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Abstract. In certain areas of artificial intelligence there is need to represent continuous change and to

make statements that are interpreted with respect to time intervals rather than time points. To this end,

a modal temporal loglc based on time intervals is developed, a logic that can be viewed as a

generalization of point-based modal temporal logic. Related loglcs are discussed, an intuitive presenta-

tion of the new logic is given, and its formal syntax and semantics are defined. No assumption is made

about the underlying nature of time, allowing it to be discrete (such as the natural numbers) or

continuous (such as the rationals or the reals), linear or branching, complete (such as the reals), or not

(such as the rational). It is shown, however, that there are formulas in the logic that allow us to

distinguish all these situations. A translation of our logic into first-order logic is given, which allows

the application of some results on first-order logic to our modal logic. Finally. the difficulty of validity

problems for the logic is considered. This turns out to depend critically, and in surprising ways, on our

assumptions about time. For example, if our underlying temporal structure is the ratlonals, then, the

validity problem is r. e .-complete; if it is the reals, then validity n II ~-hard: and if it is the natural

numbers, then validity is fI ] -complete.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
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Logic and Formal Languages]: Miscellaneous: 1.2,4 [Artificial Intelligence]: Knowledge Represen-

tation Formalisms and Methods — representation languages
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1. Introduction

In at least two areas of Artificial Intelligence, known as qualitative physics and
automatic planning, there is a need for reasoning about continuous processes
(such as water filling a slightly leaky container) and having assertions refer to
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time intervals rather than time points. For example, “the liquid level increased
by three inches, ‘‘ “the robot carried out the task, ” and 6‘I solved the problem
while jogging to the ocean and back” may be true at certain intervals, but at no
time instant. We are interested in a logic in which such statements can be made,
and whose formal semantics mirror the intuitive meaning of these statements.

The machinery developed in theoretical computer science so far is inadequate
for our purposes. Modal temporal logic, developed in formal philosophy (e. g.,
[24]) and first applied to reasoning about programs in [21], interprets formulas
over time points. Also, in most formulations, time is assumed to be discrete
(the one exception of which we are aware is [4]). A similar comment applies to
dynamic logic [22]: formulas are interpreted over time points, and furthermore,
there is no way to state what happens during the execution of a program.

There have been several extensions of these logics that deal with time
intervals rather than just time points. Again, the initial idea of dealing with
intervals goes back to the philosophers (e.g., [9], and more recently [5, 12, 26,
31]). In computer science, there has recently been work on process logic [11,
19, 23], where intervals (or “paths”) represent pieces of computation, and
even more recently work on interval temporal logic [8, 17]. We review these
logics and others in more detail in a later section.

Although these interval logics and process Iogics come closer to satisfying
our goals than point-based temporal logics do, they are still not adequate for our
needs: They either view time as being discrete, rather than continuous, or they
do not provide an adequate set of modal operators for describing the situations
we have in mind, or both.

Our logic can be viewed as an extension of point-based modal temporal logic,
where we simply replace the notion of satisfaction by a state (s E ) by the
notion of satisfaction by an interval, or an ordered pair of states ((s, t) E).
Intuitively, we think of the ordered pair (s, t) as the closed interval consisting
of all points between s and t.When dealing with only time points, a single
accessibility y relation and modality are sufficient, since the relation between
non-identical points is “after” (and its inverse “before”). The situation for
intervals is slightly more complex, since in addition to “after” we have
“immediately after, ” “during, ” “beginning, ” ‘ ‘ending, ” “overlapping, ” etc.
It turns out that we can express all twelve relations between two distinct
intervals (see [1]) by six modal operators: (B), (E), and (A) (for “begin,”
“end,” and “after”), and their “transposes” (~), (~). and (1). (In fact, as
pointed out by Venema [33], we can express these twelve relations using just
(B), (E), and their transposes.) The semantics of these operators is quite natural
and simple. For example, (B) p is true of an interval (s, t)exactly if p is true of
some beginning interval (s, t’) with t‘ < t. Similarly, (~) p is true of an
interval (s, t) exactly if p is true of some interval of which (s, t) is a
beginning, that is, an interval (s, t‘)with t‘ > t.The definitions of the other
two pairs of modal operators is similar.

Although for most of our applications we want to view time as having the
structure of the reals, for the sake of generality, we give the semantics to these
operators with respect to an arbitrary temporal structure. Thus, time could be
discrete (such as the natural numbers) or continuous (such as the rationals or the
reals), linear or branching, complete (such as the reals), or not (such as the
rationals). Our simple logic has enough expressive power to distinguish these
situations.
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We also consider the complexity of the validity problem for our logic. When
we speak of validity, we do so with respect to a class of temporal structures
(where the class could be a singleton consisting just of the reals, the rationals,
or the natural numbers). It turns out that the validity problem is surprisingly
sensitive to assumptions we make on the structure of time. For example, we can
show that in any class of temporal structures that includes at least one with an
infinite ascending sequence (i. e., a sequence t~ .:t2< “-0), the validity
problem is at least r.e.-hard. If all the structures in the class are in addition
complete (so that every sequence with an upper bound has a least upper
bound), then the validity problem becomes H ~-hard. As corollaries to these
results, we obtain that the validity problem for the rationals is r. e.-hard, while
that for the reals or the natural numbers is II ~-hard. (The notion of H ~ is
defined formally in Section 8.) We also give some upper bounds for the validity
problem, showing, for example, that the validity problem is r.e. -complete for
the rationals and H ~-complete for the natural numbers.

The rest of the paper is organized as follows: In the next section, we list a
few choices that need to be made when constructing an interval-based logic and
decisions we have made on these issues with regard to our logic. In Section 3,
we give the informal syntax and semantics of our logic; we make things formal
in Section 4. In Section 5, we show how the logic can be used to capture
situations of interest in qualitative physics and automatic planning. In Section 6,
we show how formulas of the logic can distinguish various temporal structures.
In Section 7, we show that our logic can be translated into a first-order one,
allowing us to apply techniques of first-order logic to our logic. In Section 8,
we present our results on the difficulty of the validity problem. In Section 9, we
review related work on interval logics, both in philosophy and in computer
science. We conclude in Section 10 with some interesting open problems.

2. Making Initial Choices

We mentioned in the introduction previous logics of time intervals. In philoso-
phy, we have the logics discussed by Hamblin [9], Humberstone [12], Roper
[26], and Burgess [5]. In computer science, we also have several interval-based
logics. Process logic [11, 23] is a generalization of dynamic logic. Interval
temporal logic [8, 17] is a generalization of point-based temporal logic. For
other related work, see [18], [19], and [27].

In Section 9, we discuss these logics and their relation to ours in more detail.
Here, let us just point out issues that distinguish between the different logics,
both in philosophy and in computer science.

(1) Ontology. Are intervals primitive objects in the logic, or are they defined
in terms of points, which are the only primitive objects? In philosophy, one
finds logic of both kinds. In computer science, almost all interval-based
logics construct intervals out of points (the only exception of which we are
aware is Allen’s logic [2]). We join the majority, and construct intervals
out of points.

(2) Commitment to a particular underling temporal structure. With no
exception, all interval-based temporal logics in computer science have been
committed to the discrete and linear view of time. This has not been the
case in philosophy. Our logic will be quite general in this respect: We
assume only that the set of time points that lie between any two points is
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totally ordered. This will allow branching and linear time, dense and
discrete time, bounded and unbounded time, and so on. Of course, further
restrictions that we place on the nature of time induces special properties on
the logic, as will become clear when we discuss the complexity of the
validity problem for our logic.

(3) Choice of tense operators. In computer science, the strong commitment to
a discrete and linear order dictated fairly standard modal operators. In
philosophy, there has been less uniformity. Our logic will be quite general
in this respect too. We introduce three very natural pairs of modal
operators, which are sufficient to represent all twelve possible relations
between two distinct intervals.

(4) The relation between the truth value of a formula over an interval to its
truth value over parts of that interval. In computer science, the issue that
arises is whether or not locality is assumed; a logic is local if a primitive
proposition is true over an interval iff it is true over its starting point. In
philosophy, an assumption sometimes made is that of homogeneity. A
logic is homogeneous when, roughly speaking, a proposition is true over an
interval iff it is true over all of its subintervals. In our logic, we do not
assume homogeneity or any other connection between the truth value of a
proposition over an interval to its truth value over any part of that interval.

3. Informal Syntax and Semantics

Implicit in point-based modal temporal logic is the notion of now, the current
instant of time. By way of contrast, in our logic, they key notion is the current
interval. Formulas are interpreted over intervals, and we have modal operators
that let us refer to other intervals besides the current one. As we mentioned
above, we view an interval as an ordered set of points; however, our modal
operators will allow us to talk about individual points (or, more accurately,
point intervals) as well.

Our logic has more modal operators than one usually encounters in point-based
modal temporal logics. This is because there are only two possible relationships
between two comparable and distinct points t and t‘(namely, that t precedes t‘

or that t‘precedes t),while two comparable and distinct intervals can stand in
one of twelve different relationships. Specifically, well-formed formulas in our
logic will be those of propositional calculus, augmented by the modal operators

(A), (B), (E), (1), (~), and (~). Their informal meaning is as follows:

(A) P: P holds at some interval beginning immediately after the end of the
current one.

(B) P: P holds at some interval ending during the current one, beginning when
the current one begins.

(E) P: P holds at some interval beginning during the current one, ending when
the current one ends.

(~) P: P holds at some interval ending immediately before the beginning of the
current one.

(~) P: P holds at some interval of which the current one is a beginning.
(E) p: P holds at some interval of which the current one is an end.

Pictorially, the modal operators pick out intervals as shown in Figure 1.
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FIG. 1. The six basic modal operators.

Current interval: ~+
(L): 1 1

(D): I
(o): l--’--~

(i) : I
(E) , ~~
(6) : }

FIG. 2. Derived modal operators.

Using these operators, we can define some more complex ones:

(L) P ‘~,f (A)(A) p: P holds at some later interval.
(D)P ‘~,f (B)(E) P (or equivalently (E)(B) p): P holds at some interval during the

current one (i. e., p holds at some proper subinterval of the current
interval).

(0) P =d,f (E)(~) P: P holds at some “future overlapping” interval.

(~), (~), and (~) are similarly defined. Pictorially, these operators select
intervals as shown in Figure 2. In fact, these modal operators (A, B, E, L, D, O,
and their ‘<transposes”) exactly define the twelve possible relations between
two distinct intervals (see [1]).

We can define the duals of all these operators as usual: [X]p - ~(X)_ p
(where X is A, B, E, etc.). While (B) p intuitively says that p is true at some
beginning interval, [B] p says that p is true at all beginning intervals.

We define both the B and E operators so that they refer to strict subintervals.
In particular, [B] p is vacuously true of point intervals of the form (s, s), since
they have no strict beginning intervals. Thus, if we define the formula false to
be q A ~ q for some primitive proposition q, we have that the formula [B] f alse
holds precisely of point intervals.

We can use this observation to define a “beginning point” modal operator
[[BP]], where [[BP]] p says that p holds at the beginning point of the interval:

[[ BP]]P = ((P A [B] false) V (B)(p A [B] false)).

By analogy, it is easy to define the “end-point” modal operator:

[[ EPI]P = ((P A [B]false) V (E)(PA [B] false)).

Notice that both “point” operators are their own duals: [[ BF’]] P -
= [[BP]]_ p, and similarly for [[ EP]]. To emphasize this fact, we have chosen
the single [[]] notation over the double [ ] and ( ) notation.
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As observed by Venema [33], the (A) and (~) operators are actually definable
in terms of the other modal operators. (A) is definable by (A) P =~.~ [[ EF’1]((~) P).
(~) is similarly definable in terms of (B) and (~).

4. Formal Syntax and Semantics

Syntax. Given a set @O of primitive propositions, we form the set of all
formulas by closing off under conjunction, negation, and the modal operators
discussed abo~e. T@s, if p a~d ~ are formulas, then so are 7P, p A ~, (A) P,

(B) P, (E) P, (A) P, (B) P, and (E) p. We use the standard abbreviations: V, 3,

and so on.

Semantics. An interpretation is a pair (S, V). S is a temporal structure
(T, < ), where T is a set of time points and < is a partial order on T. V is a
function that assigns meaning to the primitive propositions by associating each
primitive proposition with the set of intervals where it is true. Thus, V:
~0 -+ 2‘, where I = { ( tl, tJ:tls t2}.The only assumptions we make about
< is that it has ‘‘ linear intervals, ” which means that for any two points t~ and
t2 such that tl< t2, the set of points {t: tl s t < t,} is totally ordered. In
other words, if t,< t3s t2 and tls t4< t,,then ejther t3s t4 or t4s t3.

Note that given this assumption, the set of p;ints induce a forest-like structure
with respect to < (a forest is a collection of trees). Actually, no part of the
discussion in this paper depends on the assumption. We make it simply because
it fits our intuition about the nature of time. In particular, given the assumption
about the linearity of intervals, one can intuitively think of the pair (t,. t~) as
the closed interval of points between t~ and tz. To investigate the logic in its
full generality, we have not imposed any further assumptions on the nature of
time, such as linearity or continuity. Of course, we can easily do so. In fact, as
we shall show in the next section, some of these assumptions can essentially be
expressed by formulas in the logic.

We interpret formulas over pairs (t,, t2)such that t~, t2E T and t~ s t2.

Given an interpretation AZ and an interval (t t ),, ~ ~a formula P is either true in
the interval (written AI, (t ~,t2)E q) or false (written iVl, (t,, t2)t#p).When
clear from the context, the interpretation JZ may be omitted, and so in those
cases we write simply (t,, t2)t=p and (tl,t2)1#P.

The truth value of formulas is determined by the semantic rules given below.
For convenience, we define the strict (i.e., irreflexive) version of < :

t, < t2 =def t1<t2A~(t2st1).

(1) For all Pe+o, we have (t,,t,)1=p iff (t,,t,)e V(p).

(2) (t,, t,) E -p iff (t,, t,) # w.

(3) (tl, L) ~ PIAP~ iff (tl, tJ E P1 and (tI, Q R ~~.
(4) (tl,t2)!= (A) p iff there exists t3 such that t?< t3 and (t2,t3)i=p.

(.5)(tl, t2)E (B) p iff there exists t3 such that tls t3, t3< t2, and
(t,,t,)1=$0.

(6) (t, , t2) P (E) p iff there exists t3 such that tl< ts, tas tz. and

(f,>t,)~ ~
(7) (tl, tz) = (A) p iff there exists t3 such that t~ < tl and (ts, tl) ~ P.
(8) (t,, t~) E (~) p iff there exists t3 such that t2 < t~ and (t,, tq) ~ P.
(9) (t,, t,)I= (E)P iff there exists t3 such that t3 < tl and ( t3 + t2) ~ P.
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These definitions induce a meaning on the derived modal operators as well.
The reader may verify that (t,, t2)E (D) P iff there exists t3, t4 such that
tl < t~ < tl < t2, and (t3,t4)t=p, that (t,,t2)E [[BP]]P iff (t,,tl)E p,

and so on.
A formula p is said to be satisfiable with respect to a class of temporal

structures .d if, in some interpretation ((T, < ), V) such that (T, < ) e .c/,

we have (tl,t,)E p for some tlE T and t,E T with tls t2.A formula is
satisfiable in a-given temporal structure if it-is satisfiable with respect to the
singleton consisting of that structure. p is valid with respect to .W if 7 p is not
satisfiable with respect to ./.

Of particular interest to us will be three particular temporal structures,
namely, the natural numbers, the rationals, and reals, endowed with the
usual ordering relation. We denote these three structures ~t , <~, and J/,
respectively.

5. Expressing Assertions in the Logic

The area of Artificial Intelligence known as qualitative physics is concerned
with reasoning about relatively simple physical situations, using only rough and
qualitative information, in much the same way as people do in everyday life.
Typical problems are: predicting the outcome of placing a kettle on a burner,
reasoning about liquids flowing between containers, and reasoning about colli-
sions between moving objects. Although reasoning about time is clearly central
to qualitative physics, the actual work that has been done makes little use of
explicit temporal formalisms (see, e.g., [6]).

To illustrate the fact that our logic lends itself nicely to this research domain,
consider representing the sentence “if you open the tap, then, unless someone
punctures the canteen, the canteen will eventually be filled. ” In our logic, this
assertion is represented by the formula

open - tap o (A) (~(D) puncture o [[EP]] f illed) .

Another area of Artificial Intelligence heavily involved in temporal reasoning
is automatic planning, where a (usually simulated) robot must reason about
carrying out outstanding tasks, managing available resources, meeting various
deadlines, and interacting with other agents. Here there has been some use of
temporal formalisms, most notably by McDermott [16] and Allen [2]. Our logic
is, in fact, related to their logics; its translation into first-order logic, either as
described in a later section or as described in [29], results in a logic that is not
unlike those of McDermott and Allen. In [28] we argue, however, that our
logic (and its translation into first-order logic) has the advantages of clear
semantics, greater simplicity, and improved flexibility.

To see how our logic lends itself easily to the planning domain, consider the
assertion “if the robot executes the charge - bat t er y routine then at the
beginning of the following execution of the navigate routine its batteries will
be fully charged. ” This example is somewhat more complex than the qualitative
physics one, We choose it not only because it is typical of statements that come
up naturally in the process of planning, but because it illustrates another
property of our logic. Our logic in intended as a basic and fundamental vehicle
for representing temporal information. If AI has taught us anything, it is that
intelligent information processing relies on a detailed and finely structured
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knowledge representation. In this example, we demonstrate how more complex
definitions can be built on top of our “assembly language” logic.

In [29], we categorize proposition types, showing how we can arrive at
coherent definitions of, and distinctions between, what are usually called
even ts, facts, properties, processes, and the like. For example. we define
liquid propositions to be those that hold over an interval iff they hold over all
its subintervals (that is, propositions for which the philosophers’ assumption of
homogeneity, mentioned in Section 2, holds). For our present purposes, it is
enough to define the notion of solid propositions. A proposition is said to be
solid if no two distinct overlapping intervals ever satisfy it. For example, 6‘The
robot executed the navigate routine ‘‘ is a solid proposition. It is easy to define
the notion in the logic:

solid(p) =d,J. p 2 T(B)p A T(E)cPA l(D)PA T(0)P.

It is easy to check that p is a solid proposition in a given temporal structure if
solid(p) holds for every interval in that structure. (Although the formula
solid(q) can be true of an interval if p is true of a preceding overlapping
interval, this cannot happen if solid(q) holds for every interval. )

Assertions of the form “the next time that” are very common, and so it will
be useful to define a new binary modal operator. For a solid proposition p,
[[NTT]]( P, 0) will mean that i) holds in the first interval which satisfies p and
that begins after the current interval:

[[ NTT]] (P, ~) ‘~ef[A]([D]-P o [A](P o ~))

Given this definition, the assertion about the robot is simply

charge - battery o [[NTT] ] (navigate, [ [BP]] battery - full)

6. Distinguishing Among Temporal Structures

We have so far deliberately refrained from imposing all but the most elementary
constraints on the under] ying structure of time. For most applications, we
indeed want to add further constraints, such as discreteness. linearity, or
unfoundedness. Interestingly. our logic is sufficiently expressive to capture
several such constraints in the logic itself There are formulas that restrict the
class of structures exactly to those satisfying the appropriate constraint. In this
section, we give several examples of such formulas.

Discreteness. A point is discrete in a temporal structure if, along any path
in the structure that includes that point, the point has a “closest point” on each
side (unless it has no points on that side). Formally, we say that a point r is
discrete in a temporal structure S, if for all points t e S, if r < t (resp., t < r),
then there exists a point s e S such that r < s s t (resp.. t s s < r) and such
that there does not exist a point s’ G S with r < s’ < s (resp., s < s’ < r).

A temporal structure is discrete if all points in it are discrete.
Now consider the following formulas:

lengthO =dej [B] f alse,

lengthl =d,f (B)true A [B] [B] false,

discrete =def lengthO V lengthl V ((B) lengthl A (E) lengthl) .
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It was noted earlier that [B] f alse, and therefore also lengthO, are true
exactly of point intervals. Similarly, lengthl is true of (s, t)exactly if s < t

and there are no points between s and t. It is easily seen that a temporal
structure is discrete exactly if the formula discrete is valid in that structure.
Thus, discrete is valid in .Y, but is not even satisfiable by any nonpoint
interval in either J? or @.

Density. A temporal structure is dense if between any two comparable
points there is a third point, that is, if r < t entails that there exists an s such
that r < s < t. Consider the following formula:

dense =def ~ lengthl.

Clearly, the formula dense is valid in a structure S iff S is dense. In
particular, dense is valid in 9? and ~ , but not in , ‘t’.

Unboundedness. A temporal structure is unbounded if for any point s
there exist points r and t such that r < ,s < t. The following definition

unbounded =def (A)true A (~)true

guarantees that unbounded is valid exactly for the class of unbounded
structures.

Linearity. A temporal structure is linear if any two points that are compa-
rable under the symmetric and transitive closure of s are also comparable
under s ; that is, if there is no branching in the forest induced by the structure
(notice that this does not preclude having many “parallel” time lines). Thus, in
a linear temporal structure, if two distinct intervals start at the same point, then
one must be a prefix of another. Similarly, if two distinct intervals end at the
same point, then one must be a suffix of another. Consider the following
definition:

linear - time =deJ

((A)P ~ [A] (PV (B)PV (~)p)) A ((~)P ~ [~] (p V (E)PV (%)) ,

where p is a primitive proposition. It is easy to check that 1 i near – time
captures the notion of a linear temporal structure, in that 1 i near – time is valid
with respect to linear temporal structures, while for any nonlinear temporal
structure S, there is a valuation V such that linear - time is not valid in the
interpretation (S, V).

Completeness. It is a standard result of first-order logic that any two dense,
linear, and unbounded structures are elementarily equivalent: They cannot be
distinguished by formulas in the first-order logic whose only relation symbols
are = and < (see, e.g., [7]). In particular, it follows that Y and Z are
elementarily equivalent. However, as we are about to show, Y and ~ are
distinguishable in our logic (although, as we shall show in Section 7, it is the
case that all formulas satisfiable in @ are also satisfiable in Q).

The crucial property that distinguishes .~ from Q is that ~ is complete:
All sequences with an upper bound have a least upper bound. Q is not
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complete. For example, an increasing sequence of rationals converging to <~
will not have a least upper bound in <~. We now give a formula in our logic

that distinguishes complete from incomplete temporal structures.
Anticipating some of the constructs that we need in the next section, let p and

# be two primitive propositions and define

cell =~ef[[Bp]]#A [[ Ep]]#~ [D]PA (D)p.

Thus, cell is satisfied by an interval exactly if both its begin point and its
end point satisfy # (intuitively, the cell “delimiters”), and if all interior
intervals satisfy p (intuitively, the cell 6‘content”), and there is some interior
interval satisfying p.

Now consider the following formula:

telescoping =def (B)cell A [[EP]] ~ # A [E] ([[ BP]]w > (B)cell) .

If (S, t) E telescoping, then it is easy to show by induction on k that there
exists a sequence SO, s,, . . . ,s~. . . . such that s = SO, SO<sl < . . . < t,

and (s,, s,+,) I= cell. Thus, we have the following picture:

In a complete temporal structure, the sequence so, s,. . . . has a least upper
bound, say s’. It is easy to see that (s, s’) R [E]( - lengthO 3 (D)cell). Define

complete =deftelescoping 3 (B) ([E] (~lengthO 3 (D)cell)) .

The discussion above shows that complete is valid in complete temporal
structures. In particular, it is valid for #. Moreover, 7 complete is satisfiable
in any structure that is not complete. For example, in l), consider an infinite
sequence of rational numbers so, s{, . . . converging to v~, with SO= 1.

Define a valuation V such that (s,, s,+, ) t= cell and for every point t > VT,

(t,t)E ~ #. It is now easy to check that with respect to this valuation, we
have (1, 2) t= =complete.

7. Translation into First-Order Logic

Suppose we have a modal logic with Kripke semantics and a formula P in that
logic. It is well known that we can find a first-order formula p, that is
satisfiable if p is satisfiable. In fact, if (Al, s) E p for some structure Al and
world s, then we can construct a first-order structure &ft such that &f, h P,,
where the possible worlds in A4 are the objects in the domain of M!f and the
accessibility relation is made into a binary first-order relation. Although the
satisfiability of p implies the satisfiability of pt, then converse is not true in
general. It will hold if the accessibility relations are characterizable in first-order
logic. While in many cases of interest, the accessibility relation is so characteri-
zable, it is not always the case [31].

We consider a similar of our logic translation into first-order logic. Such a
translation was already discussed in [29]; the translation we use here is slightly
different, and is a variant of a translation suggested to us by J. van Benthem
(private communication). The advantage of using this translation is that it
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allows us to reduce problems of interest to us here to well-known results in
first-order logic. In the previous section, we showed how various classes of
temporal structures can be distinguished by formulas in the logic. In particular,
we showed that there are formulas valid in ~ but not in d, and therefore that
there are formulas satisfiable in i? but not in #. Using the translation into
first-order logic, in this section, we show that the converse does not hold:
Every formula satisfiable in W is also satisfiable in ii?. (We make use of this
translation also in the next section, when we discuss upper bounds for the
validity problem.)

The translation is straightforward. We use the variable symbols t ~, t2, . . . .
which will designate time points. The target language is first-order logic with
= and a special binary relation symbol < (intended to be interpreted as a
partial order), and additional binary relation symbols pl, pz, . . . corresponding
to the primitive propositions in the modal logic. Intuitively, where in the modal
logic we would say that a proposition p was satisfied by the interval (t,, t2)in a
certain interpretation; in the first-order logic we say that the formula p(t 1, t2 )
is true under the appropriate interpretation.

Each modal formula p is translated into a first-order formula Pt with two
free variables: t ~ and t2. Although the first-order formula will not say this, the
reader should think of t, and t2 as satisfying t ~ < t2 (where t, ~ t? abbrevi-
ates t, < t2 V (t2 = tl)):

(1) If p is primitive proposition, then p, = p(t ~, ta).

(2) (-P)t = =(9,).
(3) (PAP’),=P,AP:.
(4) (( B)P)t = ~ts(tl S tq A t~ < tz A pt[t~ /tz]). By pt[t~ /tz], we mean p,,

with all free occurrences of tz replaced by tq.

(5) (( E) P), = ~t,(tl < t, A t, < t, A p,[t~ /tl]).
(6) ((A) p), = ~t,(tz < t, A p,[t, /tl, t, /t,]).
(7) ““” and similarly for the other modal operators.

In order to make the connection between a modal formula and its first-
order counterpart precise, we define the notion of a faithful first-order
interpretation.

Definition 7.1. Let M = ((T, < ), V) be a modal interpretation, and
iWt = (T,, V,) a first-order interpretation ( V, is the meaning function that
determines the denotation of constant symbols and relation symbols). We say
that i’vft is faithful to M if it has the following three properties:

(1) T= T,.
(2) < = v,(<).
(3) For any primitive proposition p, we have V(p) = Vt(pt) fl {(t,, t,):

tls t2}. Note that we place no constraint on Vt as far as “reversed
intervals” go: if t2 < tl,then we do not care whether (tl,t2)E F’t(Pt).

Note that all modal interpretations have faithful first-order interpretations.
Conversely, all first-order interpretations in which ~ has the right properties
(i.e., it is a partial order with linear intervals) are faithful to some modal
interpretation.

LEMMA 7.2. Let M = ((T, < ), V) be a modal interpretation, Ml =
(T, V,) a first-order interpretation that is faithful to M, P a modal
formula, s,, s, ~ T with s, s s,, and v a valuation mapping variables to
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time points such that u(t, ) = s, and v(t2) = S2. Then M, (sl, Sz) ~ p iff
Mf, u k p,.

PROOF. By a straightforward induction on the structure of p. We consider
the case that p is of the form (B) # here. Observe that &f, (sl, SZ) E (B)@ iff
A4, (sl, s~) i= p’ for some Sj with SI s s~ < Sz iff (by the inductive hypothe-
sis) Aft, u’ t= p’, where u’(tl) = SI and u’(tz) = s~, iff &lf, u != qt~(tl f tq
A t~ < tzA p~[t~/tz]), where u(tl) = SI and u(tz) = SZ, iff &f,, u @ (( B)q~f.
This completes the proof in this case; we leave the remaining cases to the
reader. ❑

Clearly, there are first-order interpretations that are not faithful to any modal
interpretation. For example, a first-order interpretation need not associate a
partial order with < . However, we can exclude such uninteresting interpreta-
tions by expressing the appropriate properties of time in a first-order formula.
Let po be the first-order formula saying that ~ denotes a partial order, and li
the first-order formula saying that intervals are linear (i. e., the set of points that
lie between any two points is totally ordered). Recall that these were the only
assumptions we made about temporal structures.

3(t3<t4vt4<tJ),

ok =defpo A li.

These definitions immediately give us:

LEMMA 7.3. If M, is a first-order interpretation such that Mr B ok, then
there is a modal interpretation M such that AIr is faithful to M.

PROPOSITION 7.4. Let p be a modal formula, sd a class of temporal
structures, and time. a first-order sentence (i. e., a formula with no free
variables) whose only relation symbols are K and = (i. e., it expresses
some property of time) and whose class of models is exactly d. More-
over, suppose that time,~ 3 ok is valid. Then for any first-order interpreta-
ti071 ~t, if Ml L timeqA 3t1, t2(tl < t2 A Pt), then there exists a modal
interpretation M = (S, V) such that Ml is faithful to M, S G d, and for
some time points s,, Sz with S1 s S1, we have M, (sl, SZ) k p. Conversely,
if M = (S, V) is a modal interpretation such that S ~.@, and for some
time points s,, Sl with s, < Sz, we have M, (sl, s,) F p, and Ml is a
first-order interpretation faithful to M, then Mt E t ~me~ A It ~, t2(t, ~ tz

A P[).

PROOF. Suppose &fr E= time ~ A 3t,, tz(tl ~ tz A pt). Since timeti 3 ok is
valid, it follows from Lemma 7.3 that there is a modal interpretation &f such
that M?t is faithful to &f. By Lemma 7.2, it now easily follows that there exist
time points s,, Sz in M’ with s ~ s Sz such that there is a modal interpretation
Af and time points SI, Sz in A4 such that SI ~ Sz and &f, (S1, S2) E p. The
proof of the converse is similar and left to the reader. ❑

COROLLARY 7.5. Let p be a modal formula, d a class of temporal
structures, and time,,a first-order sentence whose only relation symbols
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are < and = and whose class of models is exactly .d. Then

(1) the first-order formula time .A ~tl, t,(tl < t, A Pt) & satisfiable iff the
modal formula p is satisfiable with respect to d,

(2) the first-order formula t ime~ > Vt,, t,(t, < t, o P,) is valid iff the

modal formula p is valid with respect to d.

PROOF. Again, we just briefly give the idea of the proof. For part (1),
suppose t imeJ, A 3 t ~, tz(tl < tz A Pr) is satisfiable say in the first-order struc-
ture Aft. Since time< is a sentence, it follows that Aft E t ime,,~A

~tl, t2(tl < t2A Pr). [ The result now follows from Proposition 7.4. The proof
of the converse is similar, as is the proof of part (2). ❑

We are now ready to apply some known results on first-order logic. First, we
recall the well-known Lowenheim - Skolem theorem (see, e.g., [7]):

THEOREM 7.6. (LOWENHEIM - SKOLEM). If a first-order formula is satisfi-
able, then it is satisfiable in a countable interpretation.

COROLLARY 7.7. If a formula in our modal logic is satisfiable in some
temporal structure, then it is satisfiable in a countable structure.

PROOF. Let P be a modal formula. If P is satisfiable in some modal

interpretation, then by Corollary 7.5, ok A 3 t ~, t2(t ~ < t2 A Pt) is satisfiable in

some first-order interpretation. By Theorem 7.6, this last formula is satisfiable

also in some countable interpretation ~t. By Proposition 7.4, there exists a

modal structure ~ and points t~, t2 such that t,s t2 and ikl, (t,, t2)E P,

with &ft faithful to M. Finally, we note that by definition, since A4t is
countable and faithful to AZ, ikf too is countable. U

The next theorem is originally due to Cantor, and is proved by the well-known
zig-zag argument [7]:

THEOREM 7.8. Any two countable, linear. dense, and unbounded struc-
tures are isomorphic with respect to < (i. e., there exists a bijection f
between the two structures, such that tl < t, iff f (t,) < f(t2)).

THEOREM 7.9. A formula in our modal logic is valid with respect to the
class of dense, linear, and unbounded structures iff it is valid in the
rationals, 9.

PROOF. Clearly, if a formula is valid with respect to all dense, linear, and

unbounded structures, it is valid in ~. For the converse, it suffices to show

that if a formula is satisfiable in some dense, linear, and unbounded structure,

then it is also satisfiable in ~. Let P be a formula and S a dense, linear, and

unbounded structure, such that for some modal interpretation ~ = (S, ~) and

time points t ~, t2, we have &f, (t ~, t2)F P. Let Pt be the first-order

1 Note, this would not necessarily be the case if time M were an open formula, say with free variable

Xl, . . . . Xk, for then the satisfiability of time ,ZA ~tl, tz (t] < tz A Pt) in ~1 would amount to

Mt E 3X1, . . . . Xk (timeti) A Wl, tz (tl < t2A @f), while ~f ~ tlrne~A ~tl, t? (tl < tz A ‘@t)

corresponds to AIf i= Vxl, . . . , x~(tlrne~ ) A %, tz (t] < tzA PI).
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counterpart of p. Also, let dense 1, 1 inearl, and unbounded be the three
first-order formulas asserting that time is (respectively) dense, linear, and
unbounded (their definition is straightforward, and is omitted). Let dlu
=defdense 1 A linear 1 A unbounded. Note that dlu 3 ok is valid. Let Mf =
(S, V,) be a first-order interpretation that is faithful to M. By Proposition 7.4.
we have M* = dlu A ~tl, t2(t1 < t2 A Pr). By Theorem 7.6, there is a count-
able interpretation M; such that I14; t= dlu A ~t ~, tz(t ~ ~ tz A pt). Taking
M = (S’, l“; to be the modal interpretation to which i’vf~ is faithful, by
Proposition 7.4, we have that Al’, (t3.t3)E p for some time points t3and t4.

By Theorem 7.8, we have that &? and S’ are isomorphic with respect to < .
Let V“ be the valuation that corresponds to V’ under the isomorphism; thus, for
example, if f: S - Y is the isomorphism, we ( tl, t2) e V’( Pt) iff (~( tl),

.flt2)) c V“(p,). It is easy to check that (Y, V“) R p. ❑

COROLLARY7.10. If a formula in our modal logic is satisfiable in # ,
then it is also satisfiable in 2.

8. The Complexity of the Validity Problem

We now turn our attention to the complexity of the validity problem for the
logic. We begin with a brief review of the notions of II ~ and its dual ~ ~.
Further details can be found in [25] or any other standard textbook of recursive
function theory.

Formulas of second-order arithmetic with set variables consist of formulas
of first-order arithmetic (that is, in the language with constant symbols O and 1,
together with the function symbols + and x ) augmented with expressions of
the form x E X, where x is a number variable and X is a set variable, together
with quantification over set variables and number variables. A sentence is a
formula with no free variables. Second-order arithmetic with set variables is a
very powerful language. For example, the following (true) sentence of the
language expresses the law of mathematical induction over the natural numbers:

V~(oc XAVx((XC~3x+ l~X) 3 VX(XC~))).

A II ~ sentence (resp., X\ sentence) of second-order arithmetic with set
variables is one of the form VX1 . . . vX~p (resp., ~Xl . . . ~X~p), where ~
is a formula of second-order arithmetic with set variables whose free set
variables are among Xl, . . . , X. that has no quantification over set variables.
A set A of natural numbers is in H ~ (resp., Z ~) if there is a H j sentence
(resp., 2 ~ sentence) 4(X) with one free number variable x and no free set
variables such that a ~ A iff +(a) holds. II; hardness and completeness are
defined in the obvious way (the reduction is wa one-one recursive functions). It
is well known that H [-hard sets are not recursively enumerable (see [25]). In
particular, if the validity problem for a class of temporal structures is H ~-hard,
it follows that there can be no complete (recursive) axiomatization for the
formulas that are valid with respect to that class of structures.

Later in the paper we also briefly consider the notion of II; and its dual Z?.
In order to define these notions, we need to go to third-order arithmetic,
which is the result of taking second-order arithmetic with set variables, and
further augmenting to allow expressions of the form X G 1-, where X is a set
variable and i?’ is a set of sets variable, together with quantification over set of
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sets variables (as well as set variables and number variables). Again, we take a
sentence to be a formula with no free variables. A II? sentence (resp., 2;
sentence) of third-order arithmetic is one of the form v Y, “ o“ v.!? ~p (resp.,
3%-1””” 3y. p), where p is a formula of third-order arithmetic that has no
quantification over set variables or set of sets variables. The definition of A
being in II;- or 11~-hard is analogous to that for 11~.

The degree to which the complexity of our logic depends on the underlying
temporal structure is striking: depending on the class of temporal structures
being considered, the validity problem ranges from being decidable to being
H ~-hard (correspondingly, the satisfiability problem ranges from being decid-
able to being 2 ~-hard). Actually, we show that for most interesting classes of
temporal structures validity and satisfiability are undecidable. One gets decid-
ability only in very restricted cases, such as when the set of temporal models
considered is a finite collection of structures, each consisting of a finite set of
natural numbers (since in this case one can simply perform an exhaustive check
on all structures). The various hardness properties hold even if we weaken the
logic by restricting it to the B, E, and A operators. We also discuss upper
bounds for these problems.

8.1 LOWER BOUNDS. To make our results precise, we need a few brief

definitions. A temporal structure is said to contain an infinitely ascending
sequence if it contains an infinite sequence of points to,t~,t2,... such that
t,< t,+l.Note that any unbounded structure contains an infinite ascending
sequence. A class of temporal structures contains an infinitely ascending
sequence if at least one of the structures in it does. We have already defined
complete temporal structures; those in which any sequence with an upper
bound has a least upper bound. A class of temporal structures is said to be
complete if all structures in the class are complete, A class ..o1 of structures is
said to have unfoundedly ascending sequences if for any natural number n
there is a structure T e.&, which contains a sequence t,,t2,...,tn such that

t,< ti+l,O<i <n.
We now state all our lower bound results, and then prove them in detail.

THEOREM 8.1. The validity problem for any class of temporal structures
that contains an infinitely ascending sequence is r. e.-hard.

COROLLARY8.2. The validity problem for .4, d, and .% is r. e.-hard.

In fact, Theorem 8.1 tells us that the validity problem for almost any
interesting class of temporal structures will be r. e .-hard. For example, we have:

COROLLARY8.3. The validity problem for each of the follo wing classes
of temporal structures is r. e.-hard:

(1) the class of all temporal structures.
(2) the class of all linear temporal structures.
(3) the class of all discrete temporal structures.
(4) the class of all dense temporal structures.
(5) the class of all dense, linear, unbounded temporal structures.

In the case of classes that are complete as well as containing an infinitely
ascending sequence, we can show that the validity problem is even harder.
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THEOREM 8.4. The validity problem for complete classes of temporal
structures that contain an infinitely ascending sequence is E ~-hard.

COROLLARY 8.5. The validity problem for .J? and for .1 is 11~-hard.

Even for classes of structures that contain no finite ascending sequence we
can often get undecidability results:

THEOREM 8.6. The validity problem for any complete class of temporal

structures that has unfoundedly ascending sequences is co-r. e.-hard.

Let X be the set of temporal structures consisting of the initial segments of
the natural numbers, with the usual ordering:

J?’= {([ O””” n], S): n = 0,1,2,... }

Z“ is useful, for example, when reasoning about possible computations of a
program, knowing that the computation is finite but having no bound on its
length.

COROLLARY8.7. The validity problem for J’ is co-r. e.-hard.

8.2 PROOFSOF THE LOWER BOUNDS. The proofs for all these results are quite
similar. The idea is to construct formulas that essentially encode the computa-
tion of a Turing machine. For Theorem 8.1, we construct a formula that is
satisfiable iff the TM started on a blank tape never halts. Since the non-halting
problem is co-r. e.-hard, this makes satisfiability co-r .e. -hard, and thus validity
r.e. -hard. For Theorem 8.4, we construct a formula that is satisfiable iff there
is a computation of the TM that enters the start state infinitely often. For
nondeterministic TM’s, this problem is known to be Z ~-hard [10], so this gives
us that satisfiability is Z ~-hard, and thus that validity is II ~-hard. Finally, for
Theorem 8.6, we construct a formula that is satisfiable iff the TM halts.

We proceed as follows: Fix a TM iM (the construction we are about to
describe is independent of whether k? is deterministic). We assume without
loss of generality that &f writes only the symbols O and 1. Let Q be the set of
Al’s states, with qO the unique start state and q~ the unique halting state. We
assume that our language contains all the primitive propositions in the set
L = {O, 1, *. #, (q, 0), (q, 1), (q, B): q~Q}, as well as the proposition
corr which we discuss later.

The computation of M started on a blank tape in state qO is encoded as a
sequence of IDs separated by pairs of asterisks: * ID 1 ** ID2 ** ID3 ** . “ “ .
Each ID consists of a sequence of cells. Just as in Section 6, a cell is an interval
whose first and last points satisfy #, and whose interior satisfies the “content”
of cell, which is one of the elements of L. (Thus, we allow for contents other
than p, which was the only content considered in Section 6.) As usual, O means
that the content of the cell is O and that the head is not pointing at the cell, and
likewise for 1. Similarly, (q, O) means that the content of the cell is O, that the
head is pointing at the cell, and that k? is in state q. A similar statement holds
of (q, 1) and (q, l?). B represents the “blank” tape symbol. Thus, we have
the following slight modification of the definitions of Section 6:

cell(l) =d,f [[BP]] # A [[EP]] # A [D]l A (D)l,
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(Note that since the Turing machine is finite then so is L, and hence so is the
above disjunction. )

An ID is simply an interval delimited by *-cells, with at least one non-* cell
in its interior.

ID =d,f (B)cell(*) A (E)cell(*) A (D)cell A =(D) cell(*).

A final (resp., start) ID is an ID such that one of its cells has the head in the
final (resp., start) state:

final - ID =de~IDA (D)(cell((qf, O)) v cell((qf, 1)) v cell((qf, B)))

start - ID =defIDA (D)(cell((qo, O)) V Cell((qo, 1)) V Cell((clo, B))).

For convenience, we define a new modal operator F.

Intuitively, [F] p says that p holds of all future intervals.
We want to force there to be an infinite sequence of IDs or a finite one ending

with a final-ID. This is the job of the following formula:

ID - sequence =def [F] ((IDA -final - ID) 3 (A)ID).

Definition 8.8. We say that there is a computation starting from SO if
either there exists a finite sequence so, SI, . . . , Sk, k> 1, such that s = SO,

So<sl< ““” < ‘~, (Si, ‘i+l ) E ID for i < k and (s~_l, s,) t= final - ID,
or there exists an infinite sequence SO< SI < S2 < “ o“ and (Si, s,+ ~) 1= ID.

The following is immediate from the definition:

LEMMA 8.9. ~, (SO, SO) ~ ID - sequence iff there is a computation

starting from sO.

We next want to write formulas that force the sequence of IDs to encode the
computation of the TM A4 starting on a blank tape. We first need to make sure
that the contents of each cell are unique:

We next want to make sure that the computation starts right and continues
right. In order to do this, we need a few preliminary formulas. The formula
2- cell (x, y) holds of an interval in case it consists of two consecutive cells,
with respective contents x and y. Similarly, 3 – cell (x, y, z) holds of an
interval just in case the interval consists of three consecutive cells, with
respective contents x, y, and z.

2- cell (x, y) =~,~ (B)cell(x) A (E)cell(y) A [D] ([[ BP]]#

A[[BP] ]# ~ lengthO),

3- cell (x, y, z) =d~f (B)cell(x) A (lZ)cell(z) A (D)cell(y)

A[D] ([[ BP]]# A [[ EP]]# 3 (lengthO V cell(y)).
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The following formula now guarantees that the first ID encodes a
with M in the initial state:

init - ID =dcf[A] (ID 33- cell(*, (qO, B), *)).

Y. SHOHAM

blank tape

Finally, we want to ensure that consecutive IDs obey the rules of the
transition function. To that end, we use the proposition corr (read: ‘‘ corre-
sponds”), which will be true of an interval iff the interval starts and ends with a
cell, and these cells are corresponding cells in consecutive IDs. In the following
diagram, each segment represents an interval for which corr holds:

ID. n n+l n+2
#*## #.. .#*#*### . . #*#*# #
I I

I
} /

. . .

t Ii
. .

The formulas described below guarantee this property of corr. The first
formula guarantees that an interval for which corr is true starts and ends with a
cell:

cell - rule =d,fcorr 3 ((B) cell ~ (E)cell) .

Also, an interval that starts with an ID and ends with the * that starts the next
ID or ends with an ID and starts with the * that ends the previous ID satisfies
corr:

ID - rule =d,f (((B)ID A (E)(2 - cell(*, *)) A ~(D) ID] 3 corr)

A(((E)IDA {B)(2 - cell(*, *)) A -( D)ID) 3 corr).

Next, we stipulate that one corr interval may not properly contain another:

not – contains – corr =d~fcorr > (~(B) corr A m(D) corr A ~(E) corr) .

The next formula states that if an interval starts with a cell and ends with an
interval satisfying corr, then it starts with an interval satisfying corr:

corr - starts =dey (( B)cell A (E)corr) 3 (B)corr.

Similarly, if an interval ends with a cell which is not the last cell of an ID, and
starts with an interval satisfying corr, then it ends with an interval satisfying
c err. Note that we do not require that the last cell of an ID end a corr interval
since it may not correspond to a cell in the previous ID. This can happen if the
head was in the last cell of the previous ID and moved right.

corr – ends =d,y (( E)cell A (A) [cell A ~cell(*)) A (B)corr) > (E) corr.
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Finally, the formula corr -properties says that the properties of corr
described above hold of every future interval:

corr - properties =de,

[F](cell -rule A ID -rule A not - contains - corr

Acorr - starts A corr - ends).

Definition 8.10. We say an interval (s, t)can be subdivided into cells if
there exist points so, SI, . . . , Sk such that SO= s, Sk = t, SO< ““ “ < Sk, and

(s,, Si+,) E cell. Note that provided unique - val holds, there is at most one
way of subdividing an interval into cells.

Our next formula guarantees that an interval that starts and ends with a cell
can either be subdivided into a finite number of cells or contains an infinite
sequence of cells:

Subdivide =def (( B)cell A (E)cell) 3 [E] ([[BP]] # o (cell V (B)cell))

LEMMA 8.11. If (s, t) t= subdivide, then either (s, t) can be subdi-
vided into a finite number of cells, or else there is an infinite sequence
so, S1, . . . and a point t’ such that SO= s, SO< s, < “ . “ t’ < t, and
(Si, si+,) != cell.

PROOF. Since (s, t)E (B)cell A (E)cell, there must be some s,, t’with
s < S1 = t’< t such that (s, Sl) E cell and (t, t’) E cell. Now we show by
induction on k, using subdivide, that if we have found SO, . . . , Sk with
so< ““” Sk < t’and (si, Si+l) E= cell for i < k, then either Sk = t’or there
exists Sk+, such that Sk < Sk+l < t and (Sk, s~+l ) E cell. ❑

LEMMA 8.12. Suppose (s., SO) 1= corr - properties A unique - val A
init – ID A [F] subdivide, and suppose that there is a (finite or infinite)
computation sO, sl, sz, . . . starting from sO. Then for each i >0, the
interval (si+ ~, si+2 ) can be subdivided into a finite number of cells that is
the same or one more than the interval (s,, Si+ ~). Moreover, the intervals
that satisfy corr and that either start in (s,, s,+, ) or end in (s, +,, s,+ z) are
exactly those which start with a cell in (Si, si~ J and end with the
corresponding cell in (si+ ~, si+z).

PROOF. The formula init - ID guarantees that the first interval (sO, Sl) can
be subdivided into exactly three cells. Now suppose that the interval (Si, Si+ 1)
can be subdivided into a finite number of cells. That is, there exist points
t .,tksuchthatsi=tO< ““- <t~=si+l such that (tj, tJ+ ~) t= cell
f&”J < k.

Now look at the interval (Si+,, Si+z ). Since it starts with a *-cell and ends
with one, from subdivide we have that it starts with a sequence of cells.

To prove the lemma we show

(1) this sequence must be at least k cells long,
(2) among all the intervals that either start with a cell in (,si, .s,+~) or end with

one of the first k – 1 cells in (Si+,, Si+ z), corr holds of exactly those that
start and end with corresponding cells in the two intervals, and

(3) this sequence is at most k + 1 cells long.



954 J. Y. HALPERN AND Y. SHOHAM

Note that since we have (S1, S,+ ~) h ID and (S,+ ~, S,+z) E= ID, it follows that
there exists t and u with S, < t < S,+, < u < Sl+z such that (t, S,+l) =
cell(*) and (S,+,, u) E cell(*). By ID - rule, it follows that (s,, u) = corr
and (t, ,s,+,) != corr; that is, the interval (s,, S,+,) can be decomposed into
two consecutive subintervals, each satisfying corr. From corr – starts, it
follows that each of the k cells in (S,, S,+, ) starts an interval satisfying corr.
These intervals must all end between u and S,+z, for if they did not, we could
obtain a contradiction using not – contains – corr and the fact that both
(s,, u) and (t. S,+,) satisfy corr. Moreover, from not - contains - corr, we
have that no two distinct intervals satisfying corr can end with the same cell.
Therefore, there must be at least k distinct cells in the interval (S,+,, S,+z).
From Lemma 8.11, it follows that this interval must actually start with at least
k cells. This proves (1).

For (2), we show by induction on j that for j < k, the formula corr holds
for an interval starting with the jth cell in (si, S,+ ~) and ending with the jth
cell in (sl, ,s,+l ). For j = 1, we have already shown that corr holds of the
appropriate interval. If j > 1, we know that the jth cell in ( .s;, S,+ ~) starts a
corr interval. It cannot end before the jth cell in the second ID without
violating not – contains - corr. If it ends in a cell after the jth cell, then by
corr - ends, we know that some corr interval ends with the jth cell in the
second ID. But now not – contains - corr and our inductive hypothesis tell
us that this interval can start neither before nor after the jth cell in ( ,s,, S,+, ).
Thus, corr holds for the required intervals. Another application of not -
contains - corr shows that there can be no other intervals satisfying corr that
either start in (s,, ,s,+, ) or end with one of the first k – 1 cells in (,s,+,, S,+z).

For (3), observe that if the sequence is not either k or k + 1 cells long, then
from Lemma 8.11 it starts with at least k + 2 cells, and the (k + l)st cell does
not have contents *. Thus. by corr – ends, there is an interval satis~ing corr
ending with the ( k + l)st cell. Another application of not – cent ains – corr
quickly leads to a contradiction. U

We are now in a position to ensure that the computation proceeds according
to the transition function of &f. Notice that the contents of any three consecu-
tive cells determines the contents of the cell in the next ID that corresponds to
the middle cell. Suppose the function 6 describes this transition, so that if three
consecutive cells in an ID are i, j. and k, then 8( i, j , k) describes the
contents of the cell in the next ID that corresponds to j. (Note that for a
nondeterministic TM this function is really a relation. ) The following formula
guarantees that the transitions of &t are obeyed at all intervals in the future:

obeys-d ‘d~f ~ Z, ~, keL [F]((corr A(B)3-cell(i, j , k))

3 [A](cell 3 cell(~(i, j , k)))).

Notice that this is the only formula where the details of the particular TM &f
play a role.

We can now finally define the formula comput at ion:

computation =d,flengthO A unique – val A ID – sequence A init – ID

A [F] subdivide A [F] corr – properties A obeys – 8.

Definition 8.13. Suppose SO, sl, . . . is a computation starting with SO.
This sequence encodes a computation of M if each interval (S,, s,+ ~) can be
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subdivided into a finite number of cells, and there is a complete computation
comp of A4 (either infinite or ending with AZ in a final state) such that the jth
cell of the interval ( si, s,+ ~) is the same as the jth cell in the ith ID of comp.

LEMMA 8.14. Let (s, t) t= computation. Then there is a computation
starting with s. Moreover, any computation starting with s encodes a
computation of ikl.

PROOF. Since (s, t)P comput at ion, in particular (s, t)E lengthO, so
that s = t.By Lemma 8.9, there is a sequence starting with s that encodes an
infinite sequence of IDs. Suppose that SO, SI, . . . encodes an infinite sequence
of IDs, with s = SO. We must show that it encodes a computation of AZ. By
Lemma 8.12, each interval encoding an ID can be subdivided into a finite
number of cells. Lemma 8.12 also tells us that intervals starting and ending
with corresponding cells in consecutive IDs satisfy corr. The formula obeys-8
is easily seen to guarantee that corresponding cells in consecutive IDs match up
right, so that we really are encoding a prefix of a computation of &f in any
finite sequence of IDs, and a complete legal computation of A4 in any infinite
sequence of IDs. Cl

All of the above constitutes the part common to all proofs. The proofs
diverge on the punchline. We prove Theorem 8.1 by encoding the non-halting
problem, using the definition of final - ID given earlier. If &f is determinis-
tic, then the formula

computation A m(F)f inal – ID

is satisfiable in a class of temporal structures containing an infintely ascending
sequence exactly when &! does not halt on a blank tape. This proves Theorem
8.1.

At first it might appear that we could strengthen the result by encoding the
halting problem (rather than the non-halting problem), by considering instead
the formula

computation A (F) final - ID.

Unfortunately, in general, this alone will not suffice. Depending on the
particular set of temporal structures that are being considered, this formula can
be satisfied by “nonstandard” (or, at least, unintended) computations of the
TM. For example, if we are considering any dense structure (e.g., Q or Y),

there is nothing to exclude a structure that satisfies the conjuncts described thus
far and that has the following form:

In other words, we have not precluded models in which the computation is
captured by an infinite sequence of intervals that “telescope” to the right,

followed by an interval satisfying final - ID. Although this structure would

satisfy the formula comput at ion A (F) f inal – ID, it would not tell us that the

Turing machine necessarily halted.

We are able to exclude such nonstandard models of computation in complete

structures.
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First, we add a conjunct that in complete structures eliminates the possibility
of an infinite number of cells:

no – telescope =d,y =(B) [E] (D)cell.

LEMMA 8.15. If M = (S, V), S is a complete structure, and
M, (s, t) = no - telescope, then there can be no sequence SO, SI, . . . and
point t’ such thats = SO, SO< SI < “ “ ‘ < t’ < t and M, (s,, Sl+l) K cell.

PROOF. Suppose there were such a sequence. Let s’ be the least upper bound
Ofso, sl, . . . . (Such as s’ exists since S is complete.) Then it is easy to check
that M, (s, s’) I= [E] (D)cell, contradicting our assumption that M, (s, t)
1= no - telescope. ❑

Thus, the conjunction subdivide A no - telescope guarantees that any
interval (in a complete structure) that starts and ends with a cell can be
subdivided into a finite number of cells. We need one more formula that
guarantees that if an interval starts and ends with an ID, then it can be
subdivided into a finite number of IDs. Define

subdivide - ID =def (ID 3 [A] (cell 3 cell(*))) A -3- cell(*, *, *).

Finally, let

standarcl =dey [F] (subdivide A no - telescope A subdivide - ID).

We leave it to the reader to check the following lemma:

LEMMA 8.16. If M = (S, V), S is a complete structure, and
M, (s, t) 1= standard A (B) IDA (E) ID, then (s, t) can be subdivided into a
finite number of IDs.

It is now easy to check that in a complete structure, if the formula

computation A standard A (B) start – ID A (E) f inal – ID

is satisfiable, then there is a halting computation of the Turing machine M.
Moreover, if there is a halting computation of the Turing machine M, this
formula is satisfiable in any complete class of temporal structures which has
unfoundedly ascending sequences. This proves Theorem 8.6.

Finally, we encode the question of whether the TM returns infinitely often to
its start state. Observe that if the formula

computation A standard A [F] (start - ID 3 (L)start - ID)

is sati s~lable in a complete structure, then there is a computation where A4

returns infinhel y often to its start state. Moreover, if M does return infinitely
often to its start state, this formula is satisfiable in any complete class of
temporal structures that contains an infinite ascending sequence. This, com-
bined with the result mentioned above that the problem of deciding if a
nondeterministic TM returns to its start state infinitely often is Z ~ hard, proves
Theorem 8.4.

This concludes the proof of our lower-bound results. ❑

COROLLARY 8.17. A [1 our hardness results hold even when we weaken
the logic to include only the B, E, and A operators.
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PROOF. In our constructions, we only used these three operators, and ones

defined in terms of them. ❑

8.3 UPPER BOUNDS. We end by briefly discussing upper bounds for the
complexity problems. We have the following results.

THEOREM 8.18

(1) The validity problem for each of the following classes of temporal
structures is r. e. -complete:
(a) The class of all temporal structures.
(b) The class of all linear temporal structures.
(c) The class of all discrete temporal structures.
(d) The class of all dense temporal structures.
(e) The class of all dense, linear, unbounded temporal structures.

(2) The validity problem for 9 in r.e. -complete.
(3) The validity problem for .1 is II ~-complete.
(4) The validity problem for @ is in II?.
(5) The validity problem for 1’ is co-r.e. -complete.

PROOF. We have already proved all the lower bounds, so it only remains to
show the upper bounds.

For (1), we prove the upper bound for dense, linear, unbounded structures.
The other proofs are similar. By Corollary 7.5, p is valid for the class
of dense, linear, unbounded structures iff the first-order formula dlu >
Vtl, tz (t, < tz 3 pf) is valid (where dlu is the first-order formula discussed
in the proof of Theorem 7.9 that characterizes dense, linear, unbounded
structures). Since validity for first-order logic is well known to be r. e., the
result follows. Note that the proof actually shows that validity with respect to
any first-order definable class of structures is r. e.

For (2), note that by Theorem 7.9 validity for Q is equivalent to validity for
dense, linear, unbounded structures, so the result follows immediately from
part (1).

For (3), we show that the satisfiability problem for tip is in X ~. We do this

by showing that given a modal formula p, we can construct a 2 ~ sentence ~y
such that ~w is true iff p is satisfiable in .. I‘. Suppose p has k subformulas

%’1l...9 Pk, where P = P~. (A subformula of P is simply a substring of P
which is also a formula. ) A pair (m, M) of natural numbers representing an
interval can be encoded by a single number using the pairing function

f ( m, n) = ((m + n)2 + 3m + rz)/2. It is well known [25] that f is one-one
onto map from .4’ x t‘ to -f’. We use the sets X,, . . . . Xk to encode the
intervals where the formulas q,, . . . , Pk are true. Thus the formula 4P is of

the form 3X1 “ , 0 Xk ~‘, where ~‘ is a conjunction encoding some conditions

that the sets Xl, i = i, . . . . k must satisfy. For example, if PJ is of the form

Pjl A PJ*, then one of the conjuncts is t‘ is:

XCXJ= (xexJ, Axexj2).

Similarly, if PY is of the form (B) p], then (using some obvious abbreviations)
we have a conjunct of #‘ of the form:

xexj=~xl, X2, X3. Y (( X, SX2)A(X2S X3)

A(x= f(xl, x,))A (y = f(X1, X3)) A(ye&)).
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Finally, we have a conjunct of ~’ stating that X~ is nonempty: 3x(x c X~).
We leave it to the reader to check that p is satisfiable iff 4P is satisfiable.

The proof that the satisfiability problem for # is in Z; proceeds along very
similar lines. The only difference is that we can no longer represent an interval
of reals (t,, t2)by a single number. Rather, we have to represent it by a set of
natural numbers, which encodes two Cauchy sequences of rational numbers
(where a rational number q is represented by a triple ( m 1, m?, m3), where
m, / mz encodes the absolute value of q, and m ~, which is either O or 1,
encodes its sign). Given a modal formula p, we can construct a Z; sentence O@
such that o+ is true iff P is satisfiable in 3?. The sentence UP is similar in
structure to V*, except that all the number variables (which were previously
used to encode intervals of natural numbers) are replaced by set variables
(which encode intervals of reals, as described above), and all the set variables
are replaced by set of sets variables. In addition, we need clauses to guarantee
that all the set variables used do encode intervals of reals as described above
(i.e., to guarantee that they encode a pair of Cauchy sequences). We omit the
details here.

Finally, for .X, note that it is obviously decidable if a modal formula p is
satisfiable in a particular finite initial segment of the natural numbers. Since p
is satisfiable in .X iff it is satisfiable in some initial segment, the satisfiability
problem for 7 is clearly r.e. (We just check the initial segments one by one,
and report that p is satisfiable if it is satisfiable in some initial segment. ) Thus,
the validity problem for X’ is co-r. e. ❑

9. Related Work: Interval-Based Modal Logics of Time

There is a rich literature on the algebra of intervals and on interval logics.
spanning philosophy and computer science. In AI, in particular, there have been
several important developments in this area over the past few years. However,
none of these have to do with modal interval logics, which are the topic of this
comparison section. We therefore do not discuss recent work by Allen and
Hayes [3], Ladkin [14], Ladkin and Maddux [15], or Kowalski and Sergot [13].
A concise overview of this and other literature is offered in van Benthem’s [32].

Although most of the work on modal temporal logic has been point based,
recent years have seen a growing interest in interval-based modal logics. As
usual, the initial idea of dealing with intervals goes back to the philosophers
(e.g., [9], and more recently [5, 12, 26, 31]). In computer science, there has
recently been work on process logic [11,19,23], where intervals (or “paths”)
represent pieces of computation. and even more recently work on interval
temporal logic [8, 17]. The one property all the interval-based logics have in
common is that they interpret propositions over intervals of time. They differ
among themselves. however, on several counts.

The first distinction is the ontological one mentioned in Section 2: Are
intervals primitive objects, or is it points that are taken as primitive, with
intervals defined in terms of points? In philosophy one finds logics of both
kinds. For example, in the logic of Burgess [5], intervals are defined by their
end points, whereas in the logics of Humberstone [12] and Roper [26] intervals
are primitive objects related by the C ( sub in terval) and < (completely
before) relations. In computer science, all interval-based modal logics construct
intervals out of points.
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Another distinction between various Iogics was mentioned earlier and stems
from the commitment to a particular underlying temporal structure. With no
exception, all interval-based modal temporal logics in computer science have
been committed to the discrete linear view of time (see details below). This has
not been the case in philosophy. Burgess explicitly assumes a dense linear
order. Roper assumes linearity, but apparently nothing beyond that.

Another source of difference between the modal logics is the choice of tense
operators. In computer science, the strong commitment to a discrete linear
order dictated fairly standard modal operators (see details below). In philoso-
phy, there has been less uniformity. For example, the only operator discussed
by Humberstone is F, standing for “in some interval after the current interval. ”
The one other operator mentioned by Humberstone as a subject for future
research is R, standing for “in some interval immediately after the current

interval. ” Roper uses two other modal operators, which are also adopted by
Burgess: G (for “in all intervals beginning during the current interval”) and H

(for “in all intervals ending in the current interval”). Clearly, all these

operators are easily definable in our logic.
For a more-detailed discussion of temporal logics in philosophy, both point-

based and interval-based, see [31]. We now discuss particular interval-based
logics in computer science. SOAPL is a fairly complex logic introduced by
Parikh [19]. It has two kinds of formulas: those interpreted over states and
those interpreted over “paths,” or sequences of states. Parikh proved that
validity in the logic is (nonelementarily) decidable, but did not provide a
complete deductive system. Nishimura’s logic [18] is an attempt to merge
temporal logic with dynamic logic. He showed his logic to be a expressive as
SOAPL. His logic too is rather complex, and maintains the distinction between
“state” formulas and “path” formulas.

At roughly the same time, Pratt introduced process logic, in which formulas
are interpreted over paths [23]. Later Harel, Kozen, and Parikh refined the
formulation [1 1]. They introduced two new modal operators (in addition to the
ones introduced by dynamic logic): f (first) and suf (roughly, until). More
precisely,

(s,,..., Sn) 1= fp iff(sl) F q,

(sl,..., sn) 1= (pSuf$ iff, for some j, (sJ, . . . . s.) E ~,

and for all i such that 1 s i < j,

(sz,..., sn)~~.

Harel et al. show that satisfiability in the resulting logic is decidable (although
not necessarily elementarily so), and give a complete axiomatization for it.
Those results depend on assuming that a primitive proposition is true over an
interval iff it is true at the first time point of that interval, that is, assuming
locality. This property is captured in process logic by the axiom schema

P ~ f p, for a primitive proposition p. The assumption of locality is really at
odds with the reason for our interest in a logic of intervals, since, as Harel et al.
themselves put it, “every path formula ultimately expresses properties of
states. ” They mention the fact that without the axiom p - fp there are path
properties that cannot be expressed, and leave open the question of decidability
in the absence of this axiom of locality. Later, Streett settled this question by
showing that global propositional process logic is H ~-complete [30].
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Interval temporal logic [8, 17] is also an extension of temporal logic in which
formulas are interpreted over paths. The two modal operators considered there
are O (next) and ; (chop). The meaning of these operators is given by:

(sl, . . . . s,,) t= p; + iff (sl, . . ..sl)~p and

(sl,. ... s.) 1= ~ for some i,

(s,,..., Sn) 1= 0$0 iff (sz, . . . ..s~)~p.

Thus, the O operator strongly commits ITL to the discrete view of time. In
[8], it is shown that satisfiability for ITL is undecidable, and that if locality is
assumed then satisfiability is decidable but nonelementary. The ITL extension
of temporal logic is different from ours in two ways. First, in our logic we are
not committed to viewing time as discrete. Second, even if we assume discrete-
ness of time in our logic, the two logics are not comparable in their expressive
power. On the one hand, the chop operator of ITL is not definable in our logic
(this is proved formally by Venema in [33]), and on the other hand, we provide
means of referring to intervals outside the reference interval, which ITL does
not.

Schwartz et al. [27] offer another interval-based temporal logic. They aug-
ment modal temporal logic by constructs referring to intervals explicitly: if p is
a formula, then so is [1] P, where I is an interval designator. For example. the
formula [(x = y) = (y = 16)] ❑ (x > z) is intended to mean that x is greater
than z throughout the interval beginning at the first time x equals y and ending
at the first time after that when y equals 16. Intervals are assumed to consist of
linearly ordered and discrete time points, and again locality is assumed. In [20],
it is shown that satisfiability for this logic is nonelementarily decidable.

Finally, Venema has recently obtained further results regarding our logic
[33]. Besides the expressibility results mentioned above, he proves that all the
classes of structures that were shown in Theorem 8.18 to have a validity
problem that is r.e. -complete, actually have a relatively elegant complete
axiomatization. In particular, he shows that there is a complete axiomatization
for Y.

10. Conclusions

We presented a new interval logic that generalizes point-based temporal logic.
The syntax and semantics are simple, and the logic allows one to express
naturally statements that refer to intervals of time and to continuous processes.

We showed that the logic is expressive enough to identify several classes of
temporal structures. such as the classes of dense structures, linear structures,
and complete structures. At the same time, we showed that some classes of
structures cannot be distinguished in the logic, one example being the class of
dense, linear. and unbounded structures and the singleton consisting of the
rationals q.

We gave several results on the complexity of the validity problem for the
logic. For all but the simplest classes of temporal structures, validity is
undecidable. For classes of structures with infinitely ascending sequences, such
as the rationals 2, validity is r. e.-hard. For classes of structures that contain
unfoundedly ascending sequences, validity is co-r. e.-hard. For complete classes
of structures with infinitely ascending sequences, such as ..~’ or .X , satisfiabil -
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ity is II ~-hard. Notice that the II ~-hardness and co-r. e. -hardness results imply
nonaxiomatizability.

Finally, we gave several upper bounds for the validity problem. For ./ , &2,
and %, we showed that the upper bounds match the lower ones. For #, we
gave a less tight upper bound.

It is surprising that such a natural logic of time has never been explored
before. Many fascinating open problems still remain, and they include the
following:

(1) Cart we find matching upper and lower bounds for the validity problem with
respect to 92?

(2) What results can we get for other natural classes of temporal structures?
(3) What happens to the complexity of the validity problem if we slightly

modify the logic? We have already remarked that our lower bounds hold
even if we restrict the logic to the B, E, and A operators, but we do not
know what happens for weaker or incomparable combinations of modal
operators, for example, the set {D, ~} or the set {B, E}.

(4) The motivation for our logic was the need to reason about situations of
interest in Artificial Intelligence. Are the hardness results for the validity
problem a sign of failure? We think not. Our logic is very natural, and the
meaning of the various operators is quite intuitive. The fact that an efficient
general-purpose theorem prover for the logic is unattainable will hardly
come as a shock to anyone in AI. What we need to do, now that we have a
natural and expressive logic, is to identify classes of formulas about which
reasoning is easier than in the general case.
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