
HYDRO: A HETEROGENEOUS DISTRIBUTED DATABASE SYSTEM

WHliam Perrizol

Joseph Rajkumar and Prabhu Ram

Computer Science, Box 5075
North Dakota State University

Fargo ND 58105

ABSTRACT

In this paper we show how global serializability and

atomic commit can be attained in a Heterogeneous Dis-

tributed Database Management System in which each

local DBMS is assumed to be an off-the-shelf, binary-

licensed commercial product providing the IBM SAA

Common Programming Interface ([SAA88]). Our
HYDRO system achieves global serializability using a
set of objects based on the Request Order Linked List or
ROLL object developed in [PER89] and [PER91].
ROLL is based on the general Serialization Graph Test
methodology ([BER87]), and provides freedom from
idle-wait, deadJock, livelock and restart. Atomic com-
mitment is based on Two-Phase Commit. Two options
are offered to achieve the PREPARED state locally.
HYDRO-I achieves the PREPARED state by protecting
writes during the uncertainty period. HYDRO-H pro-
vides more concurrency, but raises the commitment

overhead in the absence of a visible PREPARED state
offered by the local DBMS.

1. INTRODUCTION

Rapid advancements in communication and networking
technology are dramatically changing the way in which
data are processed. More and more enterprises are
interested in integrating and consolidating their physi-

cally dispersed data resources. Accordingly, a level of
database management software is needed for access to
data from pre-existing database systems located around a

computer network (from’ a variety of database vendors
and based on a variety of models). Such systems are
called Heterogeneous Distributed Database Management
Systems (HDDBMSS) or Multidatabase Systems
([BRE90]).

Ideally, an HDDBMS would provide transparent,
efficient global transaction atomicity, comectness, isolat-

‘ F’afddl)’ SUppOft~ by USAFOSR grant F19628-86-K-0019.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ion and durability. Atomicity means that global transac-
tions must be all-or-nothing units, just as local transac-
tions are all-or-nothing units of local database work. For
correctness we will use global serializability, namely
transaction effects are globally equivalent to some serial
order, of execution. Global serializability is a natural
correctness criterion, as it is almost universally used in
local database management systems and provides full
correctness for multipurpose data management environ-
ments. Isolation means that each user is given the illu-
sion of being the sole user of the system. Durability
means that the effects of global transactions are never
lost once the transaction is committed.

In this paper we describe an HDDBMS, called Hetero-
geneously Distributed Request Ordering (HYDRO) sys-
tem, which is being developed at North Dakota State

University with the support of IBM ABS in Rochester,
MN. HYDRO is intended for heterogeneous distributed

database management in a networked environment con-
taining IBM AS/400 Database Management Systems
together with other systems. HYDRO uses global serial-
izability y as a correctness criterion. In our model, full
local autonomy is provided, where full local autonomy is
taken to mean that each local DBMS is an off-the-shelf,
binary-licensed commercial product which provides
local correctness, local recoverability, local atomic com-
mit and some superset of the IBM SAA Common Pro-

gramming Interface ([SAA88]). At each site, HYDRO
has a local server module (LHYDRO) which is custom-
ized to take advantage of the local interface provided by
the DBMS software at that site. Local database inter-
faces are assumed to provide transaction definition con-
structs which are conceptual (not necessarily syntactic)
supersets of IBM’s SAA Common Programmi ng Inter-
face ([SAA88]). The sole superset feature beyond SAA,
considered at this time, is a “PREPARE” statement
which, when issued and acknowledged, guarantees to the
issuer that neither a COMMIT nor a ROLLBACK state-
ment will be rejected. Some, but certainty not all com-
mercial systems provide a visible PREPARED state in
this sense (SYBASE[tmJ, for instance does). We have
developed two local server options. The first local
server option, LHYDRO-1, is used at sites where a visi-
ble PREPARED is not available. The second local
server option, LHYDRO-11, can be used at any site, but
at sites where the visible PREPARED state is not

@ 1991 ACM 0-89791 -425 -2/91 /0005 /0032 . ..$1 .!50

32

http://crossmark.crossref.org/dialog/?doi=10.1145%2F119995.115794&domain=pdf&date_stamp=1991-04-01

available, considerable additional commit overhead
results. The two servers are designed to be interoper-
able.

Many advanced distributed database applications are not
well accommodated by the standard recovery using full
atomic commitment. Currently, research is being done
on transaction management in which global atomic com-
mitment is relaxed ([TUL90], [KOR90]). By relaxing
the atomicity of commit, long duration and nested tran-
saction can be better accommodated. However, in the
presence of failure, compensating transactions must then
be used to produce acceptable database states through
semantic UNDO procedures ([KOR90]). These pro-
cedures require high levels of local control which may
not be possible in the presence of full local autonomy.
Also, many standard database applications still require
full atomic commit for acceptably correct execution.
Full atomic commitment in HDDBMSS is not a solved
problem. As yet there have been very few proposed
methods advanced for full atomic commitment in an
HDDBMSS ([BRE90]). Our present work in HYDRO
concentrates on providing full atomic commitment, in
both HYDRO-I and HYDRO-11. In the future, rdtema-
tives will be investigated to add non-atomic commitment
options.

In HYDRO, local transactions are routed through the
local HYDRO server module prior to being submitted to
the autonomous local DBMS. In most operating system
environments this can be accomplished by giving the
local HYDRO server the same name, look and feel as

the local DBMS (e.g., a shell on UNIX[tm] systems
would allow the placement of the server code higher in
the execution search path than the local DBMS).

In this paper we show how global serializability and
atomic commit can be attained in HDDBMSS through
HYDRO and describe current and future activities. In
Section 2, we review our basic concurrency control
object, the Request Order Linked Lkt object (ROLL, see
[PER91] for further details). In section 3, we define our
transaction model and define two versions of HYDRO
using the ROLL object. In Section 4, we describe how
HYDRO-I and HYDRO-11 achieve atomic commitment.
In section 5, we give the conclusions and discuss future
work.

2. REQUEST ORDERED LINKED LIST CON-
CURRENCY CONTROL

Most DBMSS use one of the two most common
approaches to concurrency control namely, a waiting
policy or a restart policy. Locking methods are waiting
policies which use data locking to provide concurrency
control. They can cause unnecessary periods of idle

waiting and can also cause deadlocks in which two or
more transactions are involved in a cyclic wait. To
avoid deadlocks, some form of prevention or avoidance
technique is required, adding complexity and delays to
the system ([ESW76], [BER87]). Timestamp based pro-
tocols use transaction timestamps and restarting to elim-
inate access orders which will result in errors. It is pos-

sible that certain transactions in this policy may be
repeatedly stopped and restarted resulting in a problem
known as “livelock” ([BER87]). The phenomena of
waiting and restarting are never desirable. We now
describe the Request Order Linked List (ROLL) object,
which can be used to minimize waiting and restarting,
while providing correct serializable and recoverable exe-
cutions.

The ROLL method is based on the serialization graph
tester (SGT) approach ([BER87]). A serialization graph
tester maintains the stored serialization graph (SSG)
which contains all pertinent conflict information. The
SGT approach is optimal in the sense that no serializable
execution is ever rejected. SGT attains serializable exe-
cutions by ensuring the SSG always remains acyclic
([BER87]).

In the ROLL method data item requests are indicated
using a bh-vector in which each bit position corresponds
to a different data item (1 means request and O means no
request), n bits assigned to each data item if n lock
modes are to be assigned (ie. 2 bits if read and write
locks are used). The ROLL is a linked list or FIFO
queue of bit vectors and is the only data structure

accessed by transactions. Conceptually, each individual
element of the ROLL is owned by a transaction. Each
transaction can access the ROLL either through its ele-
ment or through the tail pointer. Three operations,
namely, POST, CHECK and RELEASE are associated
with the ROLL object. Except for the two pointer set-
ting actions in POST all actions in each of the operations
can be done in parallel. Briefly, POST is an atomic
“enqueue” operation in which a transaction establishes
its data needs and precedence order by POST@g a
Request Vector (RV). Assuming it is desirable to distin-

guish between read and write mode requests, a consecu-
tive pair of bits is assigned to each data item (a read bit
and a write bit). The RV has 1-bits in those read-bit-
positions corresponding to data items to be read and 1-
bits in those write-bit-positions corresponding to data
items to be written. CHECK is an operation which
allows a transaction to determine, at any point in time,
exactly which needed data items are available for
immediate use. To CHECK, a transaction logically ORS
all RVS ahead of its own in the ROLL. Then a logical
AND of the compliment of this vector with its own
determines exactly those items which are currently avail-
able. The RELEASE operation allows a transaction to
give access to a data item to the next requesting transac-
tion by simply flipping the corresponding bit to zero.

33

For a more detailed description
reader is referred to [Pl?!?!l 1].

of these operations the

Head Pointer

A

Basic ROLL Structure

I

10111 OOOOOOO1lO1... O11A

t

I
I

010011110 OOOIOIO. .. O1OL

A

Tail Pointer

Figure 1. The basic ROLL Object Data Structure.

Two apparent problems may leap to mind at this point,
the size of the Request Vectors in ROLL and its apparent
static-ness. We pause at this point to address these
issues. Fwst, we note that the number of data items is
small whenever the granularity is course. For instance in
a HDDBMS using site level granularity, the number of
bits will be equal to the number of sites. When fine
granularity is needed, by partitioning the ROLL (eg.
along file boundaries or even more finely, by ranges of
keys within files) and providing a separate ROLL for
each partition, a substantial decrease in the number of
zero-bhs can be realized ([PER91]). Furthermore, tuple
surrogates (RIDs [BER87], RRNs [AST88],..) can be
used to provide the mapping of records to bit-positions.
in which case, each partition ROLL has bit-length equal

only to the cardinality of the partition itself. Of course,
since the size would then change over time, slightly
modified basic operations must be used ([PER91]).

Secondly, once the operations are modified to handle
changing RV lengths, the apparent static-ness

requirement disappears, The bit vector could be made
sufficiently long to accommodate expected size growth
and the mapping of items to positions could be done so
that positions are reused once they are freed. In the par-
titioned ROLL case, the same solutions apply to indivi-
dual partitions and new ROLLS can be added as new
portions (files) are created.

It is shown in [PER91] that ROLL concurrency control
is correct. (ie. produces only serializable executions).
We can summarize the proof as follows. A transaction
may not access a data item until all precdng conflicting
transactions in the ROLL have released it. Every opera-
tion the transaction performs which conflicts with an
operation of a preceding transaction in the list must fol-
low the operations of that transaction. Thus the seriali-

zation partial order is always equivalent to the POSTlng
order and therefore serializable (even though the execu-
tion may not be done in the POSTing order).

Basic ROLL is idle-wait, deadlock, livelock and restart
free, In terms of the ordering of data item requests made
by a transaction, Inverse Hotness Ordering ([PER88]) is
automatically implemented. The simplest and most
accurate measure of hotness of data items is immediate
availability. With ROLL, all immediately available
items are granted and unavailable (hot) items are made
available as soon as possible. ROLL also automatically
accommodates an incremental on-the-fly read similar to
that described in [PU88] (a standard global-read-
transaction [PER91]).

The main cause of delay in waiting policies, such as
Two-Phase Locking (2PL), is the single system
scheduler. The ROLL method does not use a schedule~
instead, each transaction POSTS its requests and moni-
tors the availability of requested items using the CHECK
operation, which is a series of simple, fast steps which
are executed in parallel. While 2PL does not require
predeclaration of data needs, ROLL does. Modifications
to accommodate non-predechwative transactions are
described in ([PER91J). These modifications necessarily
introduce the possibility of restart (at least partial restart)
which is shown to be unavoidable in all non-
predeclarative methods (Theorem 2, (PER91]). The
details of non-predeclarative ROLL are beyond the
scope of this paper, as both HYDRO-I and HYDRO-11

employ the basic predeclarative ROLL. The main cause
of delay in Timestamp Ordering systems is transaction
restart. Since the basic ROLL method employed in
HYDRO does not use restart to manage conflicts, this
serious performance drawback does not exist.

3. HYDRO

As stated previously, we believe that many HDDBMSS
will be developed bottom-up to accommodate currently

34

existing local DBMSS. Thus, we assume each local
DBMS is an off-the-shelf, binary-licensed commercial
product which supports local correctness through serial-
izability, recoverability and atomic commit. Our model
includes full local autonomy as defined by Elmagarmid

([ELM88]). Unlike Elmagarmid, however, we route
local transactions through the local HYDRO (LHYDRO)
module prior to being submitted to the local DBMS. In
most operating system environments this can be accom-
plished by coding the LHYDRO with the same name,

look and feel as the local DBMS (e.g., a LHYDRO shell
on UNIX[tm] systems would allow the placement of the
LHYDRO code higher in the execution search path than
the local DBMS).

In our model, each global transaction Gi, is assigned a

Global Transaction Manager, GTMi. There is a Global
HYDRO object, GHYDRO, available to global transac-
tions. GHYDRO and each GTM can be viewed, for sim-
plicity, as centralized. A GTM must interact with the
GHYDRO (possibly over the network) to determine
when it can begin processing at a site. When GTMi has
been cleared to process at site-j, it creates a cohort Local
Transaction Manager process, GSTMj i, at site-j which
manages the interaction at that site. Each GSTh4j must
interact with a local HYDRO object, LHYDRO, to
determine when it can begin to access the local DBMS at
that site. Local transactions are intercepted by LHY-
DRO and assigned local transaction managers, as well.
Thus, at the local level, global subtransactions and local
transactions are treated similarly.

HYDRO provides global serializability y, deadlock and
Iivelock freedom, allows multiple concurrent global tran-
sactions at any site, and reduces system-wide scheduler
bottlenecks by allowing almost all concurrency control
activity to execute in parallel. GHYDRO maintains a
special SITE-ROLL in which each bit-position
corresponds to a site. A GTM POSTS a Request Vector
with a 1-bit for each site at which access is needed and

O-bits elsewhere, The LHYDRO at a local site maintains
ROLLS used to govern the submission of transactions to
the local DBMS by local Transaction Managers. The
ROLL(s) in the LHYDRO object are structured in one of
two ways. The simplest LHYDRO, called LHYDRO-1,
maintains separate ROLLS for local transactions
(LROLL) and global subtransactions (GROLL),
LHYDRO-U maintains a single ROLL for both local and
global transactions. The reason for having two LHY-

DRO objects is that LHYDRO-I can be used with
DBMSS which do not offer a “PREPARE” statement and
LHYDRO-11 will be used with those DBMSS that do
offer a “PREPARE”. In fact, both can be used for any
DBMS, but our intuition tells us that the above place-
ment pattern is best. Further study is needed on this
issue.

A global transaction begins execution by appending its
Site-Request-Vector to the SITE-ROLL in GHYDRO,
indicating its site access needs. It then CHECKS the

SITE-ROLL to determine at which of those sites it can
immediately POST a Request Vector and does so (actu-

ally the cohort GSTMS do the POSTlng), and then
reCHECKs periodically until local POSTlng is com-
pleted. A GSTM can begin processing as soon as the
local POST at its site is completed. Thus, local POSTing
is done as much in parallel as possible, while still main-

taining a consistent global serialization partial ordering.
We assume that a
mapping from the
positions.

Global Schema exists to provide ‘a
required data items to specific bit-

Lad
/

“’”-w

v\

LTM1
I

. bI
LTU

I

J$’’rj?%
Figure 2: The HYDRO-I Model.

LHYDRO-I POST and CHECK

At sites with the LHYDRO-I object, POSTlng is done as
follows. A Local Transaction Manager enqueues its
RVS to the LROLL and copies the GROLL-tail-address
as one atomic operation. A Global Subtransaction
Manager enqueues its RV to the GROLL and copies the
LROLL-tail-address as one atomic operation.

At sites with the LHYDRO-I object, CHECKing is done
as follows. An LTM for a local transaction CHECKS the
GROLL only. If there are conflicts, it waits and
reCHECKs again later (the wait duration can he a

35

function of the number of conflicts), Once there are no
conflicts, the LTM may begin interacting with the local
DBMS. A GSTM for a global transaction CHECKS both
the LROLL and the GROLL. If there are conflicts, it
waits and reCHECKs again later.

The net effect of these CHECK operations is that no

active global subtnnsaction will be path connected to
another active transaction in the serialization graph,
eliminating the possibility of indirect conflicts
([ELM88]). Direct conflicts are resolved by the local
DBMS and the compatibility of local serialization partial
orderings is enforced by the SITE-ROLL.

LHYDRO-11 POST and CHECK

At sites with the LHYDRO-H object, POSTing is done
as follows. Both LTMs and GSTMS enqueue their RVS
to the LROLL.

In LHYDRO-11 we get more concurrency by allowing

each active global subtransaction to share its

serialization-graph path-component with active local
transactions only. It must be noted, however, that the
increased concurrency is gained at the expense of con-

siderable additional atomic commit overhead, unless the
DBMS offers a “PREPARE” statement in its program-
ming interface. A “PREPARE” statement, when issued
and acknowledged, guarantees to the issuer that neither a
COMMIT nor a ROLLBACK statement will be rejected.
Since many commercial systems do not provide a full
PREPARE in this sense, and since the additional atomic
commit overhead required to make LHYDRO-H work at
such sites may be prohibitive, we recommend
LHYDRO-I be used at all such sites.

In LHYDRO-H there is just one ROLL (LROLL), but
each RV has an additional bit, called the G-bit, reserved
to indicate whether or not the transaction is global (=1)

or local (=0). At sites with the LHYDRO-11 object,
CHECKing by LTMs and GSTMS is done identically as
follows. A Transaction Manager is cleared to interact
with the local DBMS in one of two ways. The first
method provides a very fast test. The second method is
exhaustive. Before an exhaustive test is made, a fast
QUICKCHECK is attempted to determine if a local sub-
mission would result in just one active global transaction
at that site. If this is the case, then no indirect global
conflict can result, and the subtransaction can begin
interacting with the local DBMS immediately. A
QUICKCHECK is performed by comparing two simple

counter values, the number of global transactions that
were posted when the transaction was posted, and the
number of transactions that have already completed. If
the difference between these two values is less than 2,
immediate submission is permitted. If QUICKCHECK
fails then the following full CHECK algorithm is used.
In this algorithm, Own is the transaction’s vector; Temp

and Influence are two vectors that are treated algorithmi-
callyy as program variables. Temp and Influence are ini-
tialized to the value of Own. Another variable, Next, is
a cursor on the LROLL queue. It is initialized to point to
the successor vector of Own. The bitwise “AND” and
“OR” vector operations are indicated by “&” and “l”,
respectively. Assignment follows the Ada and Pascal

convention.

CHECK ALGORITHM:
Step 1.0 REPEAT

step 1.1 Temp:= Next& Temp

Step 1.2 IF (Temp != AllZeros) THEN

step 1.2.1 IF (Temp[G_bit] = 1) THEN Exit

step 1.2.2 ELSE Influence:= Next I Influence
step 1.3 Temp:= Infiuence, Next:= the next

vector in ROLL

Step 1.4 UNTIL (Next = HeadOfQueue)

Step 2.0 START-Transaction

GTM
1

%
GHYDRO

cl TM
2

\

tlGSTM:

II

LHYDRO-I; or LHYDR042

I LROLL ,,, n
-1 ~ Ill‘7LTM , I =!L-lJI

I I
Uw

DBSM1 DBSM2

Figure 3: The HYDRO-11 Model.

36

The Influence vector specifies all data influenced by the
transaction either directly or indirectly (through conflicts
with other global and local transactions). A transaction
is cleared to START in Step 2.0, only if its Influence

vector shows a direct or indirect conflict with no more

than one global transaction. Thus, no two global trart-

sactions will ever be in direct or indirect conflict with
one another. This is shown to be a necessary condhion
for globat serializability in [ELM88]. In both
LHYDRO-I and LHYDRO-11, to ensure correctness,
vector removal from a ROLL must be delayed until a
vector has become a source node in the serialization
graph testing sense [BER87]. One way to guarantee this
is to use a background process called REMOVE. The
REMOVE process could be as follows.

REMOVE(background process):
REPEAT
Dequeue Head;
Increment Counters;

UNTIL (Head = Uncommitted)

Enhancements to LHYDRO-11

Before going on to the atomic commitment details, we
pause to discuss some additions which can further
enhance the effectiveness of HYDRO-11. For example,
we have investigated alternative CHECK and REMOVE
operations that improve performance by keeping a local
WAITING list of each transaction which has CHECKed
the LROLL but failed to clear for STARTing, together
with the identifier of the first blocklng transaction ahead
of it in the LROLL. In so doing, the REMOVE process

cart submit the waiting transaction as soon as the block-
ing transaction has completed. This eliminates the need
for further CHECKing on the part of a waiting transac-
tion and allows transactions to be submitted in batches
immediately upon becoming unblocked. Note that the

above discussion deals with static transactions only. To
accommodate dynamic transactions (in which the scope
of the read and write sets becomes known only after a
certain reads have been performed), and to accommo-
date lock promotion ([BER87]), multiple POSTS per
transaction must be allowed (via rePOSTing) and all
writes locks must be delayed until the final POST.

These modifications necessarily introduce the possibility

of restart (at least partial) which is unavoidable in non-
predeclarative approaches (Theorem 2 of [PER91]).
Each succeeding element POSTed for a given transac-
tion would be a superset (have 1’s at least where its
predecessor did), and with each succeeding POST, the
previously POSTed element for that transaction can be
zeroed. Also with each succeeding POST, if conflicting
writes have intervened, the affected items must be re-
read. If the re-read changes the newly POSTed element,
new intervening writes could arise. This sequence of

events could conceivably continue indefinitely, resulting

in livelock, though it is a very remote possibility, Some
type of livelock management would be required. To

break Iivebck, the transaction could be allowed up to a
certain maximum number of separate POST operations.
Following these separate POSTS, it would be required to

post a vector containing all ones (request everything).

As soon as it is known exactly which data items it does
not need, they would be released (bits reset to O). This is
a severe action to take, but it would be very unlikely. It
does break the livelock, however, without introducing
restarts. To reduce the potential for the above
occurrence, a policy of “starving” early POSTS could be
imposed, That is, only those reads which are absolutely
necessary to establish the finat read and write sets for the
transaction would be included in early POSTS. All other
locks would be delayed until the final POST. This policy
would reduce still further the probability that the livelock

breaking action would ever be needed.

4. ATOMIC COMMIT PROTOCOLS

To achieve atomic commitment for global transactions
HYDRO-I and HYDRO-11 use a variation of the stan-
dard Two-Phase Commitment (2PC) [BER87]. Two-
Phase Commitment protocols involve a voting phase in
which all GSTMS vote yes or no in response to a
prepare-message from their GTM. Before voting yes,
the GSTM must guarantee that it cart go either way

(Commit or Abort) at that site. In the presence of full
local autonomy this state is difficult to achieve. The
second phase of a 2PC protocol is the decision phase in
which the GTM makes a decision and broadcasts it to

the GSTMS (all GSTMS must have been PREPARED in
order for the GTM to come to a Commit decision). We
discuss how to achieve the PREPARED state using
LHYDRO-I first.

Atomic Commit using LHYDRO-I

In LHYDRO-1, upon getting acknowledgment from the
local DBMS that the subtransaction has been locally
committed, and before resetting any l-bits in its RV to O,
the GSTM is in the PREPARED state. This is the case,
since the GSTM can certainly commit if the decision is
to commit. Since the local DBMS has acknowledged
commitment locally, durability of the local DBMS
guarantees that the effects of the local subtransaction are
permanent. In fact, if the decision is to commit, the

GSTM need take no action other than to release its RV
l-bits in the GROLL. If the decision sent down from the
GTM is to abort, the GSTM would submit a compensat-

ing transaction to undo its effects locally. In general,
compensating transactions are difficult to compose
([KOR90]). However in this case, since no write-bits in
the GSTM’s RV have been turned off and therefore no
over-writes or read-froms have occurred, compensation
is a simple matter of restoring the before-vatues of all
writes by that GSTM. In order to insure that thk is

37

possible, before-values would have to have been force

written to a Local-Distributed-Transaction log (LDT-
log) prior to sending the yes vote.

Ordinarily, following local commitment, the effects of
the local subtransaction are exposed and vulnerable to
access (read or overwrite). Such subsequent access can-
not be allowed until global commit, since the subsequent
accessing transactions might need to be aborted also
(cascading abort). These subsequent transactions might
well have been globally committed themselves during
the uncertainty period between the time the GSTM sends
its yes vote and the time it receives the decision mes-
sage. Durability at the local level dictates that these other
committed transactions cannot be undone. This
difficulty is circumvented in LHYDRO-1, since the
Request Vector blocks other transactions from accessing
data in’s mode which conflicts with GSTM’S access until
the l-bits in the GSTM’S RV are set to 0’s. As stated
this RELEASE operation is delayed until after globaJ

commit or abort is achieved. We note finally that Two-
Phase-Commit works in a fairly straight forward manner
with LHYDRO-I due to the fact that an active global
subtransaction is maintained as serialization-graph-
path-disconnected from other transactions at that site.

The condition that global subtransactions be path-
isolated in the serialization graph, appears to be a neces-
sary condition for the achievement of a legitimate
“PREPARED” state for fully autonomous DBMSS
without the PREPARE interface statement. Many
DBMSS, designed using the client-server architecture
(e.g. SYBASE[tm]) provide a visible PREPARED state.
For sites containing such systems, LHYDRO-11 is
recommended.

Atomic Commit using LHYDRO-11

First, if the DBMS provides a PREPARE command and
a visible PREPARED state, atomic commitment is ident-
ical to that of LHYDRO-I. Thus, we assume in the rest
of this section that no visible PREPARED state is
offered.

In LHYDRO-11 (assuming no visible PREPARED state)
the path-isolation condition of HYDRO-I must also be
achieved, but the mechanisms for achieving it are only
used when necessary. This allows more concurrent
access to local data than with LHYDRO-I. On the other
hand, when it is necessruy, it reduces concurrency
severely for a short period of time. During the uncer-
tainty period, when a global transaction can decide either
to commit or to abort, LHYDRO-H must trap all
commit-operations issued from LTMs which are path
connected to the GSTM in the serialization graph
(LROLL provides the information necessary to deter-
mine which LTMs to include). This amounts to a tem-
porary switch to LHYDRO-I in which no read-from or

over-write accesses are allowed to become permanent.
Note that only commit-operations of serialization-
graph-path-connected local transactions are trapped, so
that other transaction activities are not held up to the
same extent that they are in LHYDRO-I. If the decision
is made to commit, the trapped commit-operations can
be released. If the decision is to abort, each trapped
commit-operation must be sent on as an abort and each
GSTM must be informed of the abort. This is a severe
action which will waste considerable processing pro-
gress in the event that a GSTM votes yes but the even-
tual decision is to abort. However, this is unavoidable as
the global transaction must be an atomic global unit of
work on the database.

5. CONCLUSIONS AND FUTURE WORK

We have shown how globrd serializability and atomic
commit can be attained in a Heterogeneous Distributed
Database Management System in which full local auton-

omy is provided to the local DBMSS. HYDRO is being
developed for heterogeneous distributed database
management in a network environment containing IBM
AS/400 Database Management Systems and other sys-
tems. HYDRO uses global serializability as a correct-
ness criterion. Full local autonomy is taken to mean that
each local DBMS is an off-the-shelf, binary-licensed
commercial product which provides local correctness,
local recoverability, local atomic commit and some

superset of the IBM SAA Common Programming Inter-
face ([SAA88]).

Serializability is achieved using the Request Order
Linked List (ROLL) method within a global HYDRO

object, GHYDRO, and local HYDRO objects (LHY-
DROS) at each site. ROLL provides freedom from idle-
wait, deadlock, livelock and restart. It is based on the
general Serialization Graph Testing methodology
([BER87]), which allows all serializable executions.

At each site, HYDRO has a local server module (LHY-
DRO) which is customized to take advantage of the local
interface provided by the DBMS software at that site.
Atomic commitment is achieved using Two-Phase com-
mitment. LHYDRO-I achieves the prepared state by
protecting writes during the uncertainty period between a
yes vote and the commit or abort decision. LHYDRO-11
provides more concurrency, but raises the commitment
overhead in the absence of a visible PREPARED state
offered by the local DBMS.

Implementations of HYDRO-I and HYDRO-11 are in
progress in a HDDBMS setting consisting of a Sol-
boume machine, four Sun workstations, two NeXT
machines and two AS1400 machines. A group is also
working on simulating HYDRO-I and HYDRO-11 using
simulation languages. This could be useful when there is
a need to compare HYDRO with other approaches.

38

Work is also being done to provide non-atomic commit

and global recovery features to HYDRO-I and
HYDRO-11. Also, non-serializable concurrency control
is being investigated.

REFERENCES

[AST88] IBM Application System/400 Technology,
IBM Rochester, MN, SA21-9540-O.
[BER87] P.A Bernstein, V. Hadzilacos and N. Good-
man, Concurrency Control and Recovery in DBMS,
Addison-Wesley, 1987.

[BRE90] Breitbart, Y., Silberschatz, A., and Thompson,

G., Reliable Transaction Management in Multidatabase
Systems SIGMOD, 1990.
[ELM88] Elmagarmid, A. and Helal, A.A. , Supporting
Updates in Heterogeneous DDBMSS, IEEE Data
Engineering Conf., 1988.
[ESW76] Eswaran, K., et al, The Notions of Consistency
and Predicate Locks in a Database System, CACM, Vol.
19 No. 11, NOV. 1976, pp. 624-633
[GAR87] H. Garcia-Molina and K. Salem, SAGAS,
ACM SIGMOD 1987, pp. 249-259.
[KOR90] Korth, H.F., Levy, E. and Silberschatz, A., A
Formal Approach to Recovery by Compensating Tran-
sactions, Proc. of VLDB-90 pp. 95-106, 1990
[PER88] Perrizo, W., Luo, M. and Varvel, D., Ordering
Accesses to Improve Transaction Processing Perfor-
mance, Int’1 Conf., on Data Engineering, Los Angeles,
Feb, 1988, pp. 58-63.
[PER89] Perrizo, W. and Richter, R., Concurrency Con-
trol Using an Extended Query Language, 4th Int’1

Conference on Supercomputing, Santa Clara, CA, 1989.
[PER91] Perrizo, W., Request Order Linked List
(ROLL): A Concurrency Control Object, to appear in
IEEE Int’1 Conf. on Data Engineering, April, 1991,
Kobe, Japan.
[PU88] Pu, C., Hong J. & Wha, Performance Evalua-
tion of Global Reading of Entire Databases, Symp on
Databases in Parallel& Distr. Sys. Austin, Dec 1988.
[SAA88] System Application Architecture, Common
Programming Interface Database Reference, IBM-

SC26-4348-1, 1988.
[TUL90] NSF Workshop on Multidatabases and Seman-
tic Interoperability, Tulsa, OK, November 2-4, 1990.

39

