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Recent proposals for multithreaded architectures employ speculative execution to allow threads

with unknown dependences to execute speculatively in parallel. The architectures use hardware

speculative storage to buffer speculative data, track data dependences and correct incorrect exe-

cutions through roll-backs. Because all memory references access the speculative storage, current

proposals implement speculative storage using small memory structures to achieve fast access. The

limited capacity of the speculative storage causes considerable performance loss due to speculative
storage overflow whenever a thread’s speculative state exceeds the speculative storage capacity.

Larger threads exacerbate the overflow problem but are preferable to smaller threads, as larger

threads uncover more parallelism.

In this article, we discover a new program property called memory reference idempotency. Idem-

potent references are guaranteed to be eventually corrected, though the references may be tem-

porarily incorrect in the process of speculation. Therefore, idempotent references, even from nonpar-

allelizable program sections, need not be tracked in the speculative storage, and instead can directly
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access nonspeculative storage (i.e., conventional memory hierarchy). Thus, we reduce the demand

for speculative storage space in large threads. We define a formal framework for reference idempo-

tency and present a novel compiler-assisted speculative execution model. We prove the necessary

and sufficient conditions for reference idempotency using our model. We present a compiler algo-

rithm to label idempotent memory references for the hardware. Experimental results show that for

our benchmarks, over 60% of the references in nonparallelizable program sections are idempotent.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compiler;

C.1.2 [Processor Architectures]: Multiple Data Stream Architectures (Multiprocessors)—

Multiple-instruction stream, multiple-data-stream processors (MIMD)

General Terms: Algorithm, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: Idempotent references, speculation, compiler-assisted specu-

lative execution

1. INTRODUCTION

Technological advancements in semiconductor fabrication are giving rise to an
abundance of transistors in a single chip. To harness performance from the large
number of transistors, computer designers are innovating novel multithreaded
chip architectures. As in shared-memory multiprocessors, some of the proposed
multithreaded chip architectures (e.g., the IBM Power 4) support conventional
parallel execution models in which a programmer or compiler partitions the
program into distinct parallel threads. Unfortunately, many programs include
code fragments that have dependences which are unknown at compile time
and therefore not entirely parallelizable [Blume et al. 1996; Hall et al. 1996].
Runtime data dependence tests can parallelize certain unanalyzable code sec-
tions [Rauchwerger and Padua 1995; Gupta 1998]. However, these tests cannot
be applied to general program patterns.

Alternatively, recent proposals for multithreaded architectures (e.g., the pro-
posed SUN MAJC chip, Wisconsin Multiscalar, CMU Stampede, I-ACOMA,
and Stanford Hydra [Hammond et al. 1998; Steffan et al. 2000; Sohi et al.
1995; Sun Microsystems 1999]) employ speculative execution to allow threads
with unknown dependences to execute speculatively in parallel. These architec-
tures use hardware speculative storage to produce and consume data specula-
tively while tracking and enforcing data dependence. On successful speculation,
threads commit the speculative data from speculative storage to nonspecula-
tive storage (i.e., conventional memory hierarchy). Upon misspeculations, the
hardware discards speculative computation and rolls back the machine state.

A key shortcoming of the proposed speculative multithreaded architectures is
the limited capacity of speculative storage that is used to hold speculative state.
Because data dependence must be tracked and enforced on all memory refer-
ences (both reads and writes), the speculative storage needs to provide high-
speed access. Accordingly, current proposals use small structures to achieve
fast access—for example custom hardware buffers [Sohi et al. 1995; Zhang
et al. 1999] or level-one data caches [Gopal et al. 1998]. If a thread’s speculative
state exceeds the speculative storage capacity, the thread stalls for many cycles
(typically, hundreds of cycles) until its speculation is resolved, incurring con-
siderable performance loss. Larger threads exacerbate the speculative storage

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.



944 • S. W. Kim et al.

overflow problem because they access more speculative data. This problem is
especially critical because larger threads are preferable to smaller threads, as
larger threads uncover more parallelism.

Speculatively threaded applications usually contain sections that are prov-
ably parallel, while the rest are not analyzable. Advanced compilers can easily
avoid placing references made by the provably parallel sections in speculative
storage and direct such references to nonspeculative storage, avoiding specula-
tive storage overflow for those sections. In nonparallelizable sections, however,
the hardware blindly tracks data dependence for all memory references, in-
creasing the chances of speculative storage overflow.

In this article, we discover a new program property called memory reference
idempotency. Idempotent references can be directly placed in nonspeculative in-
stead of speculative storage, even if the references are from nonparallelizable
sections. Reference idempotency is based on our fundamental insight that in
speculative execution, incorrect values are created due to dependence violations
and propagated through subsequent computation. A key feature of idempotent
references is that they maintain all data-dependence relationships, although
they may propagate incorrect values. Because initial incorrect values are even-
tually corrected and repropagated, idempotent references need not be tracked
in speculative storage, even if the reference is temporarily incorrect. If a ref-
erence is not involved in any dependence across processors (e.g., read-only and
private references), it is straightforwardly idempotent. By filtering out idem-
potent references we reduce the demand for speculative storage space, even for
large threads, uncovering more parallelism without incurring much overflow.

The key contributions of this article are:

—We define a formal framework for reference idempotency to alleviate specu-
lative execution overhead.

—We present a novel compiler-assisted speculative execution model in which
the compiler communicates idempotent references to the architecture.

—We prove the necessary and sufficient conditions for reference idempotency
using our model.

—We present a compiler algorithm to label idempotent memory references so
that the hardware can place them directly in nonspeculative storage.

—We show results in which, for our benchmarks, over 60% of the references in
nonparallelizable code sections are idempotent.

This article is organized as follows. Next, we present an introductory ex-
ample of hardware-only speculative execution and idempotent references. Sec-
tion 2 formally defines and verifies the hardware-only model. Section 3 presents
the formal definition and proof of correctness of the compiler-assisted specula-
tive execution model. In Section 4 we introduce reference idempotency, prove
its necessary and sufficient conditions, and describe a compiler algorithm for
idempotency analysis. Section 5 shows experimental results on the frequency
of idempotent references, and Section 6 presents conclusions.

An Introductory Example. Current proposals for speculative multithreaded
processors assume a hardware-only speculative execution (HOSE) model. In
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Fig. 1. Basic ideas of labeling idempotent references. (a) In hardware-only speculation, all data is

placed in the speculative storage. (b) After labeling idempotent references, these references can go

directly to the nonspeculative storage.

HOSE, the software is unaware of speculative execution. It assumes sequen-
tial execution semantics and sees the usual program state (i.e., the values of
all program variables) in the memory system. The hardware, which we call
the speculation engine, selects program segments and executes them specula-
tively in parallel. Segments can range in size from a single instruction to entire
subroutines. Threads are the dynamic instances of segments.

Consider the program in Figure 1. The program is split into two seg-
ments that are executed speculatively in parallel by a two-processor system.
Segment 2 follows segment 1 in sequential program order and therefore, all
intersegment dependences must be satisfied in that order while the segments
are executing. The program has several read references to variable B, a data-
dependence across the two segments involving variable A, and a write and read
reference to variable C in segment 2.

A typical speculative execution scenario in HOSE is illustrated in
Figure 1(a). The system executes the two segments in parallel while keep-
ing all data values that are produced or referenced in speculative storage. The
data values remain there until the speculation is verified, all dependences are
satisfied in program order, and the execution is known to be correct. Upon ver-
ifying speculation, the data values in speculative storage are transferred, or
“committed,” to nonspeculative storage. To track and enforce dependences in
program order in addition to the data values, the speculative storage also keeps
information about every reference type and the order in which references are
made.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.



946 • S. W. Kim et al.

In the example shown, because the two program segments execute concur-
rently, upon the write reference to A in segment 1, the processor may see that
a later program-order read reference to A by segment 2 has already happened.
This is a dependence violation to which the system reacts by aborting and
restarting segment 2. Since all accessed data values have been buffered in the
speculative storage, the restart simply clears all the buffered references corre-
sponding to segment 2.

Figure 1(b) illustrates several examples of idempotent references, that is,
references that do not require buffering in speculative storage and can directly
access nonspeculative storage. First, the compiler can identify all references
to variable B as idempotent because B is a read-only variable, and as such,
does not have any data dependences. Second, the first write reference to A in
segment 1 is idempotent because there are no previous program-order refer-
ences to A in the segment. However, to enforce dependences, the write refer-
ence does look through speculative storage to check for data-dependence vi-
olations by segment 2’s references to A (i.e., the read reference). The actual
value of the write reference resides in nonspeculative storage, without occu-
pying any space in speculative storage. Third, variable C in this example is
private to segment 2, that is, there are no dependences across segments on this
variable and all references to it are idempotent. Although segment 2 may re-
execute due to incorrect speculation, the write reference C always occurs first
whenever the segment is reexecuted. Hence, even if an incorrect value was
written initially, the value of C will be corrected in the final execution of the
segment.

Generalizing this example, our intuition for idempotent references is as
follows. Read-only variables are always idempotent. Their values are in-
variant of any control and data speculation. The similar holds for private
variables—variables whose values are both created and consumed within a
single segment. Although a misspeculated segment may write incorrect values
to private variables, the final, correct execution of the segment will write and
read the correct values. If the same segment is never reexecuted in a correct
form (i.e., its execution is a control misspeculation), the values are also never
consumed. However, care must be taken at the boundaries of regions within
which the read-only and private properties hold. The most interesting category
of idempotent references are those that access truly shared variables. Our key
idea is that if we can prove that an incorrect value is eventually corrected and
propagated to all consumers, such accesses are also idempotent. An important
underlying assumption is that the addresses of idempotent variables are invari-
ant of speculative execution. This is the case for a large number of references
in our test programs.

Proving correctness of this intuition is nontrivial. The following sections de-
liver this proof in a concise form. We begin by precisely defining and proving
correctness of the speculative execution mechanisms. Next, we consider dif-
ferent types of data-dependence relationships and show which data references
involved in such dependences can be labeled idempotent. Finally, Theorems 4.7
and 4.8 give the necessary and sufficient conditions for labeling data accesses
as idempotent.
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2. HARDWARE-ONLY SPECULATION

2.1 HOSE Model

In the following, we formally define the structure of the software and the execu-
tion model of hardware-only speculative execution. We show that the execution
produces the same answer as a sequential program.

Definition 2.1 (Program Structure). A program is structured into one or
several regions, which are substructured into several segments. A region has
a single entry and exit. A segment has a single entry, but may have multiple
exits. Segments are related by age. An older segment would execute before a
younger segment in a sequential execution of the program. All older segments
are referred to as ancestors.

In this definition, segments represent speculative units. These can be indi-
vidual instructions in low-level speculation or entire subroutines in large-grain
speculation models. For HOSE, the entire program is a single region. Multiple
regions will be important for the compiler-assisted speculative execution model,
which is introduced in Section 3.

Definition 2.2 (HOSE Mechanism). A hardware-only speculative execu-
tion is an execution mechanism for the programs given in Definition 2.1 with
the following properties:

(1) Overall Execution: Regions execute sequentially with respect to other re-
gions. Segments can be executed speculatively in parallel with other segments
within the same region, that is, they may be started in an order that is different
from the sequential order and they may execute concurrently. Internally, seg-
ments execute sequentially and perform memory references in program order.

(2) Segment Execution and Roll-Backs: The speculative parallel execution
of segments may violate data and control dependences, resulting in incorrect
values generated and incorrect control paths taken. The speculation engine de-
tects these violations (see Property 5) and rolls-back incorrect segments. Upon
a roll-back, all data generated by the segment is discarded (see Property 4).
This process may repeat several times.

(3) Final Execution: A correct final execution follows all incorrect executions
of a segment. The final execution satisfies all cross-segment flow and control
dependences. If the segment is incorrectly started due to control misspeculation,
the final execution may execute a different segment or may be empty.

(4) Data Access: Each segment has its own speculative storage. It is empty at
the beginning of each segment’s execution and after each roll-back. During the
execution of a segment, all data references go to speculative storage. They do not
affect nonspeculative storage until the segment is committed (see Property 6).
If a read reference accesses a location that is not present in the speculative
storage, then the value is fetched from the youngest ancestor that contains a
value for this location or from nonspeculative storage if no ancestor contains this
location. A write reference affects only the segment’s own speculative storage.

(5) Dependence Tracking: In addition to the actual data values, the specu-
lative storage contains access information (time and type of reference), which

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.



948 • S. W. Kim et al.

allows the speculation engine to track dependences. If a write reference de-
tects that a read reference to the same storage location by a younger segment
has prematurely happened, then a data-dependence (flow-dependence) viola-
tion has occurred. If at the completion of a segment, the speculation engine
detects that the successor segment is different from the speculatively chosen
one, then a control-dependence violation has occurred. The speculation engine
reacts to both violations by rolling-back all younger segments currently in exe-
cution. Cross-segment anti- and output dependences are satisfied because the
segments have separate speculative storage (Property 4) that are committed in
sequential order (Property 6).

(6) Segment Commit: When the oldest segment in execution has completed
all instructions, speculation of that segment is said to have succeeded and the
segment has performed its final execution. At this point, the segment’s specula-
tive storage is committed (i.e., conceptually moved) to nonspeculative storage.
A segment cannot commit before all older segments have committed. Note that
only the values generated by the segment’s final execution are committed.

2.2 Correctness of HOSE

Definition 2.3 (Correct Program Execution). A region, R, is executed cor-
rectly if, given that all older regions are executed correctly, at their last reference
in R, all live program variables in nonspeculative storage have the same value
as in a sequential execution of the program.

Similarly, a segment, Rx , in region R is executed correctly if, given that all
older segments in R and all regions older than R are executed correctly, at their
last reference in Rx , all live program variables in nonspeculative storage have
the same value as in a sequential execution of the program.

LEMMA 2.4 (CORRECTNESS OF HOSE). A region, R, and all segments in R are
executed correctly under the hardware-only speculative execution model.

PROOF. Let R1 . . .Rn be the segments in region R from oldest to youngest.
To satisfy the correctness criterion of Definition 2.3, we need to show that for
any segment Rx , 1 ≤ x ≤ n, the values of the program variables generated
and committed to nonspeculative storage locations at the end of Rx are cor-
rect, that is, they are the same as the values of these variables in a sequential
program execution. HOSE discards all values generated by segments that are
being rolled-back. The only values to be committed are those generated in final
executions. We show correctness of these values in two steps. We show that: (1)
The final executions of all segments produce correct values in the speculative
storage; and (2) these values are committed correctly.

(1) Internally, segments execute sequentially (HOSE Property 1). All data
references use the segment’s own speculative storage, and this storage cannot be
modified by any other segment (HOSE Property 4). Hence, the segments execute
and produce the same final values as a sequential program if we can show that
the data values not initially present in the segment’s speculative storage are
consumed correctly (i.e., as in a sequential program). This follows from two
facts: (a) All cross-segment time orderings are satisfied (HOSE Property 5);
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and (b) by HOSE Property 4, values for locations not present in the speculative
storage are consumed either from the youngest ancestor that contains a value
for this variable (which is the producer of this value in a sequential execution)
or from nonspeculative storage (where they are correct, given the preceding
region’s correct execution).

(2) By HOSE Property 6, all segments commit in sequential order. Therefore,
all segments’ values will be seen in nonspeculative storage correctly after all
ancestors have placed their values.

Correctness of a region R follows from the correctness of the segments in R.
By HOSE Property 6, the segment last touching any memory location, x, is the
same segment as in a sequential execution. Since x is correct at the end of this
segment, it is also correct at the end of R .

3. COMPILER-ASSISTED SPECULATION

3.1 CASE Execution Model

The compiler-assisted speculative execution (CASE) model is an extension of the
hardware-only model introduced in Section 2. The software structure is the
same as in Definition 2.1. As in HOSE, segments are the primary units of
speculative execution. Regions are important for enclosing the code sections
in which certain data attributes hold (e.g, read-only or dependence-free). The
execution mechanism is defined as follows.

Definition 3.1 (CASE Mechanism). A compiler-assisted speculative execu-
tion is a program execution mechanism with the basic properties of HOSE,
as given in Definition 2.2. Certain data references are labeled as idempotent,
and all other references are speculative, with the same properties as in HOSE.
Idempotent references have the following properties:

Idempotent read references completely bypass the speculative storage and
instead directly reference nonspeculative storage. Unlike speculative reads,
idempotent reads do not leave any information in the speculative storage.

Idempotent write references enforce data-dependences by first checking in
the speculative storage, much like speculative write references. However, their
value is then directly placed in nonspeculative storage and no information about
the references is kept in the speculative storage.

From the definition of idempotent references, it follows that the references
access nonspeculative storage and do not occupy any space in speculative stor-
age. Thus, idempotent references help reduce speculative storage overflow, as
motivated in Section 1. Note that for ease of presentation, we use the term
idempotency for both a program property (the referenced variable is correct de-
spite repeated accesses caused by roll-back and reexecution) and a hardware
property (the memory reference accesses nonspeculative storage.)

3.2 Correctness of CASE

In CASE, programs contain both speculative and idempotent references. The
hardware guarantees correctness for speculative references, as in HOSE.
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However, idempotent references are not tracked by speculative storage, and
therefore, correctness of idempotent references is no longer guaranteed by the
hardware. Instead, the compiler must correctly label idempotent references
to guarantee correct execution. To this end, the following labeling conditions
must be satisfied by candidate idempotent references.

LC1. A write reference,1 x̂, to a variable, v, in region R is correctly labeled
as idempotent only if it is guaranteed that v will eventually be correct, that is,
an incorrect v must be overwritten with the correct value before it is consumed
by the final execution of any segment. (Speculative read references may obtain
incorrect values in a misspeculated execution and propagate the incorrect val-
ues to idempotent write references. Because such incorrect idempotent writes
are not discarded, but written to nonspeculative storage, LC1 ensures that the
write reference is eventually corrected.)

LC2. A reference, x̂, is correctly labeled as idempotent only if in the final
execution, all time orderings as dictated by data-dependences involving x̂ are
satisfied. (An idempotent reference does not keep any information about the
reference in speculative storage. Because the hardware can no longer enforce
data-dependences for the reference, LC2 ensures that the reference is ordered
correctly with respect to its dependences.)

LC3. A write reference is correctly labeled as idempotent only if any subse-
quent read reference to v consumes this value from nonspeculative storage. A
read reference is correctly labeled as idempotent only if it obtains from non-
speculative storage the value generated by any prior write reference. (If either
the source or sink of a flow-dependence is a speculative reference and the other
is an idempotent reference, the source and sink access different storages. LC3
ensures that the sink reference correctly obtains the value produced by the
source reference.)

Recall our fundamental insight that in speculative execution, incorrect val-
ues are created due to data-dependence violations and propagated through
subsequent computation. LC1, LC2, and LC3 together guarantee that idem-
potent references do not cause any data-dependence violations on their own,
although the references may propagate incorrect values. Because the initial in-
correct values are eventually corrected and propagated, idempotent references
need not be tracked in speculative storage, even if the reference is temporarily
incorrect. If a reference is not involved in any dependence across processors
(e.g., read-only and private references), such a reference is straightforwardly
idempotent.

LEMMA 3.2 (CORRECTNESS OF CASE). CASE is correct under Definition 2.3 if
and only if all idempotent references satisfy the three labeling conditions LC1
through LC3.

PROOF. The values in nonspeculative storage that are generated by a seg-
ment are those committed from speculative storage and those written by idem-
potent references.

1We use the notation v for variables and x̂ for memory references.
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We proceed in two steps: (1) We show that the values generated by idempotent
references are correct; and (2) we show that the values generated in speculative
storage and then committed are correct.

(1) Because idempotent references directly write into nonspeculative storage,
we must consider all segment executions. This contrasts with HOSE, which
considers only final executions. By LC1, a segment produces correct values for
all variables that incur idempotent references. That is, even though a variable,
v, may be written in a misspeculated segment, LC1 guarantees that in all final
executions of segments referencing v, this variable is correct.

(2) The only difference from the values produced in speculative storage in
HOSE is that instructions may consume input values through read references
that are involved in idempotent references. These values are correct, as follows.
By LC2, all time orderings as dictated by data-dependences are satisfied. By
LC3, values are correctly communicated if either the producer or the consumer
is an idempotent reference. Therefore, the values committed from speculative
storage are correct for the same reason as they are correct in HOSE.

The proof of the converse is simple, and is only sketched. The descriptions of
the three labeling criteria make obvious that if any of them is not satisfied, then
an incorrect value is either produced or consumed, or a data-dependence may
be violated. Hence, correct program execution would no longer be guaranteed.

The proof of correctness of a region is identical to the one for HOSE.

4. REFERENCE IDEMPOTENCY

In this section we present the analysis methods and algorithms for identifying
in a program the variable references that have the idempotency property. Idem-
potent references do not need to be buffered in speculative storage. To prove
correctness, we will show that such references satisfy the labeling criteria LC1
through LC3.

Theorems 4.7 and 4.8 give the necessary and sufficient conditions for a data
reference to be labeled as idempotent. The following lemmas will be helpful in
proving the two theorems. In addition, the term recurring first write will be
useful. It is defined as follows.

Definition 4.1 (Recurring First Write (RFW )). A write reference to the
variable v in segment Ri is an RFW if following any roll-back of Ri, a live v
is guaranteed to be written before the end of the enclosing region, R, without
a preceding read reference.

Note that by Definition 2.2, the segment Ri may get rolled-back to the end
of any ancestor segment in R. Hence, a write reference to v in Ri is an RFW if
v is first written on all possible paths p, where p is a path from the end of any
ancestor of Ri to the end of R. If v is not live, then its value is irrelevant for
correctness by Definition 2.2.

The RFW attribute will allow us to identify a write reference as idempotent
even though it may be performed in a misspeculated segment with an incorrect
value. The RFW attribute ensures that a write reference to the same variable is
guaranteed to happen in the final execution of some segment following the RFW
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reference. Hence, the variable value will be corrected. It further guarantees that
no read reference can consume the incorrect value before the correct value is
written. Note that determining the RFW attribute is nontrivial in the presence
of pointers and subscripted subscripts. The compiler must guarantee that the
references in misspeculated and all possible final executions go to the same
storage location. We will present a compiler algorithm in Section 4.2.

For the following presentation, we consider one region at a time. The data-
dependences are assumed to have been analyzed for the region on a reference-
by-reference basis. Note that this means there are only data-dependences
between references to the same variable. Only intraregion dependences are
considered.

LEMMA 4.2 (CROSS-SEGMENT DEPENDENCE SINK). The sink of a cross-segment
dependence must be labeled speculative.

PROOF. Assume the dependence sink can be labeled idempotent. Suppose
the dependence source executes after the sink. If the sink is a read reference,
no information about its access time is kept in speculative storage. Thus, the
hardware will not enforce the dependence because of HOSE Property 5. If the
sink is a write reference, it directly writes to the nonspeculative storage, vio-
lating the dependence. In both cases, the labeling criterion LC2 is not satisfied,
which contradicts the assumption.

LEMMA 4.3 (INDEPENDENT READ). A read reference x̂ that is not the sink of any
dependence can be labeled idempotent.

PROOF. LC1 does not apply to read references. Considering LC2, suppose
the reference x̂ is involved in a dependence with sink ŷ. Intrasegment depen-
dences are always satisfied because of the sequential execution of segments. A
cross-segment dependence is also satisfied because ŷ is labeled speculative by
Lemma 4.2. This means that the value of ŷ is committed at the end of the final
execution of the enclosing segment, which happens after x̂ (HOSE Properties 4
and 6). Hence LC2 is satisfied. LC3 is not applicable because there is no write
reference preceding x̂.

LEMMA 4.4 (INDEPENDENT RFW). A recurring first write (RFW) that is not the
sink of a cross-segment dependence can be labeled idempotent.

PROOF. LC1 is satisfied because the write reference is a recurring first write.
By Definition 4.1, even after a misspeculated value is written, a new value is
guaranteed to be written prior to all reads in any final execution, hence the
value is corrected.

For LC2, intrasegment dependences are always satisfied. For cross-segment
dependences, we consider two cases. Case 1: The reference x̂ is the source of a
flow-dependence with sink ŷ. This dependence is enforced by Definition 3.1 as
long as the sink is speculative. This is the case by Lemma 4.2. Case 2: There is
an output dependence from x̂ to ŷ. This dependence is also satisfied. Since ŷ is
speculative, it will be written to the nonspeculative memory upon the commit
of the segment containing ŷ, which is after the reference x̂ (HOSE Property 6).
Hence LC2 is satisfied.
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LC3 needs to be considered for the case of a flow-dependence from x̂ to ŷ. By
HOSE Property 4, the speculative read reference consumes the value from the
nonspeculative storage location if no ancestor segment contains a speculative
value for this location. This is indeed the case because x̂ is not the sink of any
other dependence, which means it is the first reference to this variable in the
region. Hence LC3 is satisfied as well.

LEMMA 4.5 (COVERED READ). A read reference ŷ that is dependent on an idem-
potent RFW reference x̂ within the same segment can be labeled idempotent.

PROOF. LC2 and LC3 need to be considered. For LC2, all intrasegment de-
pendences are satisfied because of the sequential execution of segments. Write
references are only labeled idempotent with Lemma 4.4. Such references do not
depend on older segments, hence ŷ cannot be the sink of a cross-segment depen-
dence. On the other hand, ŷ can be the source of a cross-segment dependence.
Such a dependence is satisfied; the proof is the same as in Lemma 4.3. There-
fore, LC2 is satisfied. LC3 is also satisfied because an idempotent ŷ correctly
reads the value generated by an idempotent x̂ in nonspeculative storage.

For completeness, the following simple lemma deals with fully independent
regions.

LEMMA 4.6 (FULLY INDEPENDENT). All references of a region whose segments
do not carry any data-dependences or control-dependences can be labeled
idempotent.

PROOF. A region without any data- and control-dependences across seg-
ments is completely nonspeculative, that is, all segments are executed only
in their correct final form, without any violations of data- and control-
dependences. The execution will not perform roll-backs. Hence, all shared ref-
erences happen exactly when in their final and correct form. Labeling them as
idempotent satisfies all three labeling criteria trivially.

Lemmas 4.2 through 4.5 provide the basis for proving necessary and suf-
ficient conditions for idempotent read and write references in segments that
include dependences.

THEOREM 4.7 (IDEMPOTENT WRITE). A write reference is idempotent if and
only if it is a recurring first write and is not the sink of a cross-segment
dependence.

THEOREM 4.8 (IDEMPOTENT READ). A read reference is idempotent if and only
if it is not the sink of any data-dependence or is dependent on an idempotent
write reference within the same segment.

PROOF (IDEMPOTENT WRITE). By Lemma 4.4, an RFW that is not the sink of a
cross-segment dependence can be labeled idempotent.

We prove the converse by contradiction. We show that a write reference that
is the sink of a cross-segment dependence or is not an RFW cannot be labeled
idempotent. By Lemma 4.2, a cross-segment dependence sink cannot be labeled
idempotent. If a reference, x̂, to variable v is not an RFW, then after the enclosing
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segment rolls-back, execution can take a path that (Case 1) does not reference
v or (Case 2) first reads from v. Case 1 cannot be labeled idempotent because
x̂ may have written an incorrect value that is never corrected. Case 2 cannot
be labeled idempotent because the read reference would consume the incorrect
value written by v̂. In both cases, LC1 would be violated.

PROOF (IDEMPOTENT READ). By Lemma 4.3, a read reference that is not the
sink of a data-dependence can be labeled idempotent. By Lemma 4.5, a read can
also be labeled idempotent if it is dependent on an idempotent write reference
within the same segment.

We prove the converse by contradiction. We show that a read reference can-
not be labeled idempotent if it is dependent on a source that is not an idem-
potent write reference within the same segment. There are two cases: (Case 1)
The source is in a different segment; and (Case 2) the source within the same
segment is labeled speculative. By Lemma 4.2, a dependence sink cannot be
labeled idempotent in Case 1. Case 2 directly violates LC3 because an idempo-
tent read will not consume the value written by a preceeding speculative write
reference.

4.1 Discussion: Idempotency Categories

We can describe idempotent references in the form of the following categories.
The first category deals with the simple case of program regions that can be
detected as fully parallel by a compiler.

Fully Independent. If there are no cross-segment data- and control-
dependences, then all references in a region, R, are idempotent. No individual
access labeling would be necessary for this category. No data needs to be placed
in speculative storage. Essentially, this means that the region can be run as
in a conventional multiprocessor. The next three categories are applicable to
regions that have data-dependences.

Read-Only. All references to read-only variables in a region are idempotent.
These references are not sinks of any dependence. Note that although very
intuitive, the idempotency property for read-only variables in code sections
containing both dependent and independent references is nontrivial because of
the interaction of idempotent and speculative references. This is shown in the
proof of Lemma 4.3.

Private. All references to segment-private data are idempotent. This category
is relevant for compilers that can recognize private variables and express this
information such that the architecture or runtime system can provide a private
address space for each segment. Alternatively, the compiler can apply data
renaming, with the result that the references will fall into the next category.
Important in our analysis are the facts that private variables do not have any
cross-segment dependences and are not live past the end of the segment.

Shared Dependent. The fact that there are data-dependent references that
do not need to be placed in speculative storage is most remarkable. Essentially,
only the sinks of cross-segment data-dependences need to be labeled specula-
tive. Within a segment, all references following a write that is guaranteed to
happen, and happen again after a misspeculation, can be labeled idempotent.
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Fig. 2. Example code with control- and data-dependence graphs. The region R contains five seg-

ments, R0, . . . , R4.

It is important to note that these write references may produce temporarily
incorrect values in nonspeculative memory. The idempotency property guaran-
tees that correctness is still ensured.

Examples. Figure 2 shows several examples. By Definition 4.1, RFW(R0) =
{C, N, J}, RFW(R1) = {E, J}, RFW(R2) = {A}, RFW(R3) = {A}, and RFW(R4) = {F}. The
reference to B in R2 is not an RFW because the reference to B is not guaranteed
to execute if R2 is rolled-back. Similarly, the reference to B in R3 is not an
RFW. The write reference to H in R4 is preceeded by a read. The references
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to K(E) in R2 and R3 are not RFWs because E is not read-only. All the RFW
references are idempotent, except for J in R1 and F in R4. These references to
J and F are not idempotent by Lemma 4.4 because they are the sink of output
and antidependences from R0.

The read references to N in R2 and E in R3, and a write reference to F in R4 are
speculative by Lemma 4.2 because they are sinks of cross-segment dependences.
All references to variable G in R, F in R0, and the read of H in R4 are idempotent
by Lemma 4.3 because they are independent reads. The read references to N
and C in R0, A in R3, and F in R4 are idempotent by Lemma 4.5 because they
are covered reads.

4.2 Compiler Algorithms

4.2.1 Prerequisite Analysis. The prerequisites for our algorithm are as fol-
lows. The compiler identifies regions and segments. The algorithm for defining
regions and segments is not part of the presented article. In our evaluation, re-
gions are loops and segments are loop iterations. Furthermore, we assume that
read-only variables, private variables, and data-dependences have been ana-
lyzed with state-of-the-art compiler techniques (e.g., Banerjee [1988], Tu and
Padua [1993]). The following algorithm finds recurring first write references.

4.2.2 Analyzing Recurring First Write References. Recall that by Defini-
tion 4.1, a write reference to a variable, x, in segment Ri is an RFW if x is first
written on all possible paths p, where p is a path from the end of any ancestor
of Ri to the end of R. The basic idea of the following graph algorithm is to mark
all successors of a segment as non-RFWs for a given variable x if any successor
has an exposed read reference to x.

Algorithm 4.9. Identifying recurring first write references in a region R:
Let G be a graph with nodes, V , representing segments Ri, and edges, E,
representing control paths between segments. An extra node, vexit, is placed at
the exit of R. Er refers to the reversed edges, and Gr = (V , Er ) is referred
to as the reversed segment graph, with vexit becoming the first node. Nodes
have the following two attributes for each variable: color (Black, White) and
reference type (Write, Read, Null). For a given node v and variable x, either
all write references to x in v are RFWs (White) or none are RFWs (Black). The
algorithm finds this property.

(1) Initially, for each node v and variable x, set the color to White and set the
reference type as follows:
—If x is defined on all paths through segment v without exposed read,2

then set the reference type to Write.
—Else, if there is an exposed read of x, then set Read.
—Else (no reference to x in v), set Null.
Set vexit for x as Read if x is live out of R, and Null otherwise.

(2) Search Gr (depth- or breadth-first). From each node with reference type
Read, mark all Null successor nodes Read.

2We refer to standard compiler techniques for analyzing must-definitions and exposed reads.
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(3) Search G (depth- or breadth-first). From each node v, if v is Black or any
successor has reference type Read, color all successors Black.

(4) All write references to x in White nodes are recurring first writes.

The complexity of the algorithm is O(|V |+ |E|) for each variable because the
steps of Algorithm 4.9 have the following complexity:

(1) O(|V |), visits each node once

(2) O(|V | + |E|), graph search

(3) O(|V | + |E|), graph search

(4) O(|V |), visits each node once

LEMMA 4.10 (CORRECTNESS OF ALGORITHM 4.9). The write references in White
nodes are recurring first writes of a region, R.

PROOF. Let x be a variable to which Algorithm 4.9 has identified RFW refer-
ences in segment Wm. We prove that after Wm is rolled-back, x will get written
again before any read access to x. Proof by contradiction.

Suppose the segment Wm, containing an RFW write to variable x, is rolled-
back and the first subsequent access to x is a read reference in segment Rn.
Wm has White color, Rn has reference type Read. Let P be the node to the end
of which the execution is rolled-back. W1 through Wm−1 are the nodes on the
path from P to Wm. R1 through Rn−1 are the nodes on the path from P to Rn.
Initially, the nodes R1 through Rn−1 had reference type Null. Step 2 marked
all of them Read, since Rn is Read. Step 3, when visiting P , colored W1 Black
because R1 is Read, and subsequently also colored all nodes W2 through Wm
Black. This contradicts the assumption that Wm is White.

Note that the algorithm relies on the compiler’s ability to identify references
that go to the same address. Two references, x̂ and ŷ, cannot be assumed to
access the same variable if there is any execution scenario in which the address
may be different. Examples of such scenarios are subscripted array subscripts
or variables whose address itself may be speculative. Both the programming
language used and the architecture may give guarantees that certain addresses
are always correct. In our initial implementation, we use Fortran programs
whose variable addresses are statically known. In addition, we rely on our
architecture’s ability to guarantee that loop variables are nonspeculative (this
is implemented through proper synchronization). Therefore, our compiler can
assume that all array references using affine subscript expressions have correct
addresses and thus are candidates for recurring first writes.

Figure 3 shows examples of finding RFWs for variables x, y , and z. In
Figure 3(b) and (d), the write references in all successors of segment 3 can-
not be RFW because the segement has two paths to Read and Write passing a
Null node. In Figure 3(c), the write references in all successors of segment 3
may be RFW because it only has paths to Write nodes.

4.2.3 Labeling Idempotent References. Given a region R, the algorithm
labels all idempotent references.
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Fig. 3. Example of recurring first writes (a) control flow diagrams of segments (b) graph marked

for variable x (c) variable y and (d) variable z.

Algorithm 4.11. Identifying idempotent references in region R. At the be-
ginning, all references are labeled speculative.

(1) Analyze read-only, private, and reference-by-reference dependence of
shared variables in R (using classical analysis).

(2) Analyze first recurring write references (using Algorithm 4.9).

(3) If R is fully independent with respect to data- and control-dependences,
then

—Label all references in R as idempotent.

(4) Otherwise (dependent region),
—Label all read-only references as idempotent.
—Label all private references as idempotent.
—For each RFW reference, if the reference is not the sink of a cross-

segment dependence, label the reference as idempotent.
—For each read reference, label the reference idempotent if

—the reference is not the sink of any dependence or
—the reference is the sink of an intrasegment dependence and the

source is labeled idempotent.

Example. Figure 4 shows a serial loop, BUTS do1 in APPLU, which includes
many nested small loops. The outermost loop is defined as our region and is
parallelized speculatively by selecting each iteration (k) as a segment. The loop
contains only one shared variable, v. Both references to v in statement S2 are
dependent on the three references in S1. All three references are dependence
sources only, and hence can be labeled as idempotent by Theorem 4.8. Since the
references in S2 are dependence sinks, they must remain speculative.
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Fig. 4. Idempotent and speculative references in APPLU BUTS do1.

5. EVALUATION

In this section, we empirically quantify execution overhead under HOSE, eval-
uate the opportunity for labeling idempotent references in nonparallelizable
code, and present performance results on applying our labeling algorithm on
a selected group of segments. In the following, we first present an overview of
our compiler infrastructure and experimental methodology.

We have developed a preliminary version of our algorithm on top of the Multi-
plex [Ooi et al. 2001] compiler. Multiplex is a proposal for a chip multiprocessor
supporting both conventional and speculative execution of threads (i.e., seg-
ments). The Multiplex compiler integrates the Polaris [Blume et al. 1996] and
Multiscalar compiler [Vijaykumar and Sohi 1998] into a single infrastructure
for generating conventional and speculative threaded code.

We execute the code on a cycle-accurate simulator of Multiplex. In the rest of
this article, we assume Multiplex chips with four processors. Multiplex provides
per-processor speculative storage which is backed up by a full memory hierar-
chy serving as nonspeculative storage. The compiler communicates reference
idempotency labels for memory instructions to the hardware so as to allow by-
passing the speculative storage and placing the data directly in nonspeculative
storage. As in conventional multiprocessors, the runtime system allocates a pri-
vate stack for every segment. The compiler transforms and places the private
variables into these per-segment private stacks.

5.1 Speculative Storage Overflow in HOSE

We have argued that execution under HOSE incurs significant speculative stor-
age overflow. Figure 5 quantifies this problem. It shows the overheads incurred
by a number of test programs taken from the SPEC CPU95 and the Perfect
benchmark suites. We used the train data set for the SPEC benchmarks.3 The

3In the interest of reduced simulation time, we have reduced the train data set in SU2COR, TOMCATV,

HYDRO2D, and SWIM.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 5, September 2006.



960 • S. W. Kim et al.

Fig. 5. Execution overheads in speculative executions. The y-axis illustrates overhead using 1M-

entry (left) and 4k-entry (right) speculative storage, respectively. Both the 4k-entry and 1M-entry

numbers are measured overheads in cycles that are normalized to total execution time using 1M-

entry storage. The figure shows overhead breakdown of speculative storage overflow and the sum

of all other execution overheads (e.g., memory and pipeline stalls, runtime libraries, etc.). The

difference between the 1M-bars and 100% represents useful work.

figure compares and contrasts execution overhead for Multiplex chips with a
4k-entry per-processor speculative storage that is representative of practical
implementations, and a 1M-entry per-processor speculative storage that serves
as a reference point to gauge the opportunity for reducing overhead. Each stor-
age entry corresponds to a byte of data, which is the smallest data unit for
which Multiplex tracks and enforces dependences. Segments have been chosen
so that maximum program parallelism is extracted.

The figure indicates that the limited capacity of speculative storage intro-
duces significant execution overhead and prevents the system from extracting
parallelism. The actual magnitude of the overhead also varies across applica-
tions, with applications that use larger segments to extract a high degree of
parallelism (e.g., TOMCATV, HYDRO2D, SWIM, and MGRID) incurring higher spec-
ulative storage overhead. The figure also indicates that speculative storage
overflow is completely absent in the large storage runs. As a result, a large
opportunity for labeling idempotent references would reduce the pressure on
the speculative storage and thereby reduce the likelihood for overflow.

5.2 Labeling Idempotent References

In this section, we first evaluate the opportunity for labeling idempotent ref-
erences in all of our benchmarks. Next, we present the performance results of
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Fig. 6. Fraction of idempotent references in code sections that cannot be detected as parallel.

It shows the dynamic counts of idempotent references in the categories read-only, private, and

shared-dependent.

removing idempotent references from speculative storage for selected groups
of nonparallelizable loops. Each group of loops exhibits a large opportunity for
labeling a specific category of idempotent references. The goal of these results is
to provide a proof of concept, and not exhaustive evaluation. The loops shown
are representative of the nonparallelizable code sections in our benchmarks.
As parallel code sections are trivially idempotent, adding these numbers would
inflate our results, hence they are excluded.

A key question in this work is what fraction of the total references our algo-
rithm can identify as idempotent in nonparallelizable code sections. To answer
this question, we extracted from all benchmarks the code sections that could not
be automatically parallelized by our compiler. Note that the parallelizable code
sections are “uninteresting” from the point of view of this article, because all
data references can be marked idempotent (as shown in Lemma 4.6). Figure 6
shows the fraction of total references in nonparallelizable code sections that
our analysis was able to detect as idempotent. In 7 out of the 13 benchmarks,
more than 60% of these references are idempotent. The largest fraction is read-
only idempotent variables. In four programs there is a substantial fraction of
private idempotent variables. Most important is that the category of shared-
dependent idempotent variables is a significant fraction of 5 benchmarks. These
benchmarks with few or no idempotent variables fall into two opposing cate-
gories. SWIM, TRFD, and ARC2D are fully parallel programs, while FPPPP is known
to be highly unstructured and difficult to analyze.

Figure 7 shows a selection of loops, MAIN do80 in TOMCATV, and PARMVR do120
and PARMVR do140 in WAVE5, that have idempotent references in the read-only
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Fig. 7. Examples of loops for idempotency category read-only references: (a) ratio of read-

only references to total memory references, and (b) loop speedups before and after reference

labeling.

Fig. 8. Examples of loops for idempotency category private references: (a) ratio of private read

and write references to total memory references, and (b) loop speedups before and after reference

labeling.

category. The figure shows the distribution of read-only references with respect
to the total memory references under CASE. It also shows loop speedups relative
to a uniprocessor. Labeling the idempotent references in these loops reduces
the pressure on the speculative storage, allowing for significant reductions in
execution time. While array reduction can make the two loops in WAVE5 fully
independent, it would also introduce significant execution overheads, offsetting
the gains from the transformation.

Figure 8 shows the fraction of references and speedups under CASE in two
loops, DRCFT do2 in TURB3D and SETBV do2 in APPLU, that have idempotent ref-
erences in the private category. In SETBV do2, a significant fraction (about half)
of the total memory references are private. In our system, private variables
are implemented in software on per-segment stacks, the setup of which adds
a large number of instructions to each segment. Nevertheless, there are small
speedup gains under CASE, as compared to HOSE.

Figure 9 shows loops including idempotent references in the shared-
dependent and read-only categories. The figure shows idempotent references
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Fig. 9. Examples of loops for idempotency category shared-dependent: (a) ratio of idempotent

references to the total memory references, and (b) loop speedups before and after reference labeling.

Fig. 10. Examples of loops for idempotency category fully independent regions: (a) ratio of idem-

potent references, and (b) loop speedups before and after reference labeling.

as a fraction of the total number of references, and the corresponding loop
speedups after labeling under both HOSE and CASE. The ability to remove
shared-dependent references from speculative storage is one of the most ad-
vanced qualities of the presented compiler techniques. The fact that there are
program sections with more than 50% idempotent shared-dependent references
is an important result. Note that these loops are not independent and thus can-
not be parallelized with state-of-the-art compiler technology.

Figure 10 includes all references in fully independent regions in three major
loops of the program MGRID. This category applies to do-loops with fully inde-
pendent iterations. CASE improves the performance significantly as compared
to HOSE, which incurs significant speculative storage overflow. Figure10(b)
shows that read-only references represent the major category of idempotent
references in RESID do600 and PSINV do600, and write shared references repre-
sent the major category in ZRAN3 do400.

Impact of Architecure Parameters. We now briefly discuss the impact of
architectural parameters on reference idempotency. Because the results in
Figures 6 through 10 show the variable-level behavior of the programs, they are
not architecture-dependent. These results do not depend on system granularity
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such as cache block size. However, because speculative storage is implemented
through the cache hierarchy in many proposals, the parameters of the hierar-
chy affect the effectiveness of our technique. Needless to say, the smaller or
less associative the cache is, the larger the chances of overflow. The L1 and
even L2 caches are usually small and not sufficiently highly associative (e.g.,
32k two-way set-associative L1 cache) to maintain low access latencies. Even as
technology scales to allow more transistors and larger caches, L1 and L2 caches
will continue to be small (although more transistors may allow L3 or L4 caches),
especially because the clock will also scale to higher speeds. Apart from size and
associativity, cache block size also impacts the effectiveness of our technique.
If both idempotent and nonidempotent references fall within the same cache
block, then the entire cache block has to be buffered in speculative storage and
may incur speculative storage overflow. If cache block size increases, then this
false-sharing effect will worsen. To mitigate this effect, the compiler could be
used to pad memory allocation such that variables with idempotent references
do not share a cache block with nonidempotent variables. However, this re-
quirement is no different from what is needed in conventional multiprocessors
to avoid false-sharing due to hardware-cache-coherence granularity.

6. CONCLUSIONS

We have discovered a new program property, called reference idempotency, to
alleviate speculative storage overflow, hitherto a critical limitation of specu-
lative execution. Idempotent references’ key feature is that they do not cause
any data-dependence violations on their own, although they may propagate
incorrect values. Because the initial incorrect values are eventually corrected
and propagated, idempotent references need not be tracked in speculative stor-
age even though the reference is temporarily incorrect. Idempotent references,
even from nonparallelizable program sections, can directly access nonspecula-
tive storage. By filtering out idempotent references, we reduce the demand for
speculative storage space in large threads, uncovering more parallelism with-
out incurring much overflow.

We defined a formal framework for idempotency and presented a novel
compiler-assisted speculative execution model. We proved the necessary and
sufficient conditions for reference idempotency under our model. We also pre-
sented a compiler algorithm to label idempotent memory references for the
hardware. Experimental results show that for our benchmarks, over 60% of the
references in nonparallelizable code sections are idempotent.

Reference idempotency enables compilers to deal with code sections that are
unanalyzable by classical compiler techniques. The current generation of com-
pilers is most capable of optimizing program sections for which the absence of
data-dependences can be proven. While such analysis applies to many regu-
lar programs, a large number of programs are irregular in nature. Reference
idempotency applies to these very programs. With architectural support—in
the form of the proposed compiler-assisted speculative execution model—it en-
ables new optimizations just where conventional compiler techniques face hard
limits.
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