
Simulating (log ‘n) -Wise Independence in lVC

BONNIE BERGER AND JOHN ROMPEL

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract, A general framework for removing randomness from randomized NC algorithms whose

analysls uses only pol ylogarlthmic independence is developed. Previously, no techniques were known

to remove the randomness from those randomized NC algorithms depending on more than constant

independence. One application of our techniques is an NC algorithm for the set discrepancy y problem.

which can be used to obtain many other NC algorithms, mcludmg a better NC edge coloring

algorithm. As another application of the techniques in this paper. an NC algorlthm for the hypergraph

coloring problem M provided.

Categories and Subject Descriptors: F. 1.2 [Computation by Abstract Devices]: Modes of Computa-

tion —parallelism; probabilistic computation; F. 2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerlcal Algorithms and Problems — computations on discrete structures: G.2. 1

[Discrete Mathematics]: Combinatorics –combinatorial algorithms; G,2,2 [Discrete Mathematics]:

Graph Theory —graph algorithms

General Terms: Algorithms. Theory

Additional Key Words and Phrases: Discrepancy, removmg randomness

1. Introduction

A fundamental issue for theoretical computer science is the degree to which
randomness helps in computation. In many cases, the most natural algorithm to
solve a problem involves randomness. Often, however, it is possible to convert
a randomized algorithm into a deterministic one.

For many applications [1, 13, 15, 20, 22], the problem of removing
randomness from an algorithm can be solved by finding an X = (Xl, X.)
such that F(X) > 13[F(X)], for some function F on some sample space Y
over which the expectation is to be computed. The problem is then how best to
find a good sample point (e.g., an X such that F(X) > E[F’(X)]) in Y’. If

An earlier version of this paper appeared m the Proceedings of the 30th Annual IEEE Symposium
on Foundations of Computer Science (Oct. 1989).

B. Berger was supported m part by a Graduate Fellowship from ARO Grant DAAL03-86-K-0171, by

DARPA Contract NOO014-89-J-1 988, and by National Science Foundation PYI Grant CCR 86-57688

with matching support from UPS, IBM, and Sun Microsystems.

J. Rompel was supported in part by a National Science Foundation graduate fellowship, DARPA

Contracts NOOO14-87-K-825 and NOO014-89-J-1988, and Air Force Grant AFSOR-86-O078.

Authors’ address: Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-

bridge, MA 02139,

Permission to copy without fee all or part of this material M granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

pubhcation and its date appear, and notice is given that copying is by permission of the Assoclatlon for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

@ 1991 ACM 00045411/91/1000-1026 $01.50

lo.m.l of the Assoc,dtmnfor Comp.tmg Machinery, Vd 38, NO 4, October 1991, pp 1026-1046

http://crossmark.crossref.org/dialog/?doi=10.1145%2F115234.115347&domain=pdf&date_stamp=1991-10-01

Simulating (log ‘n)- Wise Independence in NC 102’7

the space of sample points is small (e.g., polynomial), then this can be
accomplished by brute force; namely, we could try all points until we get a
good one, for one must exist. However, typical sample spaces are larger than
polynomial, and brute force is too expensive. In such situations, the only
general method available is the method of conditional probabilities, devel-

oped through the papers of Erdos and Selfridge [9a], Spencer [21, 22], and

Raghavan [20]. This method works by setting the XI’S one by one in such a

way as to not decrease the conditional expectation (e. g., setting Xl+, so that

EIF(X)I X1,..., Xi+l] > E[F(X) I Xl, Xl]). The main difficulty

with this approach is in computing the conditional expectations —the ability to

do so determines when the method can and cannot be used.

Unfortunately, the method of conditional probabilities is inherently sequen-

tial; hence, the running time of the Spencer and Raghavan algorithms is at least
n. Since the best time one could hope for is logarithmic in the size of the
sample space, for large sample spaces this is probably as good as one can get;
yet, for smaller spaces, n is far from optimal. The only improvement to this
approach was by Luby [16] who showed how to search in time logarithmic in
the size of the sample space for the special case of pairwise independence,
thereby improving the processor efficiency of several NC algorithms (A + 1
vertex coloring, MIS, and maximal matching) from nz (n + m) to n + m.

In this paper, we show how to search in time logarithmic in the size of the
sample space for a wide range of functions F and arbitrarily large sample
spaces. As a result, we can prove substantially stronger results than is possible
with the Luby method. In particular, we are able to derive NC algorithms for
several problems that were not previously know to be in NC, and we can
search (log ‘n) -wise independent nlOg’‘-size sample spaces in NC.

In Section 2, we demonstrate how our techniques apply to the problem of set
discrepancy. In this problem, we are given a set of n points and n subsets of at
most A of these points, and we want to color the points O and 1 so that the
discrepancy, or maximum difference between the number of O’s and the number
of 1‘s in any subset, is small. The best known randomized (parallel) algorithm

achieves a discrepancy of 0(~=); Spencer [21] applied the method
of conditional probabilities to this algorithm to obtain a deterministic sequen-
tial algorithm with the same bound. We show that the randomized algorithm,
using only (log n/~ log A)-independence, gives a discrepancy bound of

A1J2+‘ ~~ for any fixed e > O; then we apply our techniques to convert
this to an NC algorithm that attains the same bound (using n’/’ processors).
We find, in fact, that at least !J(log n /log A)-wise independence is required to
guarantee this upper bound on discrepancy; thus, our methods to handle more
than constant independence are in fact required to get an NC algorithm for this
particular problem. Our set discrepancy algorithm has many applications. As an
example, we give a deterministic version of the Karloff– Shmoys parallel edge
coloring algorithm [12], obtaining the same A + A1JZ+‘ bound on the number
of colors used as their randomized algorithm and beating the known determinis-
tic bound of 2 A – 1 [16]. The results of Section 2 first appeared in 13erger [5].
Results similar to those in Section 2 were subsequently discovered by Motwani

et al. [17], and further work along these lines appears in [18].

In Section 3, we show how to apply our techniques to a large class of
problems that depend on (log ‘n)-wise independence. In particular, we describe
an NC algorithm for obtaining the expected value of any function that is the

1028 B. BERGERAND J. ROMPEL

sum of a polynomial number of terms, each depending on O(log n) binary
random variables; for example, a function of the form

n“

F(x) = ~j-, (x,,,,xz ~,ogn).
,=1

Alternatively, we can allow the terms to be simple functions of log Cn random

variables; for example, characteristic functions of affine sub spaces, which, by a

reduction, can be used to build any function that is nonzero for only a
polynomial number of points.

In Section 4, we give several methods for extending our technique to
multivalued random variables. As an illustration, we consider the hypergraph
coloring problem: Given a d-uniform hypergraph (V, d‘), color the vertices
with d colors so that at least d! I & I / dd edges have one vertex of each color. If
d is a constant, this problem can be solved by trying all sample points in a
d-wise independent distribution [1]. Using our techniques for handling (log n)-
wise independent multivalued random variables, we give a deterministic NC
algorithm that solves this problem for all d. The particular technique used to
handle the multivalued random variables in this problem involves generating
and solving a series of problems with binary random variables, highlighting the
importance of being able to solve a large class of these.

Finally, in Section 5, we provide improved algorithms and bounds for set
discrepancy. Among the results in this section is an NC algorithm for weighted
discrepancy, which has applications to other problems such as lattice approxi-

mation. Also included is an NC algorithm that achieves an 0(~-)
discrepancy bound for the case when A is polylogarithmic.

2. An Example of the Method—Set Discrepancy

2.1. DEFINITION OF PROBLEM. Spencer [22, p. 30] defines the set discrep-
ancy problem as follows. Let Y G 2 r, I -~ I = I r I = n, be a family of finite
sets. Let x: r ~ { – 1, + 1} be a 2-coloring of the underlying points. Define

x(A) = ~~x(i);

disc(x) = ~~lx(A)l.
. .

We want to fine a x such that disc(x) is small.
How small can we make disc(x)’? Spencer [22, pp. 73-77] shows that there

exists an ~ with disc(x) = 0(v~). He also shows that this is the best

possible; that is, that there exists an d such that all x have disc(x) = Q(v’;).
It is interesting to bound discrepancy in terms of maximum degree A =

max ~=., I A I . Spencer’s lower bound can be easily modified to give, for any
A, an Q? with cardinality n and maximum degree A such that all x have

disc-(x) = Q(~). It is easily shown in Section 2.2 that if we pick x at

random, with high probability disc(x) is at most 2 ~=. This immedi-
ately gives an RNC algorithm achieving that bound. Spencer [21] shows how
to convert this into a deterministic polynomial algorithm. In the sections that
follow, we develop an NC algorithm that outputs a x with disc(x) s

A12+’~~.

Simulating (log ‘n)- Wise Independence in NC 1029

An interesting special case of the set discrepancy problem is the graph
discrepancy problem. Given a graph G = (V, l?), we want to find a 2-color-
ing of the vertices x: V+ { – 1, + 1} such that max Vev I EU,NtV)x(u) I is
small, where N(v) = { u I (v, u) c ~}. We can reduce this problem to set
discrepancy by letting r = V and d = {N(v) I v E V}. Plugging in our NC
algorithm for discrepancy, we get a x with max.ev I ~,,=~(v)x(~) I ~

A’”+’ =, where A is the maximum degree of G.
A variation on the set discrepancy problem is the weighted discrepancy

problem, where each element of r is assigned a real weight between – 1 and 1.
Then, x(A) becomes a weighted sum of the X(i)’s. In Section 5.2, we give an
NC algorithm for this problem.

2.2. ArN RNC ALGORITHM. Consider the following algorithm for set dis-

crepancy: randomly pick x until one is found such that disc(x) < 2-.
One iteration of this is clearly in RNC. We show that the expected number of
iterations is less than two. The following will prove useful:

PROPOSITION 2.1 [22, p. 29]. Let Xl, X~ be independent and identi-
cally distributed with Pr[X, = + 1] = Pr[XI = – 1] = 1/2. Let S = 1, X,.

Then, Pr[S > A] < e-h’l’~.

LEMMA 2.2. Pr [disc(x) > 2-J < 2/n.

PROOF. For each ~ c .cil, Proposition 2.1 shows

Pr[l X(A)\ >2-] S2Pr[x(A) >2~-]

< Te-(’-)’/21Al

2
——

~.

Thus,

L

~—. ❑
n

Thus, the expected number of iterations is at most 1/(1 – (2/n)) <2. So the
above is clearly an RNC algorithm. Also, one can easily show using Lemma

2.2 that E[disc(x)] s 2-.

2.3. THE OVERALL APPROACH. Lemma 2.2 shows that the probability of

disc(x) being larger than 2- is small. This implies that there exists a x

with disc(x) < 2=. We wish to find such a x deterministic ally. Unfor-
tunately, the random construction in Section 2.2 assumed a fully independent
distribution, which must have 2 n sample points. Clearly, we cannot search this
sample space exhaustively. However, Spencer [22] developed a method to
perform a binary search on the sample space. While he achieves a polynomial
time algorithm, it requires n decisions to be made. Since each decision depends
on previous ones, it seems very unlikely that these decisions could be made in
parallel. To get an efficient parallel algorithm, we must work with a smaller
sample space. A natural choice would be to choose the vector (x(1), x(n))
from a k-wise independent distribution, where k is small.

1030 El. BERGER AND J. ROMPEL

Definition 2.3. The random variables Xl, X. are k-wise indepen-

dent if for any k-subset of Xl, X. and for any r,. r~,

pr[X1, =rl~~,,=rz~”” “ ~~,~ = r~]

—
- p’[~z, = +’+% =d ““”WL =rA

Ideally, our goal is to find a x with small discrepancy by finding a x for
which disc(x) s E[disc(x)], where the expectation is taken over a k-wise
independent distribution for some small k. The choice of k is influenced by
two factors:

(1) if k is too small, then E[disc(x)] might be too large, and
(2) if k is too large, then finding a x that achieves the expectation takes too

long.

As a compromise, we eventually choose k = log n/c log A, E >0.
There are other problems with this approach, however. Most important, to

find a good x, we need to compute expectations of disc(x) conditioned on
some knowledge of the distribution, in NC. This is hopelessly complicated by
the rnax and absolute value in disc(x). To get around these problems, we use
higher moments, using Z ~, ,,. I x(A) I ‘ as an upper bound on disc’(x). If k
is even, this gets rid of both the rnax and the absolute value. In other words,
we

(1) show that E[X~e,., I x(A) I ~] is small for suitable k where the expecta-
tion is taken over a k-wise independent distribution, and then

(2) find a ~ such that .X~
● / I x(A~l~ =E[I~c7 I X(A) I ~].

As a consequence, we have found a x for which disc~(x) is small, and thus
for which disc(x) is small. By choosing k = log n/e log A, we produce a x

for which disc(x) < A1IZ+‘ ~l!. This is not quite the ~= bound we
got with the RNC algorithm, but it is close.

2.4. BOUNDING THE INDEPENDENCE NEEDED. Our first task is to bound

13[XA ,,y x‘(~)]. This is accomplished in the following lemmas:

LEMMA 2.4. Any function that is the sum of functions depending on at
most k random variables each has the same expected value taken over any
distribution with k or greater independence.

PROOF. Follows directly from the definition of k-wise independence and
linearity of expectation. ❑

LEMMA 2.5. Let k be a positive even integer. For (x(l), x(n))
chosen from a k-wise independent distribution, for all A G .vl.

PROOF. We first observe that E[x‘(A)] for any k-wise independent distri-
bution is the same as for the uniform distribution. This follows from Lemma
2.4 and the fact that

Simulating (log ‘n)- Wise Independence in NC 1031

Hence, we assume the X(i)’s are independent and unbiased in the analysis
below.

Since k is even, and hence x‘(A) nonnegative, we can write

E[x~(A)] = f~Pr[x~(A) >x] dx

(where the last inequality is from Proposition 2. 1). With the change of variables
y = x21k/2A, we have

co

E[x~(A)] s 2~(2A)~’2~ y~lz-le-Y dy
o

I()

k/2–l xi rn

= 2;(2A)”2 – : – 1 !e-X ~ ~
ieo 1“o

.—

()
2;(2A)k’2 ; – 1 !

()

= 2 ; !(2A)k/2

‘O(wHk’2(2A)k’2)

=o(m(:)k’2).

COROLLARY 2.6. For any even k-wise independent distribution,

❑

E[~~tiX’(A)] s nO((kA)k”).

We can now give a lower bound on the value for k. We want

[
E ~ #(r4)]”ks A1/2+’ ~~;

Aeci

1/’ < A’. This implies we needthis is roughly captured by having n –

i]

log n
k=2

2e log A “

If k is thus, and we are able to find a x such that ZA ,,,, x‘(A) is at most its
expectation, this implies that

1032 B. BERGER AND J. ROMPEL

It is worth pointing out that the preceding analysis is in some sense tight; that
is, that to get disc(x) < A1’Z+C, any method based on independence alone
requires at least ((210g n)/log A)-wise independence. This notion is captured
by the following theorem:

THEOREM2.7. For any n and A, we can construct a ((2 log n)/log A)-wise
independent distribution and a set system .W of size n and maximum
degree A such that E[disc(x)] = Q(A).

PROOF. Our distribution is as follows: first pick X(1), X(A) from a

((2 log n) /log A)-wise independent distribution with at most n sample points

(see [1] for construction). Then, to pad out the distribution to n variables, pick
x(Ail),..., x(n), independently of x(1), x(A). from an arbitrary
((2 log n)/log A)-wise independent distribution. Now we construct .c/ such that
for every possible sample point in the distribution for the first A variables,
there is some set with large discrepancy. This implies that the expected
discrepancy is large. .& is constructed as follows: for each sample point in the
distribution for x(1), x(A), we include in d the larger of sets { i I 1 s i
< A, X(i) = –1} and {ill s i< A, x(i) = +1}. This ensures that for each
sample point, we have a corresponding set A c .~f” (with A/2 < I A I < A)
whose elements are assigned either all + 1‘s or all – 1‘s. Thus, disc(x) > A /2,
which implies E[disc(x)] > A /2. ❑

The next three sections will be devoted
is at most its expectation. Since it is
variables, we let x(i) = (– 1)’, where

F(x) = - ~ X’(A) = - ~

to finding a x such that ZA,,, x‘(A)
more convenient to work with 0/1
Xi={ O, l}. Let

x ““” E (-1)
x,, + +x,,

Ae-Y ,-lew ild i~d

Then finding a x such that X ~e,,, x‘(A) is at most its expectation is the same
as finding an X such that F(X) z 13[F(X)].

2.5. GENERATINGk-W1sE INDEPENDENT VARIABLES. It still remains to demon-
strate a k-wise independent distribution on which we can perform a binary
search efficiently in parallel.

Luby [16] gave the following such distribution for the case k = 2. Let 1
= ~log(n + 1)1 + 1 and o = (o,,..., u,) be picked uniformly from Z;.
Define random variables Xl, X. such that

where (il, . . . , il_l) is the binary expansion of i. Observe that Luby’s distribu-
tion is not 4-wise independent: In particular, X4, X5, X6, and XT are
dependent since XT = X4 + X5 + X6.

We extend Luby ’s distribution to be k-wise independent for all k as follows:
We assign a label ai ~ Z; to each point i, where 1 is bounded by some
polylogarithmic function of n. We pick coc Z; uniformly at random, and let

Xl=a, ”u.

Simulating (log ‘n)- Wise Independence in NC 1033

Note that we can express Luby’s distribution in this framework by letting

a,= (ii,...,il_l,l).

The main benefit of our distribution is that we can now give a necessary and
sufficient condition for the X,’s to be independent and unbiased. (By unbiased,
we mean each Xl has equal probability of being O or 1.) The following result is
similar to others used in the literature [1]. For completeness, we provide a
proof in what follows.

THEOREM2.8. X,,, Xi. are independent and unbiased if and only if

a ,,, ..., a,, are linearly independent as vectors over Zz.

PROOF. First, we prove the “only if” direction. Suppose we have k a’s that
are not linear independent; that is, we have z ~=, a, a; = O, where some.-,
CYY,# O. Therefore,

-J

=O”6J
= o.

But consider the event, ~, that XI = 1 and X,, = O for all
J

~ U,x,, = a,. #o.
J=]

So E is not possible; that is, Pr[E] = O. But this implies that

j # j*. Then

x,,, . . ., X,,. are
not independent, as any distribution where they were would have ‘Pr[E] = 2-~.

Now for the proof of the “if” direction. Assume a~,, . . . , alfi are linearly

independent. Let A be the matrix containing a,,, . . . , a,, as row vectors.
Then, we have

[:) I.

ail x,, -
a,,

[1

xl,
Au= .“ u = .-

ai~ i,,

Since a,,, ai, are linearly independent, we can create a new nonsingular

matrix A by augmenting A with 1 – k new rows. Then A“ . u = 2, where

the first k entries of i are X,,, X,,. A“ is invertible, so u = A“ -1 “ ~;
hence, there is a 1-1 correspondence between ~’s and O’S implying that the
2‘s are uniformly distributed. But there are exactly 21- A~‘s for every assign-
ment to Xl,, . . . , Xi,. So every assignment to Xi,, X1, has probability

~~~~~~~: 20~ of occurring. Therefore, X,,, . . . . X,. are independent and

Toget X1,..., X., which are k-wise independent, we need a set of labels
al, ..., a. such that every k of them are linearly independent. (By Theorem
2.8, this gives us k-wise independence of the Xl’s.) In fact, it suffices to get an



1034 B. BERGER AND J. ROMPEL

n x r matrix over GI’(2’) with the property that any log n rows are linearly
independent. Letting a, be the ith row with each element ciO + al x

+“”” +a._lxs-’ e GF(2’) expanded out to (CIO, . . . , a~_ ~) gives length
1 = m labels such that any log n are linearly independent over Zz. Several
well-known ways of constructing such matrices, for 1 = 0( k log n) are de-
scribed in [1, 6, 19].

In fact, almost all n x 0( k log n) matrices will work, as is demonstrated by
the following theorem:

THEOREM 2.9. lf 1> k log( n /k] + 2 k + t, then a random set of labels
;e:;f. ~ .: ~j, G z; , are k-wise linearly independent with probability at

PROOF. Pick A= (al,..., an) e ( Z~) n at random.

Pr[every k of al, . . . . a. are linearly independent]

21— ~ Pr[ { al I i c S} is linearly dependent]
SG{l, . . ,n}

lSl=k

(1[
k

=1– ~Pr3aI, ..., a~ not all O, such that ~ a,a, = O
t=] 1

Consider the a, corresponding to the last non-zero CY,.Only one value for this
a, gives a O sum, so Pr[Z ~=, CY,ai = O] = 2 –‘. Therefore, continuing the above
sequence of relations, we have that

Clearly, a random set of labels of length 1 = k log(4 n) almost certainly gives
us k-wise independence.

Since any k-wise independent distribution on n random variables must have a

sample space of size Q((n/k)l~’2~) [1, 7], the labels al, . . . , a. must be

Q( k log n – k log k) bits long.

2.6. ZEROING IN ON A GOOD SAMPLE POINT. Now that we have a k-wise

independent distribution, we explain how to do a binary search on it efficient y

in parallel. We employ the method of conditional probabilities, described

earlier, for zeroing in on a “good’ sample point; that is, an u such that

F(X) z ~[ F( X)]. Even though the method is inherently sequential, since co is

only 0(log2 n) bits long, our resulting algorithm will be in NC.
To zero in on a good u, one bit of w is determined at a time, thereby

performing a binary search on the a‘s. This is done as follows. At the
beginning of iteration t,assume we have set u, = SI, . . . . tit_, = st _ ~. Then,



Simulating (log ’n)- Wise Independence in NC 1035

we compute 13[$’(X)I ml = sl, . . . ,tit_l = S~_l,ut = O] and 17[F(X) I UI
=sl, . . ..@t_l =Sr–], tir = 1]. We then set tit to the st = {O, 1} which
maximizes 13[F(x) I UI = SI, . . . . tir_l = st_l, tit = St]. We show how to
compute these conditional expectations in Section 2.7.

LEMMA 2.10. After step t of the above procedure, E[F(X) I u, =
SI, ..., tit = St] > E[F(X)].

PROOF (by induction on I s I). The case I s I = O is clearly true. Assume

this lemma is true for t – 1; that is, we have

JW(WI% =sl>. ..> @l-l = s,_,] d+(x)].

Then

EIF(x)l ul=sl, . . ..ut=sr]
—–max(lZIF(X)lw, =sl, . . ..til-l =s*–l, ur =0],

EIF(x)l wl=sl, . . ..@t_l=st_l. ut= l])

2( EIF(x)l w,=s,,..., tit_, =s,_,, ut=o]

+EIF(x)l@l =sl, . . ..@t_~ =st_,, @r= 1])/2
—–E[qx)ltil =s,, . . .. tit_. =s,_, ]

a E[ F’( X ) ] (by inductive hypothesis). ❑

COROLLARY 2.11. The output of the above procedure is an X such that
F(X) 2 E[F(X)].

2.7. COMPUTING CONDITIONAL EXPECTATIONS. In general, computing condi-
tional expectations is hard to do and separates when one can and cannot use the
method of conditional probabilities to zero in on a good sample point. Fortu-
nately, in the case of discrepancy, we have devised a simple and efficient
approach for computing conditional expectations. Recall that to solve discrep-
ancy, we need to compute conditional expectations E[ F( X) I a ~ = S1, . . . , 0 ~
= St] where F(X) is of the special form

Using linearity of expected value, we can break this up into components

hll... i~(s) = E[(–l)xf=’xIJ I U1 = S1, . . . . Wt = s*
1

= q(-l)~f=’a’”~1 w, = s,,. . . . w, = s,]

.— E[(–l)a”m lwl=sl, ..., 1Wt=st,

where ii = x~=, ~i,. Let r be the last position that contains a 1 in ii. If t < r,
then ii “ w is unbiased, and therefore h,, i,(s) = O. Otherwise, ii “ w is the
same for all w that extend s, and hence h ~,... ,~s) = ( – l)Z” U. Assuming we

have precomputed ii and r, we can compute h,, ,~s) in constant time by
extending a partial sum z;= ~tijsj at each iteration and outputting h ~,....~ S) = O

if t < r and hi, ~~(s) = (— l)z~=’ti’S~, if t z r.



1036 B. BERGER AND J. ROMPEL

To compute 13[F(X)I WI = S1, . . . . cot = St], we need one processor for
each possible (A, i,, . . . . i~), that is, at most rzA~ total. Therefore, k must be
O(log n /log A). Letting k be the minimum possible, 2[log n/2 ~ log Al,
implies that n 3+1” processors are sufficient.

Then, we can compute all hi, ....~ S) terms in parallel in constant time and
sum them to get E[F(X) I til = Sl, . . . . at = sf] in O(log n) time. Thus, we
spend 0(1 log n) time in the 1 iterations of our procedure. In addition, we can
perform the precomputation required above in 0( log n) time as well. Since
Z = O(logz n), this yields an O(log3n) algorithm for discrepancy,

2.8. APPLICATION TO EDGE COLORING. An edge coloring of a graph G =
(V, E) is an assignment of colors to all edges of the graph, so that any two
edges that share a common vertex are assigned different colors. Let A be the
maximum degree in G. Observe that any coloring requires at least A colors. In
fact, Vizing [23] implicitly gives a polynomial time algorithm to A + 1 color
any graph. Karloff and Shmoys [12] provide a parallel implementation of this
algorithm to get a A + 1 coloring of any graph in time O(AO(l)log’( 1‘n) using
a polynomial number of processors. Also of interest, there exist NC algorithms
for optimally coloring bipartite graphs with A colors [2, 8, 10, 14]. Further-
more, there is a trivial NC algorithm to 2A – 1 color any graph by A + 1

vertex coloring [16] the line graph. Berger and Shor (unpublished notes) and
Karloff and Naor (private communication) found NC algorithms to A +
A /log O(l)n color any graph.

Of particular interest here, there is an RNC algorithm in [12] which
A + Al’2 +‘ colors any graph. We remove the randomness from this algorithm
by using the techniques discussed above. The RNC algorithm, Algorithm A,
is as follows:

(1) If A < (log n)’ t’, then use the Karloff-Shmoys A + 1 deterministic algo-
rithm [12].

(2) Run an RNC algorithm for graph discrepancy, randomly picking x until
disc(X) SA’j’+’. Let A = {vl x(v) = +1} and B= {v Ix(v) = –l}.
This partition gives us two graphs, both with vertex set V: bipartite graph
GI, which has all the edges of G between A and B; Graph G2 which has
all the other edges of G.

(3) Color GI using the A coloring algorithm for bipartite graphs.
(4) Run Algorithm A recursively on Gz, using a new set of colors.

This algorithm works because the above partition implies that both GI and Gz

have maximum degree at most A/2 + A* lZ +‘.
To make Algorithm A deterministic, we need only demonstrate a determinis-

tic method for graph discrepancy, which we said in Section 2.1 was a special
case of the set discrepancy problem. Plugging in the set discrepancy results with

e’ = e/2, we get a x such that disc( x) s Altz+” ~~. Note that A >
(log n) ‘t’, since we handled the other case in Step 1 of Algorithm A. Thus,

<G< A’”. So we have disc(x) s A1i’+’, which implies x(Nfv)) s
A1/2+e for all v e V.

3. Setting up a General Framework

For discrepancy-based problems, w: considered a very specific class of func-
tions; namely, those of the form ~ ~=,( – 1) ‘f=” J, and showed how to achieve



Simulating (log ‘n)- Wise Independence in NC 1037

the expected value for these. What can we do in general? In particular, for
which functions can we compute conditional expectations (the method of
Section 2.6 will then apply to achieve the expected value)? In order to give
ourselves a fighting chance, we restrict our attention to functions of the form

??2

F(x) = ~fi(xi,,, x1,2, . . ..xl. k).
i= 1

These are exactly the functions for which we can apply Lemma 2.4 to show that
k-wise independence gives the same expected value as full independence. Since
we require at least one processor for each fi term, we insist that m be
polynomial in n. In Section 3.1, we show how to compute conditional
expectations for arbitrary f, when k = O(log n). In Section 3.2, we describe
the fi’s for which we can handle the case k = O(logcn).

3.1. LOGARITHMIC NUMBER OF 0/1 VARIABLES. In this section, we present two

different methods for computing conditional expectations for functions of the

form

?1a

‘(x) = zft(xi,l, . ..~xz. blo).).
i= 1

We present both methods because, depending on what problem we wish to
solve, either of the two methods may be more efficient.

The first method is to rewrite F to be of the form solved in Section 2.7.
Letg:2ilL) s Rbe such that

{

1 if j~A
g(A) ‘fi(Xi,l, . . .. Xi. k) such that X, ~ =

o if j$A,

(i.e., g of a set is fi applied to its characteristic vector). The next proposition
follows from the theory of harmonic analysis on the cube.

PROPOSITION 3.1 [11]. g(A) = x~g{l,,,,,k}u~(–l)lsn~l, where us =
z-k~ ~G{l,, k}g(B)(-l)l~n~l.

Thus,

fi(xi,l,... ,Xi, k) =g({jl X1,,= 1})

= ~~~(-~)l{~l~z,J=l}nsl (by Proposition 3.1)
s

= ~ a~(- l) XJ’’X’”.
s

Since we have now written F as Z ~l~*CYi(– 1) ‘J ‘I J, we can apply the technique
of Section 2.7 to compute conditional expectations. This gives us the following
theorem:

THEOREM 3.2. There is an NC algorithm which given any F: Z: ~ R of

the form
a

F(X) = ~fl(Xi, l,. ... xiblO~~)j
i=l

outputs an X with F(X) > E[F( X)].



1038 B. BERGER AND J. ROMPEL

An alternative method for computing conditional expectations for F is as
follows: First, note that, by linearity of expectation, it suffices to compute the
conditional expectations of the individual fi and the sum. Assume we wish to

compute

E[fi(xl,l, . . ..xl. b,ogn)lul=s,, . .
1

.,@t=st.

Let x be the vector (Xi,, . . . . X. ,, * ,0~~), and let A be the matrix whose rows
are the corresponding labels al, ,, . . . , ai, ~ ,0~~. Then x = Au. So

If we let u’ = (al, . . . . tit), co” = (co,+l, . . . . U[), A’ and A“ be the first t

and last 1 – t columns of A, respectively, and s = (SI, . . . . St), then

E[.f, (x)lul=s l,..., cur = st] = ~fl(x)Pr[ A’cd’+A’’cJ’ = xld = s]
x

= ~.fi(X)Pr[ A”@”= X - A’s] .
x

For each x, we can test if the linear system A“ a“ = x – A’s is solvable; if it
is, Pr[ A“ u“ = x – A’s] = 2-r’nk(A”); otherwise, Pr[A”u” = x – A’s] = O.
Since we can compute the contribution of each of the x‘s in parallel, we can
compute the desired conditional expectation in NC, thus giving an alternate
proof for Theorem 3.2.

3.2. POLYLOGARITHMIC NUMBER OF 0/1 VARIABLES. Now, we consider the
case of functions depending on a polylogarithmic number of variables. A simple
counting argument shows that in NC we cannot compute all functions of log ‘n
variables, when c > 1, let alone compute conditional expectations of them. In
fact, both techniques of Section 3.1 require evaluating fi at every point; if f{

depends on more than a logarithmic number of variables, there will be a
superpolynomial number of points to evaluate. However, there are some special
cases for which we can compute conditional expectations.

The first special case we can handle is

fi(xl,l >..-, Xi, k) = (–l)x’x”.

This function can be evaluated using the techniques of Section 2.7, even if
k = log ‘n. In Section 3.1, we showed how to transform any function into a
linear combination of these; if this transformation is already known and
provides only a polynomial number of non-zero a ‘s, we can use this technique.

The next special case is based on the second technique of Section 3.1. Recall,
we had

We can restrict our attention to those x for which J_i( x) # O. If there are a

polynomial number of these, we can compute conditional expectations of f, for
k = logcn. Some examples of this are logical AND and NOR of a polylogarith-
mic number of variables (each has one nonzero point).



Simulating (log ‘n)- Wise Independence in NC 1039

A variant of the above, ~i(XZ, ~, . . . . X,, k) = X,, ~X,,z s “ “ X,. (i.e., the
special case of monomials), was subsequently considered by Motwani et al.
[18]. This is equivalent to the logical AND just described. Note that handling
monomials is strictly weaker than the case above since, for example, it is
impossible to write a polylogarithmic variable NOR as a linear combination of a
polynomial number of monomials.

Finally, we give a type of fi which can simulate all the above and more.
Consider functions of the form

{
f,(x) = ;

if x=yi+Tjz for some ZE Z;,

otherwise,

k T,e Z~xk.for some y, c Zz,
These are the characteristic functions of affine subspaces. Included are

characteristic functions of all single points; we can write any function with a
polynomial number of nonzero points as a linear combination of these. Func-
tions ( – 1) ‘J ‘I ~ can also be put in this form. To compute conditional expecta-
tions, we use a variant of our linear algebra method:

~[fi(x) l@}= Sl, . . ..tit= St]
—- Pr[Ati = y, + ~zhas a solution I ~’ = s]
—— Pr[ A“c J’ + ~.z = y; – A’s has a solution],

which can be computed by performing Gaussian Elimination to determine how
many bits of co” are free to vary. This gives us the following theorem:

THEOREM 3.3. There is an NC algorithm that given any F: Z: * R of
the form

F(X) = ~fZ(Xl,l, . . . . Xl,~lO~..),
i=l

where each fi is the characteristic function of some affine subspace of
Zpgcn, outputs an X with F(X) z E[F( X)].

4. Handling Multivalues— The Hypergraph Coloring Problem

In the previous sections, we were only concerned with the case where the
random variables took on values O and 1 each with probability 1/2. Yet, for
many problems, this model is too restrictive. In this section, we expand our
framework to consider random variables drawn from a uniform distribution
over a larger set of values. This can then be used to simulate nonuniform
distributions. We demonstrate our techniques for handling multivalued random
variables on the following problem:

A hypergraph X’= (V, &) is a system 8 of subsets of V called edges. .X
is d-uniform if every edge has d elements. Erdos and Kleitman [9] and Alon
et al. [1] define the large d-partite subhypergraph problem as follows: Given
a d-uniform hypergraph %= (V, &), find a d-coloring of V such that the
number of edges in & having precisely one vertex of each color is at least
I & Id! /dd. Alon et al. [1] showed this problem is in NC for constant d. We
show in this section that this problem is in NC for all d. Since the case of
d > in I & \ + !il(lg lg \ & I ) is trivially satisfied by any coloring that colors one
hyperedge correctly, we will henceforth restrict our attention to the case
d<lnl~l +O(lglg 181).



1040 B. BERGER AND J. ROMPEL

4.1. RANDOMIZED ALGORITHM. In this section, we give a randomized parallel

algorithm and prove that the expected number of properly colored edges is as
desired. The randomized algorithm is as follows: Randomly assign to each
vertex an 1 = 1og(2 I f I d! d2 ) = O(log I # I log log I d I ) bit label. Designate

these as random variables Y = ( YI. . . . . Ylvl). Let p = \21/dj. A vertex is

mapped to color i if its label is in Cl = {(i – l)p, . . . . ip – 1}. Note that
every color has p values associated with it. Vertices with values in the range
dp to 2{ – 1 are uncolored. Note that fewer than d of the 2 [ possible values
yield an uncolored node.

Now for the analysis. We define a function, G( Y), which is the sum of terms
g,(Y), one for each e= ;. Each ge( Y) is 1 if the vertices of edge e are

assigned d different colors, and O, otherwise. This is similar to the notion of
the benefit function employed by Karp and Wigderson [131, and then LUbY
[16], and the pessimistic’es~irnator us~d by Rag~avan [20]. -

In calculating the expected value of g,( Y), we get

~[ g,( Y)] z Pr[ g.( Y) = 1 I all vertices on edge e properly

x Pr[all vertices on edge e properly colored]

d!

()

dz

221”5”

colored]

Therefore,

I,fldl–1
>’ -’-” A

dd
(since 1> log(2 I & I d!d’)).

Then, since G(Y) is integral, G(Y) > li7[G( Y)] implies that G(Y) ~

I # Id! /dd, which is exactly what is desired.

4.2. THE BASIC APPROACH. In this section, we discuss various approaches for

determinizing algorithms that use multivalued random variables. These ap-

proaches have different advantages and disadvantages and may all prove useful

in applications.

The easiest approach to handling functions of multivalued random variables is

to represent each variable by a collection of Boolean random variables. In

particular, for the large d-partite subhypergraph problem, if d is a power of 2,
d = O(log I fl I /log log I f I), we can represent the color of each vertex by
lg d Boolean random variables. Then, each g, would become a function of
c1Ig d = O(log I r: I ) Boolean variables, allowing us to apply the general
framework of Section 3 to find a good coloring.

A second approach we might consider would be to replace 22 in our
distribution with some other finite field GF( q). For the large d-partite subhy -
pergraph problem, if d is any prime power, d = O(log I & I /log log I # I), we
can replace Zz with GF( d). Theorem 2.8 will still hold and all of the
approaches to get labels can be easily modified to work, giving us a distribution
with (log n) -wise independent random variables uniformly distributed over
GF( d). Since d is small (we only require polynomial in n), we can try each
possible value for the next element of w in parallel and pick the one with the



Simulating (log ‘n)- Wise Independence in NC 1041

best conditional expected benefit G. To evaluate the conditional expectations,
we can still use the linear algebra method of Section 3.1 to find the probability a
collection of d random variables take on some particular value. We can do this
for each possible value, since dd is polynomial in n. Thus, we can still
efficiently zero in on a good sample point.

To find a good coloring for any d up to log I d 1, we must use a more
complicated approach, one which is similar to the one used by Luby for A + 1
vertex coloring [16]. In essence, we repeatedly use the 0/1 problem as a
subroutine to set one bit of the random variables at a time. We have multivalued
random variables Y = ( Yl, . . . , YI ~,) where y, = Y,l Y,z . . . Yil. We

compute the Y{’s bit by bit. At step t, we compute X(’) such that

If we let

FO(XI’)) = 13[G(Y) \ LJ = X}’) for 1 sj s t],

then the above is equivalent to finding an X(t) with F(t)( X(l)) a 12[E’(t)( X(t))].
Letting

allows us to write F(f)( X(t)) as a sum of I & I functions, each depending on at
most d s lg I & I random variables X:’). Assuming that, given X(l), . . .,
X(t - 1) we can construct functions ~~~) (we show how to do this in the next
section;, we can find a good X(j) using the general framework of Section 3.1.

A simple inductive argument shows that for all t,

(-J) forl +< t] ZE[G( Y)].EIG(Y)l~j=~j

It follows that letting Y be such that ~.j = X~J) for all i and j implies that
G(Y) > J!3[G(Y)].

4.3. THE DETERMINISTIC ALGORITHM. To apply the last multivalued approach

described in the previous section, we must show how to construct, for any t

and for any settings of the first t – 1 bits X(l), . . . . X( t - 1‘, functions

~~’)(X(’)) = E[ge( Y) I Y = X(j) for 1< j < t]
lJ 1

To do so, we show how to compute

‘J) forl<js t];~[ge(y) I yJ = ‘i

it then suffices to plug in the given X(l), . . . , X(*- ]) and every possible setting
of the variables { X~t) I i e e} to construct ~~t).

Given edge e and the first t bits of each label, -f~t) is the probability that the
edge is properly colored. To calculate ~~t), we sort the vertices of edge e into
groups having the same t-bit prefix. For each t bit string a, we let S. be the
set of vertices that have prefix a and let la be the set of 2 ‘– t values that have
prefix a. We let T@ be {l+ Zfi<al SPl, . . .. Zp=al Sfil}. Observe that



1042 B. BERGER AND J,

edge e is properly colored if and only if for each a the vertices in
assigned the colors in T..

Now we can calculate ~~f] as follows:

y~t)( X(’)) = ,~~=rPr[vertices in S. are assigned colors in T.]

= , ~~=, I Sa I ! ,~ Pr[vertex in S. gets color i]
a

ROMPEL

Se are

=Iaq=,lsal!ll ‘c;::’.
ieT.

THEOREM 4.1. The large d-partite subhypergraph problem, finding a
coloring of V that properly colors at least ~& ~d!/ dd edges, is in NC.

5. Improved Discrepancy A Igorithms and Bounds

The techniques and results for discrepancy-related problems can be improved in
several ways. For example, in this section we show how, in NC, to bound the
discrepancy of each set in terms of its size (rather than the size of the largest
set), solve weighted discrepancy, and match the sequential discrepancy bound
when A is polylogarithmic. These improvements have additional applications
such as lattice approximation.

5.1. IMPROVED DISCREPANCY BOUND FOR VARIABLE-SIZED SETS. In Section 2,
we bounded discrepancy in terms of A, the maximum cardinality of any set
A e d. Here, on the other hand, we achieve, for each A e .cf, a similar bound
on x( A) in terms of I A 1. To do so, it is more convenient to reformulate the
discrepancy problem as follows: Given vectors v ~, . . . . v. e {O, 1} n, find an

XE{–1, +1}” such that for all i, I v, “xl < A1tz+’~~, where A =
max, II vi II~. As this is equivalent to set discrepancy, the algorithm presented in
Section 2 can be easily recast to solve this problem. The existing algorithm will
in fact work even if we allow the v,’s to be in { – 1, 0, + 1} “—the key
observation being that Lemma 2.5 will still hold.

Whereas the discrepancy bound in Section 2 is achieved in terms of the
maximum L, -norm, here we achieve the bound in terms of the L ~-norm of
each vector.

THEOREM 5.1. Given vectors Vl, . . . . VnG{ –1,(), +1}”, there exists an

Nc algorithm to find an x={ – 1, + 1}” such that for all i, I v, “ x I s

l/v,l/:/2+’/m,

PROOF. We modify our discrepancy algorithm as follows: We let

F(x) = f
(Vc. x)k

1=, E[(vl. x)k] ‘

where



Simulating (log ‘n)- Wise Independence in NC 1043

Then, getting F(X) s 17[1’( X)] = n implies (vi ox)~I s nli?[( vi “ x)~I] s

n(k II V,lll) ‘“2. This, in turn, implies I vi “ xl < II vLll~’2+’=. ❑1

5.2. WEIGHTED DISCREPANCY. Still adhering to the notation introduced in the

previous section, we now consider the weighted discrepancy problem, that is,
the case when the entries of the v,’s are arbitrary real weights between – 1 and
+ 1. Spencer [21, 22] provides a polynomial-time algorithm for this problem
that has the same performance as the polynomial-time unweighed case. To
obtain an NC algorithm, we reduce weighted discrepancy to the unweighed
case we considered above.

THEOREM 5.2. Given vectors Vl, . . . . v. e R“, II v, II~ s 1, there exists an
NC algorithm to find an x~ { – 1, + 1}” such that for all i, I v, “ x I s

Ww’+’mi=).

PROOF. Without loss of generality, we can assume the v,’s are normalized

so that II vi II~ = 1 for all i. We can then round each entry to log n bits. This

will induce a total error of at most 1, which is negligible since II vi II , z 1.

Next, by taking the binary expansions, we replace each v, with log n vectors

Vzo, ..., v,,10~~_16{ –l,O, + 1}” such that v, = X~jO”-12-JvlJ and Ilv,lll =

‘~~; -12 ‘J II ‘, j II 1. ‘inallY~ ‘e aPPIY ‘he ‘discrepancy algOrithm ‘f ‘heorem
5.1 to the vlJ’s (with the n log n vectors padded out with zeroes to length
n log n). The x returned is such that for all i

Ivi”xl = ~2-j(vl, ”x)

s;2-jlvij. xl

S ~ 2-~11 vij\l~/2+’ log(n log n)
j

——
(

O ~~~ (21j2-’)-j(2-Jll ‘ijll~)]”+’
.i )

An application of weighted discrepancy is lattice approximation: Given
vectors v,, . . . , v~E[– 1, 1]” and x= [O, 1]”, find an 2e {0, 1}” such that for
all i, I vi “ ( x – 2) \ is small. Several researchers provide polynomial-time
algorithms for this problem. Beck and Fiala [3] and Raghavan [20] use the
method of conditional probabilities to construct algorithms that find an ~ such

that every I vi “ ( x – f) I is bounded by 0( ~=) and 0( ~~),
respectively. Beck and Spencer [4] (see also [22, pp. 40–42]) show how to
reduce the lattice approximation problem to the discrepancy problem, obtaining
an algorithm that outputs an 2 such that, for all i, I VI o (x – 2) \ <

0( W log i). Motwani et al. [18] apply the Beck-Spencer reduction to get an



1044 B. BERGER AND J. ROMPEL

NC algorithm for the special case where VI, . . . . v. ● {0, 1} n; their algorithm

outputs an ,f such that I v, . (x – i) I < O(A1’Z+’ ~~), where A =

max ~=I II V, II 1. Using the algorithm of Theorem 5.2 for the more general case of
weighted discrepancy, the Beck– Spencer reduction can be immediately applied
to obtain NC lattice approximation in its most general form.

COROLLARY 5.3. Given vectors v,, . . . . v~~ [– 1, 1]” andxe [0, 1]”, there

exists an NC algorithm to find an i = {O, 1}” such that for all i, I v, “

(~– 2)1 S 0(llVi\l’12+’~~).

5.3. AN 0( VA LOG n ) DISCREPANCY ALGORITHM FOR SMALL A. This dis-

crepancy algorithm of Section 2 can be improved to yield a 2 i= bound
in the special case where A = log Cn. The improved algorithm, besides achiev-
ing a better discrepancy bound, is a nice example of how to apply the
techniques of this paper.

THEOREM 5.4. There exists a parallel algorithm using 0( A2 log 3n] time
on 0( nz log “n) processors, which, given a set system d with maximum

degree A, outputs an x with disc(X) s 2=.

PROOF. For each Ac.M, we let g~(X)be Oif Ix(A) I <2_, and
1 otherwise. Let G(X) = x~e .Zg~(X), that is, G(X) is the number of
unbalanced sets. We want to find an X such that G(X) < E’[ G( X )] < 1. To
do this, we use an approach similar to the one in Section 4 for multivalues. We
first partition r (i. e., the underlying points) into r = O(AZ ) subsets 17(, . . . . r,
such that the intersection of each rj with any A e M is less than log n /log A
(we show how to do this below). Then, for each j in sequence, we construct a
function F(J)( X(-’)), where X(J) are the random variables corresponding to 17J,
which is the expected value of G(X) conditioned upon the values of
~(l)

,. ... X( f - 1) set already and the given X(J). Each F(’) is a sum of
functions depending on at most log n /log A variables each, so we can apply
our general framework to find a good X ‘~). A simple inductive argument
shows that when we are done, we have a good X.

It remains to show how to construct 171,. . . , r, such that the intersection of
each rj with any A e d is less than log n /log A. We think of coloring the
elements of 1? with O(AJ ) colors such that no A ~ M has log n /log A or
more elements of any one color. Equivalently, we want to color so that no
(log n /log A)-subset of any A c d is monochromatic.

To accomplish this, we let Y = ( YI, . . . . Y.). where ~ is a random variable
taking on values 1, . . . . Aa uniformly. Let

H(Y)= ~ ~ hB(Y),
Ad BsA

lBl=logn/’1og A

where h~( Y ) is 1 if B is monochromatic, and O otherwise. Note that H(Y)
represents the number of monochromatic (log n /log A)-subsets, when coloring
r according to Y.

We first show how to get a setting of Y such that at most A2 of the subsets
are monochromatic, and then we eliminate this entirely. We begin by comput-



Simulating (log ‘n)- Wise Independence in NC

ing E[ H( Y)]. We note that, by linearity of expected value,

1045

E[H(Y)] = ~ ~ E[&(y)]
A~ff BGA

lBl=logn/log A

(

A

S n log n /log A )

~A2)l-,ogn,logA

A2
< n~—

n2

= A2.

Note that H(Y) is a sum of terms depending on log n /log A ~‘s each, and

that each Y, can be represented as 2 log A binary random variables. Thus, we

can apply our general framework to find a Y with H(Y) < A2. Alternatively,
we can set the Yi’s one bit at a time calling the general framework as a
subroutine, as in Section 4.2. The latter approach is more processor efficient.

Now we have a coloring such that at most Az of the subsets are monochro-
matic. We take one element from each of the monochromatic (log n /log A)-
subsets and give each a new color. This adds at most Az additional colors, and

leaves no monochromatic (log n /log A)-subsets.

This discrepancy algorithm makes A2 + 2 log A calls to our general frame-

work (assuming one call for each bit of the Y,’s). Thus, the running time is

O(A2 log 3n). The number of processors is dominated by the partitioning phase.

which can be done using 0( r? log Cn) processors. ❑

COROLLARY 5.5. There exists an NC algorithm that, given a set system ,.w

with maximum degree A < log Cn, outputs an ~ with disc(~) < 2-.

ACKNOWLEDGMENTS . We would like to thank David Shmoys for suggesting

parallel edge coloring, and Joel Spencer for suggesting parallel set discrepancy.

We would also like to thank Mihir Bellare for suggesting a more elegant proof

of Lemma 2.5. We would especially like to thank Tom Leighton and Silvio

Micali for helpful discussions.

REFERENCES

1.

2.

3.
4.
5.

6.

7.

8.

9.

ALON, N.. BABAI, L., AND ITAI, A. A fast and simple randomized parallel algorithm for the

maximal independent set problem. J. A/gor. 7 (1987), 567-583.
AWERBUCH, B., ISRAELI, A., AND SHILOACH, Y. Finding Euler circuits in logarithmic parallel

time. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing

(Washington, D. C., Apr. 30-May 2). ACM, New York. 1984, pp. 249-257.
BECK, J , AND FIALA, T. Integral approximation sequences. Math. Prog. 30 (1984), 88-98.
BECIG J. AND SPENCER, J. Interger-making theorems. Disc. Appl. Math. 3 (1981), 1-8.
BERGER, B. Data structures for removing randomness. Tech. Rep. MIT/LCS/TR-436, Labora-

tory for Computer Science, MIT. Cambridge, Mass., Dec. 1988.

BERGER, B. Using randomness to design efficient deterministic algorithms. PhD dissertation.

Dept. Elect. Eng. Comput. Sci., MIT, Cambridge, Mass., May 1990.

CHOR. B., GOLDREICH, O., HASTAD, J., FRIEDMAN, J., RUDICH, S., AND SMOLENSKY. R. The bit

extraction problem or f-resilient functions. In Proceedings of the 26t/t Annual Symposium on
Foundations of Computer Science (Oct.). IEEE, New York, 1985, pp. 396-407.

COLE, R., AND HOPCROFT, J, On edge coloring bipartite graphs. SIAM J. Comput. 11 (1982),
540-546.
ERDOS, P., AND KLEITMAN, D. On coloring graphs to maximize the proportion of multi-colored

k-edges. J. Combin. Theory 5, 2 (Sept. 1968), 164-169.



1046 B. BERGER AND J. ROMPEL

9a. ERDOS, P.. AND SELFIUDGE, J. L. Ona combinatorial game. J. Combin. Theory B14, (1973).
298-301.

10. G.ABOW, H. N., AND KARtV, O. Algorithms for edge coloring blpartlte graphs and multigraphs.

NAM’J. Comput. 11(1982), 117-129.

11, KAHN, J., KALAI, G., AND LINIAL, N. The influence of variables on Boolean functions, In

Proceedings of the 29th Annual Synzposuun on Foundations of Computer Science (Oct.).

IEEE, New York, 1988, pp. 68-80.

12. KARLOFF, H. J , AND SHMOYS, D. B. Efficient parallel algorithms for edge-coloring problems,

.f. Algor, 8(1987).39-52,

13. KARP, R. M., AND WIGDERSON, A. A fast parallel algorithm for the maximal independent set

problem. J. ACA432,4 (Oct. 1985), 762-773,

14. LEV, G. F,, PIPPENGER, N. AND VALIANT, L. G. A fast parallel algorlthm for routing In

permutation networks, IEEE Trans. Comput. 30(1981), 93-100.

15. LUBY, M. A simple parallel algorithm for the maximal independent set problem. SIAM J.
Conzput15,4 (Nov. 1986), 1036-1053.

16. LUBY, M. Removing randomness in parallel computation without a processor penalty. In

Proceedings of the 29th Annual Symposium on Foundations of Computer Science (Oct.).

IEEE, New York, 1988, pp. 162-173.

17, MOTWANI, ~,, NAOR, J., AND NAOR, M. A generalized technique for derandomizing parallel

algorithms. Unpubhshed manuscript, Jan. 1989.

18. MOTWANI, R , NAOR, J., AND NAOR, M. The probabdistlc method yields deterministic parallel

algorithms, In Proceedings of the 30th Annual Symposumr on Foundations of Computer

Sctence (Oct.). IEEE, New York, 1989, pp, 8-13

19. RABIN, M, 0. Efficient dispersal ofinformation forsecurlty, load balancing, and fault tolerance,

J. .4 CA436,2 (Apr. 1988),335-348,

20. RAGHAVAN, P. Probabihstlc construction of deterministic algorithms. Approximating packing

integer programs. J. Comput Syst. Sci. 37, 4 (Oct. 1988), 130-143,

21. SPENCER, J Balancing games, J, Combin. Theory, B23 (1977),68-74,

22, SPENCER, J. Ten Lecture son the Probabilistic Method. SIAM, Phdadelphia, Pa , 1987.

23. VIZING, V. G. Ontheestimate of thechromatlc class ofa P-graph. Dlskrer. Anal. 3 (1964),
25-30 (in Russian).

RECEIVED FEBRUARY 1989; REVISED FEBRUARY 1990; ACCEPTEDWNE 1990

Journal “t’the Assoclatlon for Computmg Machmerj. Vol 38, No 4, O.tobcr 1991


