycles that instructions spend 
in the IQ. On average, as the ROB size is increased from 32 to 256 
entries, the time spent by the instructions in the IQ almost triples, 
because the uncontrolled increase in the number of allocated ROB 
entries creates situations where chains of instructions from one thread 
that depend on a long-latency event are placed in the IQ and reside 
there for a large number of cycles, denying other threads the 
opportunity to use these IQ entries. Had the ROB size not been 
increased, this situation would have been avoided because these 
problematic instructions would not have been allowed to enter the 
scheduling window due to the lack of space in that thread’s ROB. 
Figure 6 presents similar results for the register file. As seen from the 
graph, the average time that a physical register remains allocated also 
increases significantly with the increase of the ROB size. 
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Figure 5: Average number of cycles spent in the issue queue by 
instructions for various sizes of the per-thread ROBs. 

0

100

200

300

400

500

600

700

800

900

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

av
er

ag
e

32-entry ROB 48-entry ROB 64-entry ROB 96-entry ROB 128-entry ROB 256-entry ROB

 
Figure 6: Average number of cycles for which a physical register remains 
allocated for various sizes of the per-thread ROBs. 
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Figure 7: Average percentage of cycles where dispatch is stalled due to 
the lack of issue queue entry or a free physical register 

As a consequence of the behavior presented in Figures 5 and 6, the 
percentage of cycles that instruction dispatch is stalled due to the lack 
of the IQ entries or free physical registers increases. Figure 7 shows 
how this percentage of stalled cycles changes with the increase of the 
ROB size. The bottom portion of the stacked bars shows the 
percentage of stalled cycles due to the absence of a free IQ entry, and 
the top portion of the stacked bars shows the additional percentage 
due to the absence of a free physical register. Overall, the percentage 
of stalled cycles increases from about 2% for 32-entry ROBs to more 

than 60% for 256-entry ROBs. This is the main reason behind 
the performance degradations. 

The detailed results presented in Figures 5, 6 and 7 clearly show 
that it makes little sense to allocate more ROB entries to threads 
in an SMT machine, if such allocations increase the pressure on 
the shared resources. However, some threads, for which 
increasing the ROB size does not commensurately elevate the 
pressure on the shared resources, can benefit from such 
allocations. It is therefore important to consider techniques that 
adaptively allocate ROB entries to threads without creating 
contention for the use of shared resources. 

5. CATEGORIZATION OF PROGRAM 
PHASES 
In an effort to design such dynamic allocation algorithms, we 
first categorize the behavior of the full set of benchmarks from 
the SPEC 2000 suite, when running in single-threaded mode, 
into commit-bound and issue-bound phases. Figures 8, 9 and 10 
depict some representative results, showing the varying behavior 
of different benchmarks. 
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Figure 8: Phase behavior of the equake benchmark 

Figure 8 shows the execution profile of the equake benchmark. 
Two lines are shown on this graph. The top line (shown in the 
darker shade) depicts the average number of instructions which 
have been issued but not yet committed, i.e. the instructions 
which are located in the ROB, but not in the issue queue. The 
bottom (lighter) line shows similar results for the average 
number of dispatched instructions that have not yet begun their 
execution, i.e. the instructions that reside in both the ROB and 
the IQ. Each point on the graph represents the average value of 
these metrics sampled every 100,000 cycles – the results are 
presented for the full 100 million instruction execution period as 
determined by Simpoints. For equake, there are distinct phases 
of execution, such that in some phases (for example, phase B 
circled in the figure) the number of issued instructions is much 
larger than the number of non-issued instructions, and in other 
phases (such as phase A) these numbers are close to each other. 
We refer to the phases that exhibit the behavior similar to that of 
phase B as commit-bound phases (the throughput is limited by 
commitment) and we refer to the phases that behave similar to 
phase A as issue-bound phases. In issue-bound phases, a 
significant percentage of in-flight instructions are present in the 
IQ, therefore increasing the ROB size in such situations is likely 
to result in additional pressure on the IQ. 

Phase A: 
Issue bound 

Phase B: 
Commit bound 
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Figure 9: Phase behavior of the lucas benchmark. 
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Figure 10: Phase behavior of the vortex benchmark. 

Table 3: Phase classification of SPEC2K benchmarks 
Classification Benchmarks 
Commit-bound ammp, applu, art, fma3d, galgel, gap, swim, vortex, wupwise 
Issue-bound crafty, eon, gzip, lucas, mcf, perlbmk, sixtrack, twolf 
Varying Behavior apsi, bzip2, equake, facerec, gcc, mesa, mgrid, parser, vpr 

 

Note that in the case of equake, the issue-bound and commit-bound 
phases interchange throughout the execution, although the duration of 
each such phase is quite long. For some other benchmarks, the entire 
simulated execution interval exhibits only one type of behavior, 
either issue-bound or commit-bound. For example, the entire 
execution of lucas (Figure 9), is characterized as an issue-bound 
phase. In fact, for lucas we observe that the number of instructions in 
the issue queue is actually significantly larger than the number of 
instructions that are in the ROB but not in the IQ. This is illustrated 
in the graph by the fact that the lighter-shaded line is above the 
darker-shaded line throughout the entire execution. In contrast, the 
vortex benchmark (Figure 10) exhibits commit-bound behavior 
throughout its execution, where the number of instructions in the 
issue queue represents just a small percentage of the total number of 
instructions in the ROB. In the picture, this is manifested by the fact 
that the darker line is always above the lighter line. 

The trends demonstrated by Figures 8, 9 and 10 are quite 
representative of the behavior of the SPEC 2000 suite at large. Table 
3 shows the classification of all the SPEC 2000 benchmarks, 
executed in a single-threaded mode, into three groups: commit-
bound, issue-bound and the ones with varying behavior. Formally, a 
phase of execution was determined to be issue-bound if the number 
of non-issued instructions (those presented in both the ROB and the 
IQ) was greater than one third of the total number of instructions in 
the ROB. While the resource occupancies obviously change in an 
SMT mode, this characterization shows that the relative demands for 
the IQ and the ROB resources are generally very different both across 
and within the applications. 

The existing fetch and resource allocation policies do not exploit the 
commit-bound or issue-bound behavior directly and therefore 
experience performance degradations with larger ROB sizes, as 
shown in Section 4. For example, DCRA distinguishes fast and slow 
threads indirectly, based solely on the presence of outstanding L1 
cache misses: a thread with such a miss is considered as “slow”. 
However, not all L1 misses are created equal – some can be 

seamlessly hidden by the out-of-order execution mechanisms, 
others can result in significant pressure on the shared resources, 
and yet others can even miss into the lower levels of the memory 
hierarchy. In contrast, the adaptive ROB mechanism proposed in 
this paper directly classifies threads as “commit-bound” or 
“issue-bound”, providing a more comprehensive view of the 
resource needs of the individual threads. Our classification 
effectively encompasses all possible sources for slow or fast 
execution such as cache misses as well as long dependency 
chains of long-latency instructions. Furthermore, while DCRA 
only controls the use of shared resources, our technique 
effectively adds another dimension to SMT resource allocation 
by also dynamically adjusting the sizes of the private ROBs. In a 
way, adaptive ROBs provide additional level of control to 
correct the imbalances in the resource distribution created by 
DCRA, perhaps as a result of erroneous thread classification. 

6. STRUCTURES AND ALGORITHMS 
FOR DYNAMIC ROB ADAPTATION 
In this section, we describe the physical structures and 
algorithms for dynamic ROB adaptation that exploit the phase 
characteristics presented in the previous section to provide larger 
ROBs to threads in commit-bound phases and limit the number 
of ROB entries available to threads in issue-bound phases. 

6.1 A Logically Partitioned ROB Organization 
To support the dynamic allocation of ROB entries, we propose a 
logically-partitioned ROB organization, which simply limits the 
extent to which the ROB_tail and the ROB_head pointers can 
advance, without making any other changes to the ROB 
structure. While logically the ROB is divided into a number of 
partitions (each with multiple entries) and the reconfiguration 
decisions are made at the partition granularity, the physical 
structure of the ROB does not change at all. In contrast to the 
partitioning schemes that target power reduction by turning off 
the power supply to the deactivated partitions [8] (which 
requires a fairly substantial amount of additional circuitry), the 
partitioning that we propose is purely logical and its only goal is 
to control performance by limiting the advance of the ROB 
pointers. The advancement of the ROB pointers can simply be 
controlled by a single bit associated with an ROB entry at a 
partition boundary. 

Figure 11 shows an example of using the logically-partitioned 
ROBs for a 3-threaded SMT processor. Each of the 3 threads has 
its own ROB which is divided into 4 partitions. The last entry of 
each partition has a next_partition_allocated bit associated with 
it, which simply indicates whether the next partition is in use or 
not. For an ROB with N partitions, N-1 such bits are used 
because the first partition is always allocated. If this bit is set, 
then the next ROB partition is also allocated for use by this 
thread. Whenever the ROB_head or ROB_tail pointer reaches 
the border of a partition where the next_partition_allocated bit 
is set, it just moves to the next partition when it advances. If this 
bit is not set, the next partition is not allocated for use, and the 
ROB pointers wrap to the beginning of the ROB (entry number 
0) instead of advancing to the next partition. The figure shows 
the situation where the first thread is using all of its available 
ROB partitions. The second thread has only the first partition 
allocated for its use, so the rest of its three partitions are not 
allocated and they are idle. The third thread has three of its ROB 
partitions allocated to hold the in-flight instructions and the last 



partition is not allocated. Note that the allocated partitions are not 
necessarily holding useful instructions at the moment but they are 
available for use by the corresponding thread. The 
next_partition_allocated bits do not have to be stored within the ROB 
itself, but instead can be incorporated into the logic that controls the 
advancement of the ROB pointers. In the architectures which support 
the “walk-back” examination of ROB entries to handle branch 
mispredictions, such a traversal can be performed by storing the 
largest index of an allocated entry to ensure that consecutive entries 
can be examined when the ROB pointers wrap around. 

 
Figure 11: Logically partitioned ROBs. 

In summary, almost no additional complexities are incurred as a 
result of the logical partitioning (except for the addition of a few 
bits). The unique feature of our dynamic adaptation framework is that 
it is sometimes advantageous to leave the partitions unused for 
performance reasons! 

6.2. Mechanisms for Dynamic ROB Allocation 
We now describe the algorithms to dynamically adapt the size of the 
ROB for each thread to reap the benefits of large instruction windows 
without clogging the shared issue queue. As explained earlier, our 
goal is only to make more ROB entries available to a thread if this 
will not commensurately increase the pressure on the shared 
resources such as the issue queue. To this end, we propose algorithms 
to dynamically allocate and deallocate the ROB partitions to each 
thread based on whether the thread executes in a commit-bound or 
issue-bound phase. Our technique works in two independent and 
cooperative phases – one for controlling allocations and one for 
controlling deallocations. These decisions are made simultaneously 
and independently for all threads. We describe these two mechanisms 
separately. 

6.2.1 Controlling ROB Allocations  

For each thread, we maintain two counters. The first counter – called 
not_issued_count, keeps the count of the number of instructions in 
the issue queue. The second counter – called total_count - keeps the 
count of the overall number of instructions residing in the ROB. The 

not_issued_count is incremented at the time of dispatching and 
is decremented when instructions issue or are flushed from the 
pipeline following a branch misprediction.  The total_count is 
incremented when an instruction gets dispatched, and it is 
decremented when the instruction is committed or is flushed 
from the ROB as a result of a branch misprediction. The values 
stored in these counters are adjusted on a cycle-by-cycle basis. 

The decision of whether to perform additional allocations of the 
ROB partitions to threads is made periodically. The duration 
between the two consecutive allocation decisions is called the 
Evaluation_Period (EP in the rest of the paper).  At the end of 
every EP, the following actions take place for each thread to 
make a decision for allocating new ROB partitions: 

1) The issued_count is computed as (total_count - 
not_issued_count). The issued_count refers to the number of 
instructions that reside in the ROB but not in the IQ. While it is 
possible to accumulate this information directly (without 
performing the subtraction), the logic needed to update this 
counter would be more complicated than simply maintaining the 
total number of in-flight instructions.   

2) The average per-cycle values of not_issued_count and 
issued_count are computed by shifting the values stored in the 
corresponding counters by N positions to the right, where 
N=log2EP. To make sure that such a shifting provides accurate 
average values across the EP, we limit the EP to be a power of 2. 

3) The difference computed as (not_issued_count – 
issued_count) is then compared against the 
allocation_threshold, and if it is determined that 
(not_issued_count – issued_count) < allocation_threshold  then 
a new free ROB partition is allocated to this thread. If this 
inequality does not hold, then no ROB allocations are performed 
and the thread continues to execute using its current ROB. The 
allocation threshold is empirically determined and we present 
our results across the range of various threshold values in the 
results section. 

The intuition behind this algorithm is that by directly comparing 
the number of issued instructions with the number of non-issued 
instructions in a manner presented in this section, we can 
distinguish the issue-bound and commit-bound phases of 
execution. Specifically, if the issued_count is significantly larger 
than the not_issued_count, then the program executes in a 
commit-bound phase and additional allocations of the ROB 
partitions to this thread can be performed, as they are unlikely to 
impact the scheduling efficiency of other threads.  However, if 
the not_issued_count is larger or about the same as the 
issued_count, then the program executes in an issue-bound 
phase and no more allocations to the ROB of this thread will be 
performed.  

6.2.2 Controlling ROB Deallocations  

We now describe the second component of our reconfiguration 
algorithm – the logic that controls the ROB deallocation 
decisions. As with allocations, deallocation decisions are made 
periodically, at the end of every EP. The specific actions 
involved in the deallocation algorithm are as follows: 

1) At the end of every EP, the average per-cycle value of the 
not_issued_count is computed by shifting the counter value by 
N positions to the right, where N=log2EP.  
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2) The shifted value of the not_issued_count is compared against the 
deallocation_threshold. If the counter value exceeds the threshold 
(not_issued_count > deallocation_threshold), then one of the ROB 
partitions belonging to this thread is deallocated.  

We experimented with the various parameters to be used as 
deallocation thresholds. The intuition behind the deallocation 
approach is that when a thread monopolizes a disproportionate 
amount of the issue queue entries (perhaps as a result of some 
erroneous decisions made by the allocation phase), the deallocation 
logic corrects the situation by scaling down that thread’s ROB. We 
present the evaluations across the range of the deallocation thresholds 
in the results section. 

At the end of an EP, it may be the case that the values of the 
issued_count and not_issued_count are such that the allocation and 
deallocation conditions are both met. In this situation, the 
deallocation decision takes precedence and the allocation request is 
ignored. Note that with the appropriate values of the 
allocation_threshold and the deallocation_threshold, the situations 
where both conditions are met simultaneously can be minimized. 

After the allocation/deallocation decisions are made, the actual 
allocations or deallocations happen after a number of cycles, when 
the ROB pointers are aligned accordingly. We refer the readers to [8] 
where the causes of possible delays are described in detail. However, 
since our evaluation periods are generally large (as shown in the 
results section), such delays have a negligible performance impact, 
but were nevertheless accounted for in the simulations. Finally, it is 
important to recall that the actions needed to accomplish the actual 
allocation/deallocation of the partitions only amount to the setting or 
resetting of one next_partition_allocated bit once the head and tail 
pointers are aligned appropriately. 

7. RESULTS AND DISCUSSIONS 
We begin by presenting the sensitivity analysis of our adaptation 
techniques to the ROB partition size. Figure 12 presents the 
performance results as the size of the ROB partition varies from 4-
entries to 48-entries. We used the 96-entry per-thread ROBs for these 
experiments. As seen from the graph, the best performance was 
obtained when the ROB partition size was set at 8 entries. Notice 
that, from the implementation standpoint, the partition size is not 
much of a concern because the number of partitions merely 
determines the number of next_partition_allocated bits necessary to 
control the advancement of the ROB pointers. From the performance 
standpoint, if the partition size is too small, then the 
allocation/deallocation decisions have a relatively small impact 
because only a few entries are allocated/deallocated at a time. On the 
other hand, if the partition size is too large then the optimal point that 
provides a sufficient number of ROB entries to threads and at the 
same time avoids the scheduler starvation is more difficult to find. 
We experimented with various ROB sizes and different thresholds in 
our configuration algorithms and found that the 8-entry partitions 
represented the optimal design point in all cases. Therefore, in the 
rest of this section, the 8-entry partition size is used. 

Figures 13 and 14 show the impact of our dynamic ROB adaptation 
techniques on the performance of a 4-threaded SMT machine in 
terms of the throughput IPC (Figure 13) and fairness metrics (Figure 
14). The performance trends change significantly compared to the 
situation where the same static number of ROB entries is used by 
each thread (in the baseline case). The dynamic adaptation scheme 
provides measurable performance improvements as the ROBs 
increase from 48 to 64, to 96, and then to 128 entries. After that 

point, the performance flattens out as the other resources 
become the bottlenecks at these ROB sizes. Note that the trend 
of monotonically increasing performance at larger ROB sizes is 
re-established by the dynamic ROB adaptation techniques.  
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Figure 12: Performance of adaptive ROBs with 96-entry ROBs per 
thread for various partition sizes. 

Compared to the baseline machine where a fixed number of 
ROB entries are statically assigned to each thread throughout its 
execution, our dynamic mechanism increases the IPC by 5% for 
48-entry ROBs, 16% for 64-entry ROBs, 47% for 96-entry 
ROBs, and 53% for 128-entry ROBs. In terms of the fairness 
metric (harmonic mean of weighted IPCs [7]), these percentages 
are 2%, 7%, 25% and 29% (Figure 14). Compared to the best 
performing static ROB configuration on the baseline machine, 
which is the one with 48-entry ROBs per thread, our 
dynamically adaptable ROBs with 128-entries per thread 
increase the IPCs by 21% and fairness by 10% with respect to 
the harmonic mean across all simulated mixes. Recall that the 
increase of the per-thread ROB sizes from 48 to 128 entries in 
the baseline machine leads to a 25% IPC reduction and 15% 
reduction in fairness. 
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 Figure 13: Harmonic mean throughput IPCs for the adaptive ROBs 
with various sizes of the per-thread ROBs for the configurations 
with 8-entry partitions. 

Our experiments showed that the EP has little impact on the 
performance. Specifically, the performance is insensitive for the 
evaluation periods up to at least 128K cycles. This result 
correlates well with the data presented in Figures 8, 9, and 10, 
which show that the issue-bound and commit-bound phases of 
applications usually last for several 100,000 cycles at a time. 

0.44

0.49

0.54

0.59

0.64

0.69

0.74

32 48 64 96 128 256
Per-thread ROB size

Fa
irn

es
s 

M
et

ric

Baseline Baseline with infinite IQ and RF Adaptive ROB with 8-entry partitions

 
Figure 14: Harmonic mean results for the adaptive ROBs with 
various sizes of the per-thread ROBs for the configurations with 8-
entry partitions presented in the form of the fairness metric (of 
harmonic mean of weighted IPCs). 



We now examine the impact of various values of the 
allocation_threshold and the deallocation_threshold on the 
performance. We experimented with various mechanisms to set these 
thresholds, and our best results were achieved when the thresholds 
were expressed as a percentage of the ROB partition size. Figure 15 
presents the sensitivity of our reconfiguration algorithm to the 
allocation_threshold. If we denote the number of entries in an ROB 
partition as λ, the threshold values considered as 
allocation_thresholds were in the range between λ/2 and –λ/2. The 
larger values of the allocation_threshold (towards the left side of the 
graph) result in more aggressive allocations, while lower values 
(towards the right side of the graph) result in less aggressive 
allocations.  

For deallocations, the higher thresholds are more aggressive while 
lower thresholds are less aggressive. In the figure, the results are 
presented for two values of deallocation thresholds, which provided 
the best results. We also experimented with other values of 
deallocation thresholds and found them to be worst than the best 
results presented here. As seen from the graph, the scheme using 2*λ 
as the deallocation_threshold outperforms the datapath with 3*λ as 
the threshold in general for nearly all values of the 
allocation_threshold examined.  
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Figure 15: Performance Sensitivity to Allocation and Deallocation 
Thresholds Presented as Harmonic Mean of Throughput IPC. λ is the 
ROB partition size. 

In general, low values of the allocation_theshold (including the 
negative values) provide lower performance because they are not 
aggressive enough to allocate a sufficient amount of ROB entries to 
threads that could make use of them. On the other hand, a very large 
allocation_threshold is too aggressive and thus allows issue-bound 
threads to further clog the issue queue (although the effects of this are 
somewhat mitigated by an appropriately selected 
deallocation_threshold). The optimal configuration lies somewhere 
between these extremes and, in our framework, is obtained with the 
deallocation_threshold of 2*λ and the allocation_threshold of λ/8. 

Having determined the optimal thresholds, we now show some 
performance aspects of our reconfiguration algorithms. Table 4 
presents the detailed statistics for two of the simulated multithreaded 
mixes – mix 1 and mix 10. The details for other mixes are not 
presented due to the space constraints, but similar trends were 
observed for those workloads. For each thread, the table shows the 
average number of allocated ROB partitions, the distribution of the 
evaluation periods according to the type of reconfiguration decision 
made, the average number of instructions in the IQ, the average 
number of instructions which are in the ROB but not in the IQ, and 
the classification of the thread. The results generally demonstrate the 
effectiveness of our adaptive techniques. For example, consider mix 
1. The mcf benchmark (classified as heavily issue-bound) has only 2 
ROB partitions allocated to it on the average, while art (classified as 
heavily commit-bound) has its full ROB allocated throughout the run 
(12*8 = 96). In fact, art is so consistently commit-bound, that our 
algorithm quickly allocates all 12 available partitions to it and never 
deallocates them again. 

The behavior of equake, on the other hand, varies between 
commit-bound and issue-bound phases, and on the average 9 
ROB partitions are allocated. Lucas is issue-bound, but the 
degree of boundedness is less than in the case of mcf, so a larger 
number of ROB partitions (6 on the average) are allocated to 
lucas. Overall, each benchmark in the mix gets a different 
number of ROB entries according to its characteristics. We can 
also see that for some benchmarks (art, swim), the number of 
allocated ROB partitions is stable, while for others (lucas, 
parser) relatively frequent allocation/deallocation decisions are 
made. 

While the goal of this paper is to improve the performance 
scalability of the ROB, similar mechanisms can be used to 
reduce dynamic and leakage power. If a more complicated ROB 
partitioning circuitry can be deployed [8], then the unused 
partitions can be temporarily put into a stand-by mode, thus 
reducing the leakage dissipations. Furthermore, the dynamic 
dissipations can be reduced by using bitline segmentation [8]. 
As demonstrated in Table 4, many ROB partitions are in the 
deallocated state at any given time and remain so for a large 
number of cycles (as the commit-bound / issue-bound phases 
last several 100,000 cycles as shown in Figures 8, 9 and 10).  
While we do not present a full detailed power evaluation of such 
power reduction techniques, a first-order approximation of 
power-saving potential can be determined based on the number 
of deallocated (inactive) ROB partitions and assuming that the 
extent of power savings is proportional to the fraction of 
partitions that are deallocated. During an average cycle, 32%, 
25%, and 11% of the ROB partitions are in the deallocated state 
for the per-thread ROB sizes of 128-entries, 96-entries, and 48-
entries, respectively. Finally note that if the optimization process 
is performed in the power/performance domain, then the optimal 
thresholds used by the adaptive ROB algorithms presented in 
this paper are likely to change. 
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 Figure 16: Performance Comparison of Various Configurations 
Presented as Harmonic Mean of Throughput IPC. 

Finally, Figure 16 compares the performance of the dynamic 
ROB allocation schemes presented in this paper against the 
performance of the static per-thread ROB (baseline machine), 
the baseline machine with an infinite IQ but limited number of 
physical registers (as per Table 1). As seen from the graph, our 
mechanisms essentially provide the same performance as that of 
the baseline machine with the infinite number of issue queue 
entries. This shows that the use of our techniques completely 
alleviates the problem of clogging in the shared issue queue and 
avoids the performance degradations incurred by increasing the 
ROB sizes. This is because the case where the shared resources 
are idealized servers as an upper bound for the performance that 
can be achieved by dynamic ROB adaptation. Indeed, with 
infinite shared resources, dynamic ROB adaptation can only 
degrade performance compared to statically sized ROBs. 



Another implication of these results is that a more complicated ROB 
partitioning and allocation scheme, where the partitions can be 
organized in a global shared pool to be assigned across all threads 
dynamically is not needed, as there is no further performance benefit 
that can be reaped from such a scheme. Similar conclusions can be 
arrived at if the fairness metric is considered (fairness results are not 
presented due to space constraints). 

8. CONCLUDING REMARKS 
Complex interactions between the shared and private per-thread 
resources need to be considered in order to understand the nuances of 
SMT architectures and realize the full performance potential of 
multithreading. One interesting and somewhat unexpected 
phenomenon is that across-the-board increase in the size of per-
thread reorder buffers often decreases the instruction throughput on 
SMT due to the excessive pressure on the shared SMT resources such 
as the issue queue and the register file. In this paper, we proposed 
mechanisms and the underlying ROB organization to dynamically 
adapt the number of ROB entries allocated to threads only when such 
adaptations do not result in increased pressure on the shared datapath 
resources. To this end, we characterized the execution phases of the 
SPEC 2000 benchmarks into commit-bound and issue-bound and 
designed the algorithms to allocate more ROB entries to threads 
executing in commit-bound phases and limit the ROB allocations to 
threads in issue-bound phases.  

Our results indicate that such dynamic adaptation of the ROBs results 
in significant increases on top of the DCRA resource allocation 
policy in terms of both throughput (54% compared to similarly-sized 
static ROBs and 21% compared to the best-performing static 
configuration) and fairness (29% and 10% respectively). These gains 
are achieved with very little hardware overhead and simple 
reconfiguration algorithms. We also demonstrated that the 
performance of adaptive ROBs approaches that of the datapath with 
an infinite issue queue, thus completely eliminating the size-effects of 
ROB scaling on the shared issue queue and obviating the need for 
more complex ROB management mechanisms. 
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Table 4: Detailed performance statistics for representitive mixes.

allocations 
are made

deallocations 
are made

no changes are 
made

mcf 2 5% 5% 90% 9 7 issue-bound

equake 9 15% 15% 70% 23 41 varying behavior

art 12 0% 0% 100% 12 61 commit-bound

lucas 6 33% 33% 34% 15 14 issue-bound

parser 9 23% 23% 54% 19 32 varying behavior

swim 12 0% 0% 100% 3 69 commit-bound

gcc 11 17% 17% 66% 22 34 varying behavior

bzip2 5 21% 21% 58% 13 13 varying behavior

 

Avg #  of 
instructions 
not in the IQ

Categorization from 
Table 3

mix1

mix10 

Avg # of 
partitions 
allocated

% of evaluation periods where Avg #  of 
instructions in 
the IQ


