
Objects and Views*

Serge Abiteboult Anthony Bonner$

INRIA, 78153 LeChesnay, France

Abstract

Object-oriented databases have been introduced pri-
marily to ease the development of database applica-
tions. However, the difficulties encountered when,
for instance, trying to restructure data or integrate
databases demonstrate that the models being used still

lack flexibility. We claim that the natural way to over-

come these shortcomings is to introduce a sophisticated

view mechanism. This paper presents such a mecha-

nism, one which allows a programmer to restructure

the class hierarchy and modify the behavior and struc-

ture of objects. The mechanism allows a programmer

to specify attribute values implicitly, rather than stor-

ing them. It also allows him to introduce new classes

into the class hierarchy. These virtual classes are pop-

ulated by selecting existing objects from other classes

and by creating new objects. Fixing the identify of

new objects during database updates introduces subtle

issues into view design. Our presentation, mostly infor-

mal, leans on a number of illustrative examples meant

to emphasize the simplicity of our mechanism.

1 Introduction

Object-oriented databases [3, 14, 20] have been intro-

duced primarily to ease the development of database

applications. However, the difficulties encountered

when, for instance, trying to restructure data or in-

tegrate databases demonstrate that the models being

used still lack flexibility. We claim that the natural way

to overcome these shortcomings is to introduce a sophis-

ticated view mechanism, i.e., to provide concepts for

*This work was partially supported by a PRC BD3 grant of
the FYench government.

t abitebou@inria. inria.fr
~bonner@iuvax.cs .indiana.edu. Present address: Computer

Science Department, Indiana University, Bloomington, IN 474o5,
USA,

Permission to copy without fee all or part of this material is

granted provided that the copies are not mada or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to rspublish, requires a fea

and/or specific permission.

@ 1991 ACM 0-89791 -42!5-2/91 1000510238....$1.50

specifying particular, biased

and operations on this data.

a view mechanism.

modes of regarding data

This paper presents such

The view mechanism is presented in the context of

the 02 model [5]. However, the concepts are general

and apply to other models as well. Our work makes ex-

tensive use of existing mechanisms. Clearly, the query
language [4] is an important component in specifying
views. In addition, inheritance and overloading are ex-
tremely useful, as are database imports [9] and object
creation [2, 15, 13]. New features are introduced such
as grouping all objects with similar behaviors, and a

parameterized way of grouping objects.

Our main contribution is an analysis of the rich and

various aspects of object-oriented views and their in-

corporation in a coherent framework. The presenta-

tion, mostly informal, leans on a number of illustra-

tive examples meant to emphasize the simplicity of our

view mechanism. In the formal foundations based on

the IQL model [2], which will appear in a subsequent

work, a view is just a query, as in the relational world.

However, in the object-oriented world, the situation is

much more intricate, so we must carefully distinguish

between various kinds of view specifications.

A view mechanism should allow a programmer to re-

structure the database and modify the behavior and

structure of objects. It should also allow him to specify

attribute values implicitly, rather than storing them.

This is similar to the concept of a view found in rela-

tional and deductive databases. Perhaps more funda-

mental is the introduction of new classes into the class

hierarchy. These virtual classes are populated by select-

ing existing objects from other classes and by creating

new objects. We call these new objects imaginary, since

they have no reality except in the view.

Virtual classes are defined by specifying their popula-

tion. We provide three facilities for populating a virtual

class with existing objects: (i) declaring that the virtual

class is a superclass of certain existing classes (general-
ization), (ii) declaring that the virtual class contains all

objects returned by a given query (specialization), and

(iii) declaring that the virtual class contains all objects

having a certain behavior (behavioral generalization).

To populate a virtual class with imaginary objects, the

programmer specifies a query that returns a set of val-

ues. A new object identifier is then attached to each

value.

Once a virtual class has been defined, the internal

238

http://crossmark.crossref.org/dialog/?doi=10.1145%2F119995.115830&domain=pdf&date_stamp=1991-04-01

structure and behavior in the class are derived by the

system. The class can then be used as any other class.

For instance, new methods can be defined and existing

methods redefined. As in the presence of multiple in-

heritance, a problem that arises is schizophrenia, that

is, in more technical terms, method resolution conflicts.

A particular problem raised by imaginary objects is fix-

ing their identity during database updates.

The paper is organized as follows. Section 2 briefly

defines the model. Basic tools for importing and hiding

data are considered in the Section 3. Virtual classes

are discussed in Section 4, and imaginary objects in

Section 5. Section 6 contains a conclusion and a brief

comparison with previous work.

2 Getting Started

This short section introduces our view mechanism. Af-
ter briefly describing the database model, we argue that
the object-oriented approach is naturally suited to the
definition of views. We are then led to blur the distinc-
tion between attributes (stored values) and methods
(behaviors).

Our starting point is a standard object-oriented
database model, the Oz model [5, 16]. In this model,
the database consists of a hierarchy of classes. Each
class has an associated type, and every object (oid) in
a class has a value of this particular type. Classes also
have methods attached to them. Important features
of the model include inheritance of types and methods,
and method overloading. To keep the presentation sim-
ple, we assume in this paper that the value of an object
is a tuple. (When the value is not a tuple, i.e., when it
is a set or a list, it can be treated as a tuple with a sin-
gle field.) Each field of the tuple is called an attribute.

Since we are using the 02 model, our view definitions

use primarily the 02-query language [4]. However, we

are quite liberal with the exact syntax and assume it

to be self explanatory. Although we use a particular

database model, the concepts described are general and

are applicable to other models as well.

Virtual Attributes

Object-oriented systems present the database designer

with new choices for structuring data. For instance,

should an address be structured as three attributes,

City, Street and Number, or as a single complex at-

tribute? There is no definite answer: There are many

ways of distributing information among attributes, and

no one structure will be best for all applications. It is

therefore essential to be able to rearrange the informa-

tion within an object, so that different views can be tai-

lored to different applications. The following example

illustrates the use of our syntax in a simple restructur-

ing.

Example 1. (Merging several attributes.) Sup-

pose that class Person has attributes City, Street and

Zip. Code, each of type string. The following code

merges these three attributes into a single attribute

called Addvess:

attribute Address in class Person

has value [City: self City,

Street: self. Street,

Zip-Code: se/f. Zip-Code].

During execution, the variable self is bound to an ob-

ject in class Person, the person whose address is being

computed. The expression self. City denotes the city in

which the person lives. ❑

This example leads to our first observation: A view

mechanism should not force a distinction between at-

tributes (stored values) and methods (procedures). In

the example, Address has characteristics of both at-

tributes and methods. Address is a property of a

class, like an attribute, but its value is computed, like

a method. Furthermore, the value of Address is ac-

cessed as though it were stored. For instance, to access

Maggy’s city and address, we use the same notation:

Muggy. City, Maggy.Address. (The dot notation here

combines both dereferencing—getting the value of an

object—and field selection.) Because of this blurring of

attributes and methods, our model has only attributes,

whose values may be stored or computed. These virtual

attributes may have zero or more arguments (besides

the receiver).

An attribute is defined by a statement of the follow-

ing form:

attribute A {of type Tj in class C {has value V}

where A is the attribute name and V is a procedure.

When the has value part is missing, the attribute is

stored. The type declaration is not compulsory because

it is often the case that the type can be inferred by the

system. For instance, static type inference determines

that attribute Address in Example 1 is a tuple of type

[City :string, Street:string, Zip. Code:string]. As a gen-

eral rule, the view system should relieve the user of

mundane tasks like specifying a type when the type

can be inferred.

Since the distinction between stored attributes and

methods has been blurred, the same attribute can be

stored or computed depending on the class. For in-

stance, the declarations below specify that in class Em-

ployee, the value of Address is stored, and that in class

Manager, it is computed (even though Manager is a

subclass of Employee). This kind of overloading is pos-

sible because attributes and methods are no longer dis-

tinguished.

attribute Address in class Employee;

attribute Address in ciass Manager

has value self. Company. Address.

So far, we have only slightly modified the standard

data model, but this already provides a lot of restruc-

turing capabilities. We can now, for instance, split a

239

complex attribute into several simpler ones, or more

generally, restructure several attributes or objects si-

multaneously. For instance, the attributes

Home: [Address:U, Telephone:V]

Oflce: [Address:X, Telephone:Y]

can be restructured as

Addresses: [Home:U, O@ce:X]

Telephones: [Home: V, Ofice:Y]

The following sections complete the view mechanism

by providing facilities for hiding part of the database

and for creating new classes.

3 Importing and Hiding

In general, there can be many databases in a system.

In such systems, one database can use data from other

databases via import statements. A view can thus be

thought of as a database that imports all its data from

other databases. That is, a view has a schema, like all

databases, but no proper data of its own. This section

describes mechanisms for selecting data for use in a

view.

It is convenient to think of a view as being initially

empty, and then specify what information from other

databases should be made visible. The basic mecha-

nism for this is the import [9]. The following simple ex-

ample, defining a view called My- View, illustrates our

syntax:

create view My- View;

import all classes from database Chrysler;

import class Person from database Ford.

Semantically, when classes are imported, they become

visible together with their subclasses, the objects in the

classes, their values and behaviors.

Once data are imported, we often want to hide por-

tions of it. For instance, suppose we wish to hide

employee salaries. In a relational database, we might

have a relation called Employee with attributes such as

[Name, Number, Age, Salary]. The following select com-

mand would then define a view in which salary infor-

mation is hidden:

create view A-Relation al_ View

select [E. Name, E. Number, E.Age]

from E in Employee.

Besides being cumbersome, this approach presents the

disadvantage that the definition of the view must be

changed whenever the schema of the Employee rela-

tion changes, even if all we want to do is hide the

Salary attribute. More importantly, for object-oriented
views, this query is simply incorrect. That is, it does

more than just hide salary information; it also hides all

attributes defined in all subclasses of Employee. For

example, let Manager be a subclass of Employee hav-

ing the attributes [Name, Number,Age, Saiary,l?wiget],

where the last attribute indicates a manager’s quarterly

budget. The above query hides the budget information

of all managers, which is not what we intended. Thus,

in object-oriented databases, we must introduce an ex-

plicit hide command. We use the following declaration:

hide attribute Salary in ciass Employee.

Semantically, the definitions of Salary in class Employee

and all its subclasses are hidden from the view.

To complete the description of the import-hide mech-

anism, we observe that, in general, we can build views

on top of views on top of views, etc. In practice, we

have found that it is often sufficient to import part of

a database, define a view on top of it, and then hide

(or make private) part of the schema. The rest of the

paper therefore assumes that a view definition has the

following general structure:

create view My- View;

{ import and hide specifications}

{ class and method definitions}

{ hide specifications}

4 Virtual Classes

An object-oriented view mechanism should be able to

provide a user with a class hierarchy that is more ap-

propriate to his needs that the actual hierarchy in the

database. Some classes may be hidden and new classes

may be introduced. The rest of the paper describes

mechanisms for creating new classes, which we call vir-

tual classes.

When defining a virtual class, we must define (i) its

population, (ii) its position in the class hierarchy, and

(iii) the behavior of objects in the class. In our pro-

posal, we specify only the population, Behavior and

position in the hierarchy are then derived by the sys-

tem. The population can be specified in two ways: by

selecting objects that already exist, or by creating new

ones. This section considers the selection of existing

objects, and the next section considers the creation of

new ones. This section also introduces two notions, be-

havioral and parameterized classes, that are not found

in existing systems, and that increase the flexibility of

the view mechanism.

4.1 The Population of Virtual Classes

We consider three ways of populating a virtual class

with existing objects. Here are examples of the three:

Specialization: We can define a virtual class called

Adult consisting of all those persons who are at

least 21 years old. In this manner, a database

query is used to specify the immediate instances

of a class. Observe that in this case, the virtual

class has only “immediate instances” and no sub-

classes.

240

Generalization: Consider a database called Navy.

We can define a virtual class called Ship that in-

cludes the classes Tanker, Cruiser and Trawler,

thus specifying its subclasses and its population

at once.

Behavioral Generalization: We can define a virtual

class called Printable that includes all classes that

have a Print method. Likewise, we can define a vir-

tual class called On-Sale that includes all classes

that have price and discount attributes of appro-

priate signatures. We will see that grouping classes

based on behavior provides a lot of flexibility.

With the above examples in mind, we introduce the

following notation for declaring the population of a vir-

tual class C!

ciass C includes al, CY2,. . ..an

where each cq is either:

1. the name of a previously defined class,

2. a database query that returns a set of objects, or

3. like B, where B is a previously defined class,

Intuitively, the expression like B means, “group all

classes whose type is at least as specific as the type

of B“. Such a class may have more attributes than B,

but not fewer.

Using this notation, the examples mentioned above

are expressed as follows:

class Adult includes

(select P from Person where P. Age > 21];

class Ship includes Tanker, Cruiser, !lkawler;

class On_ Sale.Spec

has attribute Price of type dollar;

has attribute Discount of type integer;

class On_Sale includes like On_ Sale_ Spec,

These declarations define the entire population of the

virtual classes. In particular, it is not possible for a user

to insert an object directly into a virtual class. Thus, a

Ship object can only be created indirectly, by creating

an object of type Tanker, Cruiser or Trawler.

Once a virtual class is defined, it is treated just as any

other class. For instance, the programmer can define

new attributes (methods) for a virtual class, as illus-

trated in the next example. This example also illus-
trates the specification of population by specialization

and generalization at the same time.

Example 2. The following code defines a virtual class

that has both subclasses and immediate instances:

class Government_ Supported includes

Senior, Student,

(select A in Adult where A. Income < 5,000);

attribute Government- Support_ Deduction

in class Government_ Supported

has value gsd(seif).

This code defines the class Government-Supported, con-

sisting of seniors, students, and all people who earn less

than $5,OOO a year. Our intention is that people in this

class are subject to special income tax laws. In particu-

lar, they receive a tax deduction called the “government

support deduction”. (The procedure gso!(z) computes

the value of the deduction for person z.) ❑

A simple extension of the above syntax allows us to

define parametrized classes. For example, we could

define define the class Adult to be a function of an age

parameter A, as follows:

class Adult(A) includes

(select P from Person where P. Age ~ A).

This statement effectively declares infinitely many

classes, such as Adult(20) and Adub!(21), each with

a different name and a different population. (Only

finitely many of these classes will be non-empty how-

ever). We will see that parameterized classes increase

the flexibility of a view mechanism.

To conclude this section, we should observe that the

emphasis in our approach is on inference. The main

task of the view designer is to specify the population

of the new classes. As we shall see, the system then

derives the new class hierarchy and the structure and

behavior of the virtual classes. Attribute hiding and

overloading allow the designer to modify the default

behavior derived by the system.

4.2 Virtual Class Hierarchies

With the mechanisms introduced above, a programmer

can reorganize a database by defining hierarchies in

which most of the classes are virtual. These hierar-

chies are derived from the declarations of the virtual

classes. The two basic mechanisms for defining such

hierarchies are generalization and specialization, as de-

fined above. However, the flexibility and convenience

of these two mechanisms is increased by the use of be-

havioral generalization and parameterized classes. This

section describes these processes, first through exam-

ples, and then more formally,

Conceptually, a programmer can construct a vir-

tual class hierarchy in two distinct ways: top-down or

bottom-up. In the top-down approach, large classes

are divided into smaller ones via specialization. (The

analogous operation in relational systems is to define a

virtual table by selecting tuples from a larger table.) In

the bottom-up approach, small classes are combined to
form larger classes via generalization. (The analogous

241

operation in relational systems is to define a virtual ta-

ble as the union of several smaller tables.) The follow-

ing examples illustrate the construction of virtual class

hierarchies in the top-down and bottom-up modes.

Example 3. (Top-down construction of a virtual class

hierarchy.) Starting from the class Pemon, we first

define two subclasses, called Adult and Minor. We then

define a subclass of Adult, called Senior, and a subclass

of Minor, called Adolescent.

class Adult includes

(select P from Person where P. Age ~ 21);

class ilfinor includes

(seiect P from Person where P. Age < 21];

class Senior includes

(select A from Adult wher=e A. Age > 65);

class Adolescent includes

(select M from Minor where M. Age > 13].

❑

Example 4. (Bottom-up construction of a virtual class

hierarchy.) Suppose the database contains the classes

Tanker, Trawler, Cruiser, and Frigate. We define a

Merchant_ Vessel to be a Tanker or a Trawler, and we

define a Military. Vessel to be a Cruiser or a Frigate.

We then define a Boat to be either a Merchant_ Vessel

or a Military_ Vessel.

class Mercho,nt_ Vessel includes Tanker, Trawler;

class Military_ Vessel includes Frigate, Cruiser;

class Boat includes Merchant_ Vessel,

Military_ Vessel.

❑

Examples 3 and 4 illustrate the two simplest modes

of constructing a virtual class hierarchy. More gen-

erally, these two modes can be combined. This is

partly illustrated in Example 2, where the class Gov-

ernment_Supported is defined by combining the classes

Student and Senior, in bottom-up fashion, and by se-

lecting objects from the class Adult, in top-down fash-

ion.

Increasing the Flexibility

We have just seen how to build virtual class hierar-

chies by using generalization and specialization. We

can increase the flexibility and convenience of these

constructions by employing behavioral and parametri-

zed classes. In particular, behavioral classes increase

the flexibility of bottom-up constructions, and parame-

trized classes increase the flexibility of top-down con-

structions. This section presents an example of each.

When using generalization to build a virtual class

hierarchy, we have to name all the classes that we want

to group. However, it is sometimes more convenient
to group classes by their properties, instead of by their

names. We saw an example of this in the definition

of the class On-Sale. If the only objects for sale were

cars, houses and companies, we could define the class

On_Sale as follows:

class On_ Sale-Bis includes Car, House, Company.

The definitions of On-Sale and On-Sale.Bis would then

be equivalent and be treated as such by the type sys-

tem. However, the behavioral definition of On-Sale is

more flexible than that of On_ Saie-Bis. In particular,

the introduction of a class Boat (with appropriate price

and discount attributes) would require the programmer

to change the definition of the class On_ Sale_Bis. This

is not needed with the behavioral definition.

Similarly, parametrized classes increase the flexibil-

ity of top-down constructions. When using specializa-

tion to build a virtual class hierarchy, we have to define

each subclass individually. However, it is sometimes

more convenient to partition a class into subclasses ac-

cording to a parameter. For instance, the following

declaration partitions the class Person according to ad-

dress, producing one subclass for each country:

class Resident(X) includes

(select P from Person

where P. Address. Country = X).

Thus, Resident(USA) and Resident(France) represent

two distinct subclasses of Person. This is certainly

more convenient than providing a separate class dec-

laration for each country, Furthermore, as countries

are removed from the database or added, classes auto-

matically disappear or are created and integrated into

the class hierarchy.

Inferring the New Class Hierarchy

The examples above show that a virtual class has natu-

ral subclasses and superclasses. They also suggest how

a class hierarchy can be inferred from the definitions

of the virtual classes. This section develops this idea

further and makes it precise.

Recall that virtual classes are defined to include en-

tire classes as well as objects selected from classes. In

Example 2, the class Government_ Supported was de-

fined to include the classes Student and Senior and

objects selected from the class Adult. In general,

suppose that a virtual class C is defined to include

classes c1.. .Ck as well as objects selected from classes

Ck+l.. .Cn. We define the subclasses and superclasses

of C as follows:

1. if D is a superclass of Cl.. .Cn, then D is also a

superclass of the virtual class C; and

2. each Ci is a subclass of C for 1< i < k.

The new class hierarchy can be computed from these

two rules using standard type inference techniques.

For example, consider a variation of Example 4. Sup-

pose that the database has a class called Ship with four

242

subclasses, Tanker, Trawler, Frigate and Cruiser. Now

define two virtual classes as follows:

class Merchant. Vessel includes Tanker, Trawler;

class Military_ Vessel includes Frigate, Cruiser.

These declarations effectively combine the four sub-

classes of Ship into two larger classes, Merchant-. Vessel

and Military. Vessel. By rule (1), all objects in these

two classes are also in the class Ship, so Ship is a su-

perclass of the two virtual classes Merchant_ Vessel and

Military. Vessel. By rule (2), Merchant_ Vessel becomes

a new superclass of Trawler and Tanker, and Milz-

tary_ Vessel becomes a new superclass of Cruiser and

Frigate. (In fact, they become direct superclasses).

Observe that such definitions allow virtual classes to

be inserted in the middle of a class hierarchy. E.g.,

the virtual class Merchant. Vessel is inserted between

the upper class Ship and the lower classes Tanker and

Trawler. As the class hierarchy evolves and becomes

more complex, this facility can help organize data. For

example, we expect that in a real database, the class

Ship would eventually acquire many new subclasses,

such as Destroyer, Air. Crafl-Carrzer, Battle-Ship, and

Mine-Sweeper, as well as Ocean-Liner, Freighter, Ferry,

Barge and Gondola. To keep the class hierarchy man-

ageable, we would like to insert new, intermediate

classes between Ship and its proliferating subclasses.

Creating virtual classes such as Merchant. Vessel and

Military_ Vessel does exactly this, providing the user

with a more organi~ed view of the data.

Also observe that this definition allows a virtual class

to have multiple superclasses. For example, consider

the virtual class RichUBeautiful defined as follows:

class Rich&Beautiful includes

(select P from Rich where P in Beautiful).

The type system detects that every object in this class

is both in Rich and in Beautiful. It infers, there-

fore, that Rich and Beautiful are both superclasses of

Rich&Beautiful. Therefore, assuming that Rich and

Beautiful are not comparable, this definition introduces

multiple inheritance into the schema.

To conclude this section, we point out that virtual

classes can overlap in many ways. For instance, we

can categorize people by many criteria (age, wealth,

height, etc.), defining a virtual class hierarchy for each

such criterion. In principle, all of these virtual classes

can overlap, and they can overlap in many combina-

tions. For example, some people may be in the classes

Rich, Young and Beautiful, whereas others may be in

the classes Poor, Old and Ugly. In general, given n vir-

tual classes, they may overlap in 0(2n) different ways.

A programmer may choose to define some of these over-

laps as classes, like the class Rich&Beautiful defined

above. However, as a practical matter, we do not re-

quire that all possible overlaps be defined as classes.

Thus, in our framework, an object may simultaneously

belong to several incomparable virtual classes.

Implementation Issues

Since an object maybe a member of many classes simul-

taneously, several implementation issues immediately

arise. In considering these issues, we first recall that

even in the absence of a view mechanism, objects may

belong to several classes, because of the isa relation.

That is, an object created in class C is also a member

of each superclass of C. We say that the object is real

in C and virtual in each superclass of C. To deal with

this situation, most object-oriented data models adopt

the following rule (see e.g., [6, 5]):

Unique Root: An object is real in only one class.

As a consequence of this rule (and in the absence of

views), to find the code for a method of a particular

object, it suffices to “climb” the class hierarchy until

a class is found that provides the code. That is, the

following rule is usually adopted:

Upward Resolution: The resolution of a method in

class C is to be found in a superclass of C.

These two rules have important consequences for the

implementation of object-oriented database systems.

On the one hand, experience has shown that the unique

root rule increases the efficiency and decreases the com-

plexit y of data-intensive systems [6, 5]. The reason is

that under this rule, the structure of an object is fixed:

It has a fixed set of attributes and it can be stored uni-

formly along with similar objects. On the other hand,

the uDward resolution rule facilitates the resolution of

meth~ds: In principle, it suffices to climb the class hi-

erarchy dynamicaHy. (In practice, static method reso-

lution is preferred, but this is complicated by multiple

inheritance.)

We adoc)t the uniaue root rule here. That is, al-. .
though an object may belong to many virtual classes,

we insist that it belongs to exactly one real class. Un-

der this restriction. efficient storatze and retrieval are

still feasible. However, because of the view mechanism,

and in particular, because of specialization, an upward

traversal in the class hierarchy is no longer sufficient to

resolve methods. That is, the upward resolution rule

no longer applies. Indeed, efficient resolution of meth-

ods is a subtle issue (similar to the case with multiple

inheritance), which we discuss further in the next sec-

tion.

4.3 Attributes

From the declaration of a virtual class, we can infer

the type of the class, that is, we can infer its attributes

and their types. There are two basic mechanisms by

which virtual classes acquire attributes: (i) by inherit-

ing the attributes of its superclasses, as all classes do,

and (ii) by inheriting attributes that are common to all

the objects in the class.

Once we infer the superclasses of a virtual class, it
inherits the attributes of the superclasses in the stan-

dard way. Thus, in Example 2, since Person is a super-

class of Senior, Student and Adult, then Person is also

243

a superclass of Government-Supported. Thus, Govern-

ment_Supported inherits all the attributes of Personj

such as Name, Address and Birth_Date, as well as the

behavior of Person.

In addition, a virtual class may acquire attributes

that are common to all objects in the class. For in-

stance, in Example 4, if Tanker and Trawler both

have an attribute called Cargo, then the class .Mer-

chant- Vessel will inherit it. Similarly, the class ilfili-

tary - Vessel will inherit the attribute Armament from

its subclasses. To make this idea precise, suppose the

following are true:

1.

2.

3.

the virtual class C is defined to include the classes

Cl.. .Ck as well as objects selected from the classes

Ck+l...Cn;

each Cl has an attribute called A, for 1 ~ z < n;

and

the types of attribute A in classes Cl . ..C’n have a

least upper bound T-.

Then, the virtual class C also has an attribute called A,

and the type of A in C is r-. (Otherwise, A is undefined

in C.) This acquisition of structure or behavior from

subclass to class is called upward inheritance, to distin-

guish it from the standard downward inheritance from

class to subclasses. Again, all that is involved here is

standard type checking techniques.

At the end of Section 4.2, we mentioned that method

resolution in virtual classes resembles method resolu-

tion when multiple inheritance is allowed. We can pur-

sue this direction a little further now that we have de-

fined how virtual classes inherit attributes and meth-

ods.

The typical setting of a resolution conflict is a class C

with two direct superclasses Cl and C2, with a method

m defined in each. If m is not redefined in C, then

an object in class C, on receiving message m, doesn’t

know how to react. We call this behavioral problem

schizophrenia, in the sense that the receiver doesn’t

know which personality to choose. In the context of

views, the overlapping of classes leads to the same prob-

lem. For example, suppose the classes Rich and Senior

both define a Print method. Then, when a print mes-

sage is sent to an object that is in both Rich and Se-

nior, we have an instance of schizophrenia. There have

been many solutions proposed for solving multiple in-

heritance conflicts from forbidding schemas with con-

flicts, to explicitly assigning levels of priority, or using
priorities based on creation time.

A view system should not strictly disallow

schizophrenia, but should provide a default instead

(even a meaningless default). As we saw earlier, there

are potentially 2n ways in which n classes can overlap.

Most of these overlaps, however, are not likely to rep-

resent meaningful classes. If there are only a few cases

of overlap to consider, inheritance conflicts can be re-

solved by assigning a class name to overlapping classes

(like the class RichtYBeautiful defined above). One can

then redefine the conflicting methods in the new class.

However, this explicit conflict resolution becomes cum-

bersome or infeasible when there are too many cases to

consider.

5 Imaginary Objects

Section 4 showed how to populate a virtual class by

selecting objects that already exist in the database.

This section shows how to populate a virtual class by

creating new objects. We say that such objects are

imaginary, since they exist in the view, but not in the

database. Object creation has been considered in a

number of papers (e.g., [2, 15]). Our semantics of iden-

tity for created objects is in the style of [13].

Imaginary objects have several important applica-

tions:

●

●

●

●

Creating an object-oriented view of a relational

database, Typically, this means creating new ob-

jects from database tuples.

Combining small objects into larger aggregate ob-

jects.

Decomposing large objects into several smaller ob-

jects.

Sophisticated restructurings that turn ob.iects into

vaiues and values into obj~cts.

To create imaginary objects, we use a simple exten-

sion of the notation introduced in Section 4 for defin-

ing virtual classes. For instance, suppose the database

has a class called Person with attributes Name, Sez,

Spouse, and Children. We would like to view the data

not as a collection of people, but as a collection of fam-

ilies. We shall therefore create a virtual class called

Family with two attributes, Husband and Wife. To

populate this class, we must specify the values of the

attributes for each object. The following query does

exactly this:

select [Husband:H, Wife:H. Spouse]

from H in Person

where H,Sez = ‘male’.

The result of this query is a set of tuples where each

tuple represents the attributes of some family. Further-

more, this set represents all the families in the database.
Given the result of the above query, we must convert

each tuple into an object of type Family, creating a

new identifier for each object. To do this, we extend

our syntax for declaring virtual classes, adding the key-

word imaginary:

class Family includes imaginary

(select [Hushand:H, Wife:H.Spouse]

from H in Person

where H. Sez = ‘male’.

244

This declaration does three things: (z) it declares Fam-

ily to be a virtual class, (ii) it specifies the population

of class Family, and (iii) by static type inference, it

declares that class Family has two attributes, Husband

and Wife, both of type Person. We call Husband and

Wife the core attributes of class Family.

When a virtual class contains imaginary objects, as

Family does, we call it an imaginary class. Imaginary

classes are treated like any other class. In particular,

we can declare virtual attributes for them. Thus we

can define a virtual attribute called Children for class

Family, as follows:

attribute Children in class Family has value

(select P from Person

where P in self. Husband. Children

or P in self. Wife. Childven).

We have distinguished above between the core and

virtual attributes of an imaginary class. So far, how-

ever, there appears to be little difference between them.

For instance, the attribute Children could easily have

been declared as a core attribute of class Family, in-

stead of a virtual attribute. However, we will see in

the next section that there is a crucial difference when

updates are considered.

The example of families uses imaginary objects to

combine small objects into larger ones. As mentioned

in the introduction of this section, imaginary objects

have other applications. This is illustrated next.

Example 5. (Transforming complex values into ob-

jects.) Suppose that the database Sta# has a class

called Person whose attributes include City, Street and

Number, among others. We define a view in which these

three attributes are replaced by a single attribute called

Address, whose value is an object. The main advantage

of this modification is that addresses can now be shared:

create view Value_ to-Object;

import class Person from database Staff;

class Address includes imaginary

(select [City: P. City,

Street: P. Street,

Number: P. Number~

from P in Person);

attribute Address in class Person has value

(select the A in Address

where A. City = self. City

and A. Street = self. Street

and A .Number = self. Number);

hide attributes City, Street, Number

in class Person.

(Note the use of the expression “select the A in Ad-

dress...,” “indicating that a query must return a single

element and not a set.) ❑

To conclude this section, we consider one more ap-

plication of imaginary objects. This application ad-

dresses a problem faced by designers of object-oriented

systems: deciding what information to represent as ob-

jects, and what to represent as attributes. For example,

in designing a database about people and addresses,

we could define a class called Person with an attribute

called Address. Alternatively, we could define a class

called Address with an attribute called Occupants, list-

ing the names of all people who live at that address.

Both organizations represent the same information, al-

though the former emphasizes people, whereas the lat-

ter emphasizes addresses. In general, no one choice of

classes is ideal for all applications. The mechanism of

imaginary objects allows the programmer to adapt the

database reality to the needs of the user. The main

step in this transformation is the conversion of val-

ues/attributes into imaginary objects.

5.1 Assigning Identifiers to Imaginary

Objects

To create new objects, the view mechanism creates new
object identifiers (oid’s) and assigns them to objects.

(We consider here the logical viewpoint; it doesn’t have

to be like this in the implementation.) This requirement

leads to subtle problems since it can be difficult to fix

the identity of an imaginary object.

At the implementation level, suppose that the oid’s of

the imaginary objects are computed (and recomputed)

on demand, like a relational view. How can we guaran-

tee that an imaginary object is assigned the same oid

at each invocation? This problem arises in the simplest

cases. For instance, consider the following query: se-

lect F from Family. Each time this query is posed to

the system, it generates a set of families and assigns an

oid to each one. How can we ensure that each family

receives the same oid every time the query is invoked?

This problem becomes crucial once we consider joins

and intersections. For instance, consider the following,

seemingly equivalent queries:

select F from Family

where F.Size > 5

and F. Father. Age < 25

select F from Family

where F. Size > 5

and F in (select F from Family

where F. Father. Age < 25).

With the first query, we obtain as many objects as fam-

ilies satisfying the criteria. With the second query, the

result is implementation dependent, and we may obtain

an empty set if new oid’s are generated each time we

use Family.

In this example, it is obvious that we want to use

the same set of objects each time Family is used. In

general, however, a virtual class may be modified by
database updates , and it is not clear how imaginary

objects maintain their identity as the database evolves.

The rest of this section addresses this issue.

245

When defining imaginary objects, it is convenient to

think of the definition as a function mapping tuples

to oid’s. The problem now becomes clear: It is the

problem of updating this function when the database

is updated. (In this sense, it generalizes the traditional

problem of materialized views.) From the logical point

of view, we choose a simple solution. The population of

an imaginary class C is defined by a query that returns

a set of tuples. For each tuple t returned by the query,

we use the expression C(t) to denote the oid assigned to

t. From an implementation point of view, there could

be a table giving the mapping between the tuples and

oid’s. In this way, we are guaranteed that the same

tuple will be assigned the same oid each time the class

C is invoked. (Note that a tuple will generate a different

oid when used in a different class.)

This approach is rather simple. Even so, there are

logical issues that a view designer should be aware of.

The core attributes play a central role, because when

the value of a core attribute changes, the system as-

sumes that it is dealing with a new object. One must

therefore choose the core attributes carefully, since up-

dating them can affect object identity. Indeed, the

core attributes should be thought of as being somewhat

immutable.1

In Example 5, the core attributes are well chosen.

The intent in the example is that each address is rep-

resented by a distinct object, with a distinct identifier.

In particular, when a person changes his address, we

expect his new address to be represented by a new ob-

ject. The code in Example 5 specifies exactly this. For

instance, when Maggy moves out of 10 Downing Street,

the attribute Address of object Maggy will point to a

different object (and if necessary, a new object will be

generated). On the other hand, the object correspond-

ing to 10 Downing Street may still be used in other

parts of the view. Thus, the definition meets the intu-

ition about addresses.

Example 6. (A poorly designed view.) Consider

a database for a life insurance company. To represent

insurance policies, the database has a class called Policy

with attributes such as Policy_Number, Coverage, Cost,

Name, Address, Age and SS#. We define a view in

which insured persons are represented as objects. Thus,

we create a virtual class called Client with attributes

Name, Age, Address, SS# and Policy. In class Policy,

the four attributes Name, Age, Address and SS# are

replaced by the single attribute Person. The following

code defines the view:

create view My. Clients;

import class Policy from database Insurance;

class Client includes imaginary

10ne can imagine more sophisticated approaches in which an

object preserves its identity when its core attributes change. Sup-

pose that we do so. Now, suppose that because of an update, two

tuples become identical. Should we merge the two corresponding

objects? This leads to object merging. Similarly, one can find

examples that lead to object splittzng.

(select [Name: P. Name,

Age: P.Age,

ss#: P.ss#,

Address: P. Address,

Policy: P]

from P in Policy);

attribute Person in class Policy

has value (select the C from Client

where C. Policy = self);

hide attributes Name, Age, Address, SS#

in class Policy.

Now suppose that Maggy’s address is updated. In the

view, a new client object with a new identifier will be

created, and Maggy)s policy will refer to this new ob-

ject. In other words, as far as the system is concerned,

Maggy before moving and after moving are two differ-

ent clients. Cl

The problem in Example 6 is that the core attributes

of class C/ient are poorly chosen. By including Address

as a core attribute, we effectively declare that Address is

crucial to the identity of a client, just as Street and City

are crucial to the identity of an address. It would be

better to define Address as a virtual attribute of Client,

just as Children was defined as a virtual attribute of

Family in an earlier example.

6 Conclusions and Comparison

with Previous Work

The problem of views in a semantic or object-oriented

database model has been considered in a number of

papers. For instance, hiding the distinction between

stored attributes and computed properties has been

a prominent feature of several systems (e.g., [10, 8]);

some interesting ideas on views in the Daplex world

are mentioned in [8]; and a limited view mechanism is

described for Orion in [15], and for the Fugue Model

in [1 I]. These proposals introduce interesting ideas but

do not provide the flexibility and the generality that

one would expect from a view mechanism. In particu-

lar, the creation of new classes is too limited and relies

too heavily on explicit specifications given by the user.

Furthermore, object creation, when considered, has an

unclear semantics.

In contrast, the present paper provides a general

framework for view definition from a language perspec-

tive based on a clear semantics. The semantic issues

raised by the approach are covered in depth. Further-

more, the view mechanism was built with a number of

simple ideas in mind:

1.

2.

A view should be treated as a database. e.g., A
virtual or imaginary class is usable as any other

class.

A view should be easily constructed. e.g., We use

the query language as much as possible.

246

3.

4,

5.

The spirit of object-orientation should be kept. e.g.,

The semantics of import and hide relies primarily
on inheritance.

The user should be relieved of mundane tasks. e.g.,

After he specifies the population of a class, the

system derives the type and behavior of the class.

More flexibility should be provided. e.g., We have

removed the distinction between attributes and

methods, and we have introduced new features

such as behavioral and parameterized classes.

Problems related to object-oriented views have been

considered in several papers. For instance, a query lan-

guage is a core component of a view mechanism, and

a number of query languages have been proposed for

object-oriented databases (e.g., [4, 19, 10]). Orthogonal

issues are covered in other papers. The use of views for

integrating databases is considered in [12]. The impor-

tant issue of the interaction between user and system

through the use of views is treated in [17]. The problem

of authorization, which is clearly relevant to informa-

tion hiding, is considered in depth in [18]. Finally, we

note that important issues such as materialized views

and view updates, which have been extensively studied

in the relational model, acquire a new dimension in the

context of objects.

Acknowledgments: Franqois Bancilhon is thanked

for getting the first author interested in this vir-

tual topic, Peter Buneman, Dave Maier, Jean-Claude

Mamou and Claudia Medeiros for discussions on views,

and Guy Ferran for explaining the import of 02. Pe-

ter Buneman also managed to convince the first author

of the importance of behavioral generalization. The

second author would like to thank Serge Abiteboul for

arranging time and facilities at INRIA, without which,

this paper would not have been possible.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

14]

15]

[16]

References

[1]

[2]

[3]

[4]

[5]

S. Abiteboul, Virtuality in Object-Oriented

Databases, proc. VI.?mes Journ6es Bases de

Donn6es Avant.4es, 1990.

S. Abiteboul and P. Kanellakis, Object Identity

as a Query Language Primitive, proc. ACM SIG-

MOD 1989, to appear in .lournal of the ACM.

F. Bancilhon. Object-Oriented Database Systems.

Proc. ACM conf. Principles of Database Systems

(PODS), pages 152-162, 1988.

F. Bancilhon, S. Cluet and C. Delobel, Query

Languages for Object-Oriented Database Systems:

The 02 Proposal, proc. .Intern. Work. on Data

Base Programming Languages 2, 1989.

F. Bancilhon, C. Delobel and P. Kanellakis ed.,

The 02 Book, 1989, in preparation.

[17]

[18]

[19]

[20]

J. Banerjee et al., Data Model Issues for Object-

Oriented Applications, ACM Trans. on Oflce In-

formation Systems, 1987,

J. Banerjee, W. Kim. K.-C. Kim, Queries in

Object-Oriented Databases, proc. Data Engineer-
ing conf., 1988.

U. Dayal, Queries and Views in an Object-

Oriented Data Model, Intern, Work, on Data Base

Programming Languages 2, 1989.

G. Ferran, the import mechanism in 02, private

communicant ion.

D.H. Fishman, D. Beech, et al, IRIS: An Object-

Oriented Database Management System. In S.B.
Zdonik and D. Maier, editors, Readings in Object-

Oriented Database Systems, pages 216-226. Mor-

gan Kaufmann, 1990.

S. Heiler and S. Zdonik, Object Views: Extending

the Vision, proc. Data Engineering conf., 1990.

M. Kaul, K Drosten, E.J. Neuhold, ViewSystem:

Integrating Heterogeneous Information Bases by

Object-Oriented Views, proc. Data Engineering

conf. 1990.

M. Kifer and J. Wu, A Logic for Object-Oriented

Logic Programming (Maier’s O-logic: Revisited),

proc. ACM conf. Principles of Database Sygtem8

(PODS), 1989.

W. Kim, A Foundation for Object-Oriented

Databases. Technical Report, MCC, 1988.

W. Kim, A Model of Queries for Object-Oriented

Databases, proc. 15th Conf. on Very Large

Databases, 1989.

C. Lecluse and P. Richard, the 02 Database Pro-

gramming Language, proc. 15th Conf. on Very

Large Databases, Amsterdam, 1989.

C, Medeiros and J.-C. Mamou, Interactive Manip

ulation of Object-Oriented Views, proc. Data En-

gineering conf., 1991.

F. Rabiti, E. Brtino, W. Kim, D. Woelk, A Model

of Authorization for Next-Generation Database

Systems, to appear in ACM Transaction on

Database Systems.

G.M. Shaw, S.B. Zdonik, An Object-Oriented

Query Algebra, proc, Intern. Work. on Data Base

Programming Languages 2, 1989.

IEEE Transaction on Knowledge and Data Engi-

neering, Special issue on database prototype sys-

tems, Ed. M. Stonebraker, 2:1, 1990.

247

